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We discuss the geometry of the highly quantal nuclear three-body systems composed of a core plus two
loosely bound particles. These Borromean nuclei have no single bound two-body subsystem. Correlation
plays a prominent role. From consideration of the B(E1) value extracted from electromagnetic dissociation,
in conjunction with HBT-type analysis of the two valence-halo particles correlation, we show that an estimate of
the over-all geometry can be deduced. In particular we find that the opening angle between the two neutrons in
6He and 11Li are, respectively, θnn = 83◦+20

−10 and 66◦+22
−18. These angles are reduced by about 12% to θnn = 78◦+13

−18

and 58◦+10
−14 if the laser spectroscopy values of the rms charge radii are used to obtain the rms distance between

the cores and the center of mass of the two neutrons. The opening angle in the case of 11Li is more than 20%
larger than recently reported by Nakamura et al. [Phys. Rev. Lett. 96, 252502 (2006)]. The analysis is extended
to 14Be and the two-proton Borromean nucleus 17Ne where complete data are still not available. Using available
experimental data and recent theoretical calculations we find θnn = 640+9

−10 and θpp = 110◦, respectively.
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Borromean nuclei are fragile three-body systems with all
two-body subsystems being unbound. Typical examples are
6He, 11Li, and 14Be which are two-neutron Borromean halo
isotopes and 17Ne which is a two-proton Borromean halo
isotope of neon. The reason that the two-body subsystems are
unbound while the three-body system is bound is entirely due
to the effective (in-medium) two-nucleon correlations. How
strong are these effective two-body correlations? Do they
correspond to dinucleon systems, where spatial correlations
are maximum, or to some kind of a Cooper correlation, where
the two nucleons sit at opposite sides of the core?

From the experimental point of view, the answer to this
question could be obtained from a concomitant measurement
of the B(E1) values and source size in a Hanbury Brown-Twiss
(HBT) type correlation study [1]. We will argue here that this
scheme should supply a mean of estimating the average value
of the opening angle between the halo nucleons in Borromean
nuclei.

In a recent publication, Nakamura et al. [2] studied the low
lying dipole excitation in 11Li. Their work has had a great
impact in this field because new results, showing deviations
from previous experimental analysis, have been reported [2].
They also deduced the opening angle between the two neutrons
in the halo. By relating their measured B(E1) to the rms value
of the distance between the core, 9Li and the center of mass of
the two valence neutrons, viz.
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and using rn = rn′ obtained from the no-correlation value of
B(E1) (〈θnn〉 = π/2) given in Ref. [3] using a dipole sum rule
value, namely B(E1) = 1.07 e2fm2 [2] obtained for 〈θnn〉 the

value

〈θnn′ 〉 = 48◦+14
−18.

Notice that the simple relation, Eq. (1), used by Nakamura
et al. has a very simple interpretation in terms of θNN .
When θNN = π one gets B(E1) = 0. This is because the
two valence nucleons lie on opposite sides of the nucleus
and the dipole operator vanishes identically due to their same
charge-to-mass ratio. On the other hand, it θNN = 0, i.e.,
when the valence nucleon wave functions agglomerate close to
each other (dineutron), one gets a maximum value of B(E1).
Thus, assuming the validity of the three-body model for the
Borromean nucleus, without the complications of effective
charges, core-polarization, etc., the experimental values of
B(E1) are valuable telltales of the nuclear geometry.

A similar procedure can be employed for the other Bor-
romean nuclei when data are available. However, the method
of Nakamura et al. relies on the use of the no-correlation value
of rn, and thus is heavily model-dependent. Namely, from
Ref. [3], one has with θnn′ = π/2 (no nn correlation),
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The above equation supplies a value for 〈r2
n〉 if the dipole sum

rule (DSR) value of B(E1), B(E1)DSR, is used
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For 11Li B(E1)DSR = 1.07 e2fm2 [3]. Nakamura et al. [2] then
used the above value of 〈r2

n〉 in Eq. (3), with their experimental
value of B(E1), B(E1)Exp, after setting rn = rn′ :
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where the average of the product 〈rnrn′ cos θnn〉 is approxi-
mated by the product of averages

〈rnrn′ cos θnn〉 � 〈
r2
n

〉〈cos θnn〉. (6)

With Eq. (5), and with the further assumption 〈r2
n + r2

n′ 〉 =
2〈r2

n〉 and 〈rnrn′ 〉 = 〈r2
n〉, we get the Nakamura prescription

for determining 〈cos θnn〉, i.e.,

B(E1)Exp = B(E1)DSR[1 + 〈cos θnn〉], (7)

which gives the value for 〈θnn〉 = cos−1〈cos θnn〉 quoted above.
The above procedure is strongly model-dependent as it

relies on only one set of experimental observables, B(E1),
obtained from Coulomb excitation measurements. Clearly,
to reduce the model dependence one needs more sets of
experimental observables. It is thus very important to seek
other observables in order to determine, in a less model
dependent way, 〈θnn〉, for Borromean nuclei. In this article
we will focus on this endeavor. We avoid the use of Eq. (2)
altogether.

In the work of Marques et al. [4,5], the two neutron
correlation function is measured. This function is defined as

C(p1, p2) = P2(p1, p2)

P1(p1)P1(p2)
, (8)

where P1(pi) is the one-neutron momentum distribution and
P2(p1, p2) is the two-neutron momentum distribution. The
indices 1 and 2 attached to the momenta refer to first and second
emitted neutrons. The authors of Refs. [4,5] compared the
measured C(p1, p2) with Eq. (8) with an analytical expression
for P2 extracted from Ref. [6] to account for the case of direct
two-neutron independent emission from a Gaussian source.
From such analysis approximate, model-dependent, values of
〈r2

nn〉 were determined for 6He, 11Li, and 14Be. We should
stress that the above HBT analysis was based on the use of
a simple model of the emission of the two neutrons from a
supposed random source. It is not yet clear how large are the
coherent effects, and how much these effects would affect
the final results of the analysis. Furthermore, the
HBT probes the average n-n configuration of the continuum
states and not the ground state, as the nucleus is excited above
the threshold before the emission occurs. Bearing all of the
above in mind, one would only hope to use the HBT results
to get, at most, an estimate of the average value of rnn. For
a recent review containing, among other things, an account
of the difficulties encountered in the correlation measurement
and the extraction of rnn, see Ref. [7].

In what follows we will use the HBT study results for
the distance between the two neutrons, given by Marques
et al. [4,5] and show that the opening angle between the
two neutrons in 11Li is 25% larger than the above. We also
calculate the opening angle for 6He, where full measurement
is available [both the B(E1), laser spectroscopy and the HBT
analysis] and also supply the value of this angle for 14Be as

well as for 17Ne using available data and model calculations.
We find using the laser spectroscopy data on the rms values of
the charge radii [20–22], 〈θnn〉 = 58◦+10

−14 , 78◦+13
−18 , and 64◦+9

−10

for 11Li, 6He, and 14Be, respectively.
For the two-proton Borromean nucleus, 17Ne we use the

general cluster formula for the dipole strength function [8]
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with Zeff = (ZvAc − ZcAv)/A = 2Nc/A, and obtain

〈θpp〉 = 110◦ for 17Ne.

We supply the details of our calculation in what follows.
The experimental analysis of Refs. [4] and [5] can be

summarized by giving the average distances between the
valence nucleons obtained through two-particle correlations
that supplies the size of the source. The obtained values
are 〈rnn〉 = 6.6 fm, 5.9 fm, and 5.6 fm, for 11Li, 6He, and
14Be, respectively. From the calculation of [9], one extracts
〈rpp〉 = 4.45 fm.

From the measured B(E1) for 6He [16] and for 11Li [2]
and the calculated ones for 14Be [17] and for 17Ne [9], and
using Eq. (1), the rms value of y, which is identified as
rc-NN , the average distance between the c.m. of the core and
the c.m. of the two nucleons, is determined to be 3.36(39),
5.01(32), 4.50, and 1.55 fm, respectively. More accurate values
of this latter quantity can be obtained [22] from measurements
of the rms charge radii [20,21]. They supply for rc-NN for
6He [21] and 11Li [20] employing the analysis of [22] the
values 3.71(07) and 5.97(22), respectively. Moreover, the rms
value of x is the quantity measured in the HBT studies.
From these two experimentally determined and theoretically
calculated quantities, the opening angle is approximately
obtained without resorting to any further model dependence
(besides the model dependence of the measured rNN ) except
for the assumption rN = rN ′ .

Given rc-NN and rNN , can one determine the opening angle
θNN ? From Fig. 1 it is easy to write

cos θNN/2 = y√
y2 + x2/4

. (10)

FIG. 1. (Color online) Jacobian coordinates (x and y) for a
Borromean nucleus of a core (C) and two nucleons (N1 and N2).
The average values of the coordinates in the three-body ground state√

〈x2〉 ≡ rNN and
√〈y2〉 ≡ rC-2N .
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The rms value of the cosine above clearly does not correspond
to the cosine of the average value of the angle, θNN . This latter
can be estimated from

cos θNN/2 = rc-NN√
r2
C-NN + r2

NN/4
. (11)

The calculation of the rms value of the cosine in Eq. (10) can
be performed using the Gaussian model for the source. For
our purposes in this paper we use instead Eq. (11) to get the
already reported estimates of θNN .

How does our current analysis of the geometry of the ground
state of Borromean nuclei bear on the values of the rms matter
radii tabulated in [10]? To answer this, we use the formula for
the rms radius of a two-cluster nucleus, where the two halo
nucleons are treated as an extended entity of radius rNN /2,

R2
rms =

(
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A
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c +
(

2

A

)( rNN

2

)2
+

(
2Ac

A2

)
(rc-NN )2.

(12)

We have used the radii of the cores, R4He = 1.57(4), R9Li =
2.32(1), R12Be = 2.59(6), and R15O = 2.44(4) fm, all taken
from [10]. With the values of rNN cited above and rc-NN

from the measured B(E1)’s we find Rrms = 2.67(36) fm,
3.17(27) fm, 3.10 fm, and 2.70 fm, for the Borromean
nuclei 6He, 11Li, 14Be, and 17Ne, respectively. These values
are to be compared to the tabulated ones given in [10],
namely, 2.48(3)fm, 3.12(16) fm, 3.16(38) fm, and 2.75(7) fm,
respectively. Our results are summarized in Table I. We did
not indicate the error bars in the radius of 17Ne since no data
are available.

If we use the values of rc-NN extracted from the rms
charge radii of 6He and 11Li (see above) we get for the rms
matter radii the values 2.78 and 3.4 fm, respectively. These

values are larger than those of [10] but closer to the ones
obtained by improved Glauber calculation of the reaction cross
sections. For example [26] obtained the value 3.5(6) fm for
11Li.

We should reiterate here a point already mentioned in the
paper: the HBT probes the average n-n configuration of the
continuum states and not the ground state, as the nucleus is
excited above the threshold before the emission occurs. It is
therefore expected that the values of rNN corresponding to
the ground state would be smaller than the ones quoted in the
text and the table. This will result in smaller opening angles,
perhaps within the range the errors already indicated in the
table.

It is worth mentioning here that the opening angles we
have obtained for 6He and 11Li are consistent with the
the recent three-body pairing calculation of Hagino and
Sagawa [18].

Notwithstanding the large size of the error bars in the
measured rNN and the small difference (2◦) between θNN

for 11Li and 14Be, this implies that there is a gradual increase
in the intensity of spatial correlations between the two halo
neutrons. The case of 17Ne is quite different; owing to the
Coulomb repulsion between the two protons the above trend
ceases to operate. This may be traced to the scattering lengths
of the two nucleon pairs. For the nn case one has the so
far accepted value of ann = −18.6 (4) fm [11,12]. Though
charge symmetry says that the nuclear (hadronic) value of app

should be equal to that of ann, the presence of electromagnetic
repulsion and other effects render app almost one third of ann.
Precisely [11,13], one has app = −7.8063 (26) fm. It would
be quite interesting to check the above by performing both
B(E1) measurement and HBT correlation analysis for the 17Ne
two-proton Borromean nucleus. Such an endeavor is currently
in the planning stage at the GSI [14]. Due to the long-range
Coulomb interaction, the HBT analysis has to be carried out
with care for charged particles [19].

TABLE I. The average distance between the two nucleons in the halo and the core-2N average
distance shown in the first and second columns, respectively. The values of rc-2N and the rms radii
for 6He and 11Li are obtained both from the B(E1)’s values, [16] and [2], and from [20,21] with
the help of [22]. The core radii were taken from [10]. The RMS radii for the other two nuclei are
tabulated according to Eq. (12)and [10]. Also indicated within parentheses are the compiled values
of the Ref. [10]. The B(E1) values were collected from the indicated references. The last column
exhibits the values of the opening angle, θ̄NN , calculated from Eq. (11). See text for details.

rNN (fm) rc-2N (fm) Rrms (fm) B(E1) (e2fm2) θ̄NN

6He 5.9±1.2 [4] 3.36 (39) [16] 2.67 1.20 (20) [16] 83◦+20
−10

(2.48)
3.71(07) [21] 2.78 78◦+13

−18

11Li 6.6±1.5 [4] 5.01 (32) [2] 3.17 1.42 (18) [2] 66◦+22
−18

(3.12)
5.97(22) [20] 3.4 58◦+10

−14

14Be 5.60±1.0 [5] 4.50 [17] 3.10 1.69∗ [17] 64◦+9
−10

(3.16)

17Ne 4.45 [9] 1.55 [9] 2.70 1.56∗ [9] 110◦

(2.75)
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It is tempting to compare our finding for the opening angle
between the two halo protons in 17Ne with the opening angle
between the two hydrogen atoms in the water molecule H2O.
This latter angle is quite well known and its value is θHH =
104.45◦, almost equal the nuclear counterpart, θpp. In H2O,
rO−2H = 78.15 pm and rHH = 247.33 pm (picometer). Though
the physics is different, we believe that several universal
properties may be common in these quantum three-body
systems [23], one of which is the Efimov effect; the limit of
infinite s-wave scattering length of at least one of the two-body
subsystems. This allows for the existence of infinite number
of three-body bound states close to the two-body threshold
even in the absence of two-body bound states. Such states
have been experimentally observed as giant recombination
resonances that deplete the Bose-Einstein condensate in cold
Cs gases [24]. In our present case we are finding a similarity in
the three-body geometry of H2O and 17Ne (p2O) which lures
us to call 17Ne the nuclear “water” molecule.

In conclusion we have supplied an estimate of the geometry
of the Borromean nuclei, 6He, 11Li, 14Be, and 17Ne using
available values of B(E1) and the average distance between the
valence nucleons supplied by two-particle correlation HBT-
type analysis. We have found that the opening angle between

the valence nucleons seems to evolve in a decreasing fashion
as the mass of the system increases in the case of two-neutron
Borromean nuclei. This conclusion is however not definite
as it is hampered by the error bars in the measured values
of rNN [4,5]. In the case of the two-proton Borromean halo
nucleus 17Ne, the opening angle was found to be 110◦, large
enough to suggest that the pp subsystem in this nucleus is close
to be a Cooper pair [15], in contrast to the nn subsystems in
the two-neutron Borromean nuclei referenced above, where
the corresponding nn opening angles were found to be much
smaller. After completing a first version of this paper, we
became aware of a similar work completed quite recently by
Hagino and Sagawa [25]. They deduced opening angles for
6He, 11Li close to ours.
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