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Electrodisintegration following β decay
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I show that the disintegration of weakly-bound nuclei and the ionization of weakly-bound atomic electrons
due to their interaction with leptons from β decay is a negligible effect.
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The disintegration of weakly bound nuclei with small
neutron separation energy in stars can impose limits to the
stellar scenario where these nuclei exist. β decay already sets
stringent limits on the existence of nuclei very far from the line
of stability (see, e.g., [1]). Here I discuss an additional effect,
namely the restrictions imposed by final state interactions of
the β particle with the daughter nucleus. Electrons observed
in β decay can have enough kinetic energy to induce the
dissociation of the daughter nucleus with small separation
energy. If this process is proven to be relevant, it would lead
to the existence of voids in the elemental abundance close to
the drip-line.

The basic assumptions adopted here are that the excitation
(dissociation) of a nucleus following β decay is sequential
and that it can be described as a two-step process, so that the
transition rate is given by

Wi→m→f = W
(β)
i→m · P

(e)
m→f ,

where W
(β)
i→m is the usual β-decay transition rate from an initial

nuclear state i to an intermediary state m, and P
(e)
m→f is the

probability for the nuclear excitation from m to a final state
f by the interaction of the nucleus with the outgoing electron
(positron).

The β particle is described by a spherically symmetric out-
going wave, that favors monopole transitions in the daughter
nucleus. We neglect retardation and assume that the electron
(positron) energy is much larger than the excitation energy.
The outgoing electron wave will generate a time-dependent
monopole wake field whose interaction with the nucleus has
the usual form Ve = eeff/r , where eeff is the effective charge
for the transition. The effective charge arises due to the
modification of the charge radius of the nucleus after nucleon
emission. An accurate value of the effective charge depends
strongly on the nuclear properties [4]. For simplicity, I will
assume eeff ∼ e.

Because of the assumed spherical symmetry, the Coulomb
field of the electron (positron) only exists outside the outgoing
electron wavefront. Therefore, in first-order time-dependent
perturbation theory, the excitation amplitude A

(e)
m→f is given
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by

A
(e)
m→f = 1

ih̄
e2

∫
dt exp[i(Ef − Em)t/h̄)]

×
∫

r>re(t)
d3r

1

r
�∗

f (r)�m(r), (1)

where we set up the spin angular part of the matrix element
equal to 1. �j (r) denotes the nuclear wave function, Ej the
nuclear energy of state j, re is the electron, and r the internal
nuclear coordinate.

We use a simplified nuclear model for the nuclear wave
function �(r) which captures the essence of the process. The
wave function for the state m is taken as an s-wave Hulthén
wave function [2]

�m (r) = N
um(r)

r
= N

(e−αr − e−βr )

r
. (2)

The term e−βr modifies the asymptotic form e−αr at small
distances in such a way that um(0) = 0, and more specifically
um ∼ r , as is reasonable for s waves. Moreover, the parameter
α is given in terms of the separation energy of the nucleon
from the nucleus by the equation Sn = h̄2α2/2mn, where mn

is the reduced nucleon-nucleus mass and β can be determined
from the effective range parameter, r0, as approximately [2,3]

β = 3 − αr0 + (
α2r2

0 − 10αr0 + 9
)1/2

2r0
, (3)

and in general β � 1. Similarly, the normalization constant
can be expressed in terms of the effective range as N2 =
α [2π (1 − αr0)]−1. In the following numerical calculations we
will use r0 = 3 fm, a typical value for nuclear systems.

The final wave function is an outgoing spherical wave,

�f (r) = 1

2ikr
exp (ikr), (4)

where k is related to the relative kinetic energy of the final
state by ε = h̄2k2/2mn.

If ve denotes the electron velocity, assumed to remain
undisturbed by the energy transfer to the excitation, the time
dependence of the electron position is re = vet . The first
integral in Eq. (1) can be expressed in terms of the exponential
integral function, Ei(x), as

A
(e)
m→f (Ee, Sn, ε) = 2πe2N

h̄kve

∫ ∞

0
dr qe(λ̄e, r) exp

(
i
ωr

ve

)
× [Ei(−ar) − Ei(−br)], (5)
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where Ee is the electron (positron) energy, a = α + ik and
b = β + ik and we use the short notation ω = (Ef − Em)/h̄,

such that h̄ω = Sn + ε. Note that we have introduced an
electron-charge distribution q(λ̄e, r) which has the following
meaning. When the electron (positron) is produced in β decay
its charge is homogeneously distributed within a sphere of
the size of its Compton wavelength λ̄e = h̄/γmec, where γ =
(1 − v2

e /c
2)−1/2. This is based on the uncertainty principle,

which introduces a smearing out of the electron coordinate
within a region equal to its wavelength. This condition implies
that

qe(λ̄e, r) =
{

r3/λ̄3
e, for r < λ̄e

1 for r � λ̄e

. (6)

If qe = 1 is used, the integral in Eq. (5) can be performed
analytically. One gets

ve

2ω

{
2 arctan

(
ω

vea

)
− 2 arctan

(
ω

veb

)

− i

[
ln

(
1 + ω2

v2
e a

2

)
− ln

(
1 + ω2

v2
e b

2

)]}
. (7)

Finally, the dissociation probability is given by

P
(e)
m→f (Ee, Sn) =

∫
dερ (ε)

∣∣A(e)
m→f

∣∣2

= (2mn)3/2

(2πh̄)3

∫ ∞

0
|A (Ee, S, ε) |2√εdε, (8)

where ρ(ε) = (2mn)3/2√εdε/(2πh̄)3 is the density of final
states of the nucleon-nucleus system.

Figure 1 shows the energy spectrum, dP (e)/dε, of con-
tinuum states produced by electrodissociation following a
β decay with electron (positron) energy Ee = 10 MeV. The
initial state is bound by 100 keV. The dashed curve is obtained
with the approximation of Eq. (7). One sees that, as expected,
neglecting the wave character of the electron [i.e., using
Eq. (7)] leads to a large overestimation of the excitation
probabilities. Using the value of qe as given by Eq. (6) leads
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FIG. 1. (Color online) Energy spectrum of continuum states
produced by electrodissociation following a β decay with electron
(positron) energy Ee = 10 MeV. The initial state is bound by 100 keV.
The dashed curve is obtained with the approximation of Eq. (7).

TABLE I. Dissociation probabil-
ity of a loosely-bound nucleus as a
function of the neutron separation
energy Sn in keV for an electron with
energy Ee = 10 MeV.

Sn [keV] P (e)

10 9.3 × 10−7

70 4.8 × 10−7

160 1.9 × 10−7

310 7.3 × 10−8

to a steeper decrease of states with larger energy. Obviously,
for too large excitation energies of the nucleus the total energy
is not conserved and the formalism described above is not
appropriate.

Table I shows the dissociation probability of a loosely-
bound nucleus as a function of the neutron separation energy
Sn in keV for an electron (positron) with energy Ee = 10 MeV.
The probabilities are very small, even for 10 keV separation
energy. This rules out nuclear dissociation following β decay
as a relevant effect in β decay processes close to the drip line.
A full quantum mechanical calculation will not change this
conclusion as the main ingredients of the effect have been taken
into account above. Also, for charged particle (e.g., emission of
a proton) this effect is further suppressed due to the Coulomb
barrier.

Naı̈vely, this calculation can be used to estimate the
probability that the β particle ionizes the atom by ejecting
one of its outer electrons. One can use the equations above
and just replace the nucleon mass by the electron mass (using
r0 = 0). While the Hulthén wave function, Eq. (2), is a good
approximation for a loosely bound electron, the scattering
wave, Eq. (4), is obviously wrong as it does not account
for the (screened) charge of the residual atom. An estimate
of the Coulomb effect follows by adding a Coulomb phase,
(e2/h̄ve) ln(2ker), to the exponent in Eq. (4). It has been
checked numerically that this changes the results by only few
percent. Moreover, an exact treatment of Coulomb distortion
tends to decrease the magnitude of the ionization probabilities
in projectile impact processes [5].

Results for atomic ionization following β decay are shown
in Table II as a function of the β-particle energy assuming a
loosely bound electron with separation energy of Se = 1 eV.
One sees, as expected, that the ionization probability decreases

TABLE II. Ionization probability of
a loosely-bound atom (Se = 1 eV) as a
function of the β-particle energy Ee.

Ee P (e)

10 eV 4.7 × 10−8

50 keV 6.3 × 10−10

1 MeV 1.09 × 10−10

5 MeV 1.97 × 10−11
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with the β-decay electron energy. The obvious reason is the
increase of the wavelength mismatch between the emitted
electron and that of the β particle as the energy of the later
increases. The ionization probability remains small even when
the β particle has small energy.

We conclude that the excitation, or dissociation, of nuclei
as well as the atomic ionization by the electron (or positron)
emitted in β-decay processes are negligible effects. A calcula-
tion using Feynman diagram techniques with proper account
of relativistic effects and energy conservation is very unlikely

to change these conclusions. The same line of thought applies
to the consideration of higher multipole interactions.
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