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Pauli blocking and medium effects in nucleon knockout reactions
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We study medium modifications of the nucleon-nucleon (NN ) cross sections and their influence on the
nucleon knockout reactions. Using the eikonal approximation, we compare the results obtained with free NN

cross sections with those obtained with a purely geometrical treatment of Pauli blocking and with NN obtained
with more elaborated Dirac-Bruecker methods. The medium effects are parametrized in terms of the baryon
density. We focus on symmetric nuclear matter, although the geometrical Pauli blocking also allows for the
treatment of asymmetric nuclear matter. It is shown that medium effects can change the nucleon knockout cross
sections and momentum distributions up to 10% in the energy range Elab = 50–300 MeV/nucleon. The effect is
more evident in reactions involving halo nuclei.
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I. INTRODUCTION

Nuclear structure calculations are now able to reproduce the
measured masses, charge radii, and low-lying excited states of
a large number of nuclei. For very exotic nuclei, the small
additional stability that comes with the filling of a particular
orbital can have profound effects upon their existence as bound
systems, their lifetime, and structure. The determination of the
ordering, spacing, and the occupancy of orbitals is therefore
essential in assessing how exotic nuclei evolve in the presence
of large neutron or proton excess and to what extent theories
have predictive power. Such spectroscopy of the single-particle
structure in short-lived nuclei typically uses direct nuclear
reactions.

Nucleon knockout reactions at intermediate energies have
become a well-established and quantitative tool for studying
the location and occupancy of single-particle states and
correlation effects in the nuclear many-body system, as
discussed in Refs. [1–5]. In a peripheral, sudden collision of the
fast-moving projectile, a single nucleon is removed from the
projectile, producing projectilelike residues in the exit channel
[4]. Referred to the center-of-mass system of the projectile, the
transferred momentum is kc. In the sudden approximation and
for the knockout reaction, this must equal the momentum of
the struck nucleon before the collision. The measured partial
cross-sections to individual final levels provide spectroscopic
factors for the individual angular-momentum components
j . In complete analogy to the use of angular distributions
in transfer reactions, the orbital angular momentum l is in
the knockout reactions revealed by the distributions of the
quantity kc.

Extensions of the nucleon knockout formalism including
the treatment of final-state interactions were discussed in
Ref. [6], where it is shown that Coulomb final-state inter-
actions are of relevance. They can be done by just adding
the Coulomb phase φ = φN + φC in the eikonal phase, as
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described [6]. Inclusion of higer-order effects [7,8] and a
theory for two-nucleon knockout [9–11] has been developed.
Knockout reactions represent a particular case for which
higher projectile energies allow a simpler theoretical treatment
of the reaction mechanism, owing to the simplicity of the
eikonal scattering waves and the assumption of a single-step
process.

A question of interest is the antisymmetrization of the
full projectile-target scattering wave function. At intermediate
energies (∼100 MeV/nucleon), this effect is usually neglected.
In the Glauber formalism of knockout reactions the scattering
waves are calculated from an optical potential based on
nucleon-nucleon scattering cross sections. A rough treatment
of antisymmetrization is obtained by the manifestation of
medium modification of the nucleon-nucleon cross section.
Knowledge of the medium modification of the nucleon-
nucleon (NN ) cross section is necessary for an adequate
numerical modeling of heavy-ion collision dynamics in central
collisions (see, e.g., Ref. [12] and references therein). In these
collisions, the ultimate purpose is to extract information about
the nuclear equation of state by studying global collective
variables describing the collision process. In direct reactions,
such as knockout reactions, the medium effects on the NN

cross sections are much smaller because mostly low nuclear
densities are probed. The goal in this work is to identify if
medium modifications of NN scattering modify appreciably
the cross sections in knockout reactions. A systematic study
of this effect in the literature is still lacking and is the focal
point of this article.

Medium modifications of NN cross sections are usually
treated within the Brueckner-Hartree-Fock theory, where the
G matrix serves as the in-medium scattering amplitude, with
medium effects being introduced through the self-consistent
nuclear mean field and Pauli blocking. The literature in this
subject is very long (see, e.g., Refs. [13–16]). In addition
to being a fundamental input for nuclear reactions at high
energies, the in-medium cross sections provide an immediate
connection with the nucleon mean free path, λ, one of the
most fundamental quantities characterizing the propagation of
nucleons through matter. In turn, λ enters the calculation of
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the nuclear transparency function where the latter is related to
the total reaction cross section, σR , of a nucleus [17].

In this work we include medium effects of the NN cross
section in knockout reactions with a simple geometrical
treatment of Pauli blocking and also with more elaborated
Dirac-Brueckner results in terms of baryon densities. We
focus specifically on symmetric nuclear matter. We calculate
knockout cross sections and momentum distributions for
selected reactions. After the introductory remarks in this
section, in Sec. II we describe the formalism used in our
calculations. Section III contains our numerical results. We
conclude in Sec. IV with our summary.

II. KNOCKOUT REACTIONS

A. Medium modification of nucleon-nucleon cross sections

The free (total) NN cross sections were taken from the
Particle Data Group [18]. For our practical purposes, we have
developed new fits for the free NN cross sections, separated
into three energy intervals, by means of the expressions

σpp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

19.6 + 4253/E − 375/
√

E + 3.86 × 10−2E

(for E < 280 MeV),

32.7 − 5.52 × 10−2E + 3.53 × 10−7E3

− 2.97 × 10−10E4

(for 280 MeV � E < 840 MeV),

50.9 − 3.8 × 10−3E + 2.78 × 10−7E2

+ 1.92 × 10−15E4

(for 840 MeV � E � 5 GeV)

(1)

for proton-proton collisions and

σnp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

89.4 − 2025/
√

E + 19108/E − 43535/E2

(for E < 300 MeV),

14.2 + 5436/E + 3.72 × 10−5E2 − 7.55 × 10−9E3

(for 300 MeV � E < 700 MeV),

33.9 + 6.1 × 10−3E − 1.55 × 10−6E2

+ 1.3 × 10−10E3

(for 700 MeV � E � 5 GeV)

(2)

for proton-neutron collisions. E is the projectile laboratory
energy. The coefficients in the preceding equations have
been obtained by a least squares fit to the NN cross-section
experimental data over a variety of energies, ranging from
10 MeV to 5 GeV. In Fig. 1 these fits are represented by a solid
line, whereas the filled circles are the experimental data from
Ref. [18].

Most practical studies of medium corrections of NN

scattering are done by considering the effective two-nucleon
interaction in infinite nuclear matter, or G matrix, as a solution
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FIG. 1. (Color online) Least squares fit (solid curves) to the NN

cross section described by Eqs. (1) and (2). The experimental data
are from Ref. [18].

of the Bethe-Goldstone equation [19],

〈k|G(P, ρ1, ρ2)|k0〉
= 〈k|vNN |k0〉 −

∫
d3k′

(2π )3

× 〈k|vNN |k′〉Q(k′, P, ρ1, ρ2)〈k′|G(P, ρ1, ρ2)|k0〉
E(P, k′) − E0 − iε

, (3)

with k0, k, and k′ the initial, final, and intermediate relative
momenta of the NN pair, k = (k1 − k2)/2 and P = (k1 +
k2)/2. If energy and momentum are conserved in the binary
collision, P is conserved in magnitude and direction, and the
magnitude of k is also conserved. vNN is the NN potential. E

is the energy of the two-nucleon system, and E0 is the same
quantity on shell. Thus, E(P, k) = e(P + k) + e(P − k), with
e the single-particle energy in nuclear matter. It is also implicit
in Eq. (3) that the final momenta k of the NN pair also lie
outside the range of occupied states.

Equation (3) is density dependent owing to the presence of
the Pauli projection operator Q, defined by

Q(k, P, ρ1, ρ2) =
{

1 if k1,2 > kF1,F2,

0 otherwise,
(4)

with k1,2 the magnitude of the momenta of each nucleon.
Q prevents scattering into occupied intermediate states. The
Fermi momenta kF1,F2 are related to the proton and neutron
densities by means of the zero-temperature density approxima-
tion, kFi = (3π2ρi)1/3. For finite nuclei, one usually replaces
ρi with the local densities to obtain the local Fermi momenta.
This is obviously a rough approximation, but very practical
and extensively used in the literature.

Only by means of several approximations, can Eq. (3) be
related to NN cross sections. If one neglects the medium
modifications of the nucleon-mass and scattering through
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intermediate states, the medium modification of the NN cross
sections can be accounted for by the geometrical factor Q

only; that is,

σNN (k, ρ1, ρ2) =
∫

dσ free
NN

d�
Q(k, P, ρ1, ρ2)d�, (5)

where Q is now a simplified geometrical condition on the
available scattering angles for the scattering of the NN pair to
unoccupied final states.

A usual approximation for the Pauli blocking is to assume
that the effect of the Q operator is equivalent to a restricted
angular integration in the domain (for symmetric nuclear
matter)

k2
F − P 2 − k2

2Pk
� cos θ � P 2 + k2 − k2

F

2Pk
. (6)

The integral in Eq. (5) becomes zero if the upper limit is
negative [as determined by the condition in Eq. (4)], whereas
the full integration range is used if the upper limit is greater
than 1. [Notice that the average angle θ in Eq. (6), namely, the
angle between the directions of k and P, is also the colatitude
of k in a coordinate system, where the z axis is along P and,
thus, in such a reference frame it coincides with the scattering
angle to be integrated over in Eq. (5).] The method of using
Eqs. (5) and (6) is not correct and misses an important part of
the Pauli blocking geometry, as we show next.

A geometric description of the Pauli operator Q was
first studied by Clementel and Villi [20], who obtained an
analytical expression for the scattering of a nucleon on a
nucleon Fermi gas. By using the local-density approximation,
their work has been widely used to describe Pauli-blocking in
nucleon-nucleus scattering. Much later, in Ref. [21] (see also
Appendix C of Ref. [17]), an expression was obtained for the
geometrical Q operator for nucleon scattering in asymmetric
nuclear matter, involving two Fermi momentum spheres, one
for the proton and another for the neutron. In contrast to Eq. (5),
the expression obtained in Ref. [21] allows for NN scattering
with the relative momentum vector lying outside the symmetry
axis of the two-Fermi-gas system.

As shown in Refs. [17,21], the Pauli blocking projection
yields an average NN cross section for two Fermi gases with
relative momenta k0 (see Fig. 30 of Ref. [17]) given by

σNN (k, ρ1, ρ2) =
∫

d3k1d
3k2(

4πk3
F1/3

)(
4πk3

F2/3
)

× 2q

k0
σ free

NN (q)
�Pauli

4π
, (7)

where 2q = k1 − k2 − k0.
Pauli blocking enters through the restriction that the

magnitudes of the final nucleon momenta, |k′
1| and |k′

2|, lie
outside the Fermi spheres, with radii kF1 and kF2, respectively.
This leads to a limited fraction of the solid angle into which
the nucleons can scatter, �Pauli. It reads [21]

�Pauli = 4π − 2(�a + �b − �̄), (8)

where �a and �b specify the excluded solid angles for each
nucleon, and �̄ represents the geometric intersection of the

solid angles �a and �b,

�a = 2π (1 − cos θa), �b = 2π (1 − cos θb), (9)

where
cos θa = (

p2 + q2 − k2
F1

)
/2pq,

(10)
cos θb = (

p2 + q2 − k2
F2

)
/2pq,

with 2p = k1 + k2 + k0.
For �̄ there are two possibilities:

(i) �̄ = �i(θ, θa, θb) + �i(π − θ, θa, θb),

for θ + θa + θb > π, (11)

(ii) �̄ = �i(θ, θa, θb), for θ + θa + θb � π,

where θ is given by

cos θ = (k2 − p2 − b2)/2pb, (12)

where b = k − p.
The solid angle �i has the following values

(i) �i = 0 for θ � θa + θb,

(ii) �i = 2

[
cos−1(γab) + cos−1(γba)

− cos θa cos−1

(
cos θb − cos θ cos θa

sin θ sin θa

)

−cos θb cos−1

(
cos θa − cos θ cos θb

sin θ sin θb

)]
(13)

for |θb − θa| � θ � θa + θb,

(iii) �i = �b for θb � θa, θ � |θb − θa|,
(iv) �i = �a for θa � θb, θ � |θb − θa|,

where

γjm = cos θm − cos θ cos θj

sin θj (cos2 θj + cos2 θm − 2 cos θ cos θj cos θm)1/2
.

The integrals over k1 and k2 in Eq. (7) reduce to a
fivefold integral owing to cylindrical symmetry. The remaining
integrals have to be performed numerically. One sees that
for two Fermi gases the problem is much more complicated
than the one studied in Ref. [20]. For symmetric nuclear
matter, that is, kF ≡ kF1 = kF2, the problem is still much more
complicated than implied by Eq. (5), although many of the
preceding terms simplify because in this case θa = θb [22].

The numerical calculations can be simplified if we assume
that the free NN cross section entering Eq. (7) is isotropic. This
is another rough approximation because the anisotropy of the
free NN cross section is markedly manifest at large energies
[13,14]. In the isotropic case, we have devised a formula that
fits the numerical integration in Eq. (7) to within 1%. The
parametrization reads

σNN (E, ρ1, ρ2) = σ free
NN (E)

1

1 + 1.892
(

|ρ1−ρ2|
ρ̃ρ0

)2.75

×
⎧⎨
⎩

1 − 37.02ρ̃2/3

E
if E > 46.27ρ̃2/3,

E
231.38ρ̃2/3 if E � 46.27ρ̃2/3,

(14)
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where E is the laboratory energy in MeV, ρ̃ = (ρ1 + ρ2)/ρ0,
with ρ0 = 0.17 fm−3.

The Brueckner method goes beyond a treatment of Pauli
blocking, generating medium effects from NN potentials such
as the Bonn potential. An example is the work presented
in Refs. [13,14], where a simple parametrization was given,
which we from now on refer to as Brueckner theory. It reads
(the misprinted factor 0.0256 in Ref. [14] has been corrected
to 0.002 56)

σnp = [31.5 + 0.092|20.2 − E0.53|2.9]
1 + 0.0034E1.51ρ2

1 + 21.55ρ1.34
,

(15)

σpp = [23.5 + 0.002 56(18.2 − E0.5)4.0]
1 + 0.1667E1.05ρ3

1 + 9.704ρ1.2
.

A modification of the preceding parametrization was done
in Ref. [23], which consisted in combining the free NN

cross sections parametrized in Ref. [24] with the Brueckner
theory results of Refs. [13,14]. Their parametrization, which
tends to reproduce better the nucleus-nucleus reaction cross
sections, is

σnp = [−70.67 − 18.18β−1 + 25.26β−2 + 113.85β]

× 1 + 20.88E0.04ρ2.02

1 + 35.86ρ1.9
,

σpp = [13.73 − 15.04β−1 + 8.76β−2 + 68.67β4]

× 1 + 7.772E0.06ρ1.48

1 + 18.01ρ1.46
, (16)

where β =
√

1 − 1/γ 2 and γ = E[MeV]/931.5 + 1. We de-
note Eq. (16) as the phenomenological parametrization.

In Figs. 2–5 we compare the several parametrizations
previously described and we postpone the discussion of their
details to Sec. III.

B. Nucleon knockout reactions

The momentum distributions of the projectilelike residues
in one-nucleon knockout are a measure of the spatial extent
of the wave function of the struck nucleon, while the cross
section for the nucleon removal scales with the occupation
amplitude, or probability (spectroscopic factor), for the given
single-particle configuration in the projectile ground state. The
longitudinal momentum distributions are given by (see, e.g.,
Refs. [6,25,26])

dσstr

dkz

= (C2S)
1

2π

1

2l + 1

∑
m

∫ ∞

0
d2bn[1 − |Sn(bn)|2]

×
∫ ∞

0
d2ρ |Sc(bc)|2

∣∣∣∣
∫ ∞

−∞
dz exp[−ikzz]ψlm(r)

∣∣∣∣
2

,

(17)

where kz represents the longitudinal component of kc (final
momentum of the core of the projectile nucleus), (C2S) is
the spectroscopic factor, and ψlm (r) is the wave function
of the core plus (valence) nucleon system (c + n) in a state
with single-particle angular momentum l, m. In this equation,

FIG. 2. Parametrizations of proton-neutron cross sections as a
function of the laboratory energy. The solid line is the parametrization
of the free σpn cross section given by Eq. (2). The other curves include
medium effects for symmetric nuclear matter for ρ = ρ0/4, where
ρ0 = 0.17 fm−3. The dashed curve includes the geometrical effects
of Pauli blocking, as described by Eq. (14). The dashed-dotted curve
is the result of the Brueckner theory [Eq. (15)] and the dotted curve
is the phenomenological parametrization [Eq. (16)].

r ≡ (ρ, z, φ) = rn − rc, so that

bc = |ρ − bn| =
√

ρ2 + b2
n − 2ρ bn cos φ

=
√

r2 sin2 θ + b2
n − 2r sin θ bn cos φ. (18)

Si(b) are the S matrices for core-target and nucleon-target
scattering obtained from the nuclear ground-state densities and
the NN cross sections by the relation [27] S(b) = exp [iφ(b)],
with

φN (b) = i
σNN

4π

∫ ∞

0
dq q ρp(q)ρt (q)J0(qb), (19)

where ρp,t (q) is the Fourier transform of the nuclear density of
the projectile (nucleon or core) and the target nucleus, and σNN

FIG. 3. Same as in Fig. 2, but for pp collisions.
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FIG. 4. Parametrizations of proton-neutron cross sections as a
function of the nuclear-matter density (in units of ρ0 = 0.17 fm−3).
The solid line is the parametrization of the free σpn cross section given
by Eq. (2). The other curves include medium effects for symmetric
nuclear matter for laboratory energy E = 100 MeV. The dashed curve
includes the geometrical effects of Pauli blocking, as described by
Eq. (14). The dashed-dotted curve is the result of the Brueckner
theory [Eq. (15)], and the dotted curve is the phenomenological
parametrization [Eq. (16)].

is the NN total cross section. One needs to add the Coulomb
phase to the nuclear eikonal phase of Eq. (19). This is done
by using a sharp-cutoff expression for the Coulomb phase, as
explained in Refs. [6,26].

The first term inside the integrals in Eq. (17), 1 − |Sn|2,
represents the probability for the knockout of the nucleon
from its location at bn, whereas the second integral carries
the term |Sc|2, which is the probability of core survival at
impact parameter bc. These results arise naturally by using
eikonal scattering waves [27]. For the transverse momentum

FIG. 5. Same as in Fig. 4, but for proton-proton collisions.

distributions, the same formalism yields

dσstr

d2k⊥
c

= (C2S)
1

(2π )2

1

2l + 1

∫ ∞

0
d2bn[1 − |Sn(bn)|2]

×
∑
m

∫ ∞

−∞
dz

∣∣∣∣
∫

d2ρ exp(−ik⊥
c .ρ)Sc(bc)ψlm(r)

∣∣∣∣
2

,

(20)

where k⊥
c is the perpendicular component of kc.

The total stripping cross section can be obtained by
integrating either Eq. (17) or Eq. (20). One obtains

σstr = (C2S)
2π

2l + 1

∑
m

∫ ∞

0
dbn bn [1 − |Sn(bn)|2]

×
∫

d3r |Sc(bc)|2|ψlm(r)|2. (21)

The total diffraction dissociation cross section is given by
[26]

σdif = (C2S)
2π

2l + 1

∑
m

∫ ∞

0
dbn bn

×
{∫

d3r|Sn(bn)Sc(bc)ψlm(r)|2

−
∑
m′

∣∣∣∣
∫

d3rψlm′(r)Sc(bc)Sn(bn)ψlm(r)

∣∣∣∣
2
}

. (22)

To render the calculations practical, for a nucleus-nucleus
collision with a given impact parameter b, we have obtained
an effective local density for protons and neutrons by taking
the point along the impact parameter direction where the
two densities (one from the projectile and the other from the
target) cross each other. This effective density was then used
in Eqs. (14)–(16)

In the following we use a modified version of the code
MOMDIS [26], which includes the new aspects of momentum
distributions discussed in this article. Because we want to make
a theoretical study of the medium effects of the NN cross
sections, we do not compare directly to experiments and we
use spectroscopic factors (C2S) equal to the unity. To generate
the wave functions and S-matrices, we use the same parameters
as in Refs. [6] and [26].

III. RESULTS AND DISCUSSION

There are marked differences between the parametrization
of the Brueckner (15), the geometrical Pauli blocking (14)
and the phenomenological one (16). An example is given in
figure 2 where the several parametrizations of proton-neutron
cross sections are shown as a function of the laboratory energy.
The solid line is the parametrization of the free σpn cross
section given by Eq. (2). The other curves include medium
effects for symmetric nuclear matter for ρ = ρ0/4, where
ρ0 = 0.17 fm−3. The dashed curve includes the geometrical
effects of Pauli blocking, as described by Eq. (14). The dashed-
dotted curve is the result of the Brueckner theory [Eq. (15)]
and the dotted curve is the phenomenological parametrization,
Eq. (16). The large deviation of the parametrization of the

064603-5



C. A. BERTULANI AND C. DE CONTI PHYSICAL REVIEW C 81, 064603 (2010)

Brueckner results at large energies is not physical because
Eq. (15) is only a good parametrization of the Brueckner theory
in the energy range of 50–300 [13,14]. At energies above
300 MeV inelastic channels have to be incorporated. However,
the other differences are real, especially those at lower
energies. Pauli blocking effectively reduces the in-medium np

cross section. This is not so apparent in the phenomenological
parametrization.

The preceding observations cannot be extended to the pp

cross sections, which are shown in Fig. 3. Here we see that
the Pauli-blocking correction decreases the cross section much
more than in the other cases. Some important differences are
also clearly visible at larger energies, E � 100 MeV/nucleon.

Figure 4 shows the proton-neutron cross sections as a func-
tion of the nuclear matter density (in units of ρ0 = 0.17 fm−3),
for a proton laboratory energy of Elab = 100 MeV. The solid
line is the parametrization of the free σpn cross section given
by Eq. (2). The other curves include medium effects for
symmetric nuclear matter. The dashed curve includes the
geometrical effects of Pauli blocking, as described by Eq. (14).
The dashed-dotted curve is the result of the Brueckner theory
[Eq. (15)] and the dotted curve is the phenomenological
parametrization [Eq. (16)]. Figure 5 shows the same as in
Fig. 4, but for proton-proton collisions. One notices that the
NN cross sections differ appreciably at large densities but they
become close to the free cross sections at low densities.

To test the influence of the medium effects in nucleon
knockout reactions, we consider the removal of the l = 0 halo
neutron of 15C, bound by 1.218 MeV, and the l = 0 neutron
knockout from 34Ar, bound by 17.06 MeV. The reactions
studied here are the 9Be(15C,14Cgs) and 9Be(34Ar,33Ar(1/2+)).
The total cross sections as a function of the bombarding energy
are shown in Figs. 6 and 7. The solid curve is obtained with
the use of free nucleon-nucleon cross sections. The dashed

FIG. 6. Total knockout cross sections for removing the l = 0 halo
neutron of 15C, bound by 1.218 MeV, in the reaction 9Be(15C,14Cgs).
The solid curve is obtained with the use of free NN cross sections.
The dashed curve includes the geometrical effects of Pauli blocking,
as described by Eq. (14). The dashed-dotted curve is the result
using the Brueckner theory [Eq. (15)] and the dotted curve is the
phenomenological parametrization [Eq. (16)].

FIG. 7. Same as in Fig. 6, but for the removal of the l = 0 neutron
bound by 17.06 MeV in the reaction 9Be(34Ar,33Ar(1/2+)).

curve includes the geometrical effects of Pauli blocking, as
described by Eq. (14). The dashed-dotted curve is the result
using the Brueckner theory [Eq. (15)] and the dotted curve is
the phenomenological parametrization [Eq. (16)].

The medium effects owing to different treatments
are more visible for the 9Be(15C,14Cgs) reaction. For
9Be(34Ar,33Ar(1/2+)) the differences are almost not visible,
as shown in Fig. 7. The same happens for the l = 2 neutron
removal reaction leading to a final 3/2+ level bound by
18.42 MeV. A similar behavior as for the 9Be(15C,14Cgs)
reaction is found for the removal of the halo neutron in the
nucleon knockout 9Be(11Be,10Be) bound by 0.504 MeV. It
is thus apparent that the corrections owing to the medium
effects are more evident for the knockout out from loosely
bound states. Knockout reactions are also more sensitive to
in-medium corrections of the NN cross sections than the total
reaction cross sections, as first pointed out in Ref. [17].

In Table I we show our results for the stripping, diffrac-
tion dissociation, and total nucleon cross section (in mb)
for the knockout reactions 9Be(11Be,10Be), 9Be(15C,14C),
and 9Be(34Ar,33Ar) at 40 MeV/nucleon. For the reaction
9Be(34Ar,33Ar(3/2+)) the values are σdis = 2.36 mb, σstr =
9.16 mb, and σtot = 11.5 mb and have the same value,

TABLE I. Cross sections in mb at 40 MeV/nucleon for nucleon
knockout of a few selected reactions.

Reaction σ Free Pauli Brueckner Pheno.

9Be(11Be,10Be) σdif 47.6 36.9 45.7 45.2
σstr 151 144 139 149
σtot 198 181 185 194

9Be(15C,14C) σdif 25.3 19.9 21.3 24.0
σstr 99.8 95.8 96.5 98.5
σtot 125 116 118 123

9Be(34Ar,33Ar(1/2+)) σdif 2.69 2.63 2.66 2.68
σstr 11.0 10.9 11.0 11.0
σtot 13.6 13.5 13.6 13.6
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TABLE II. Cross sections in mb at 250 MeV/nucleon for nucleon
knockout of a few selected reactions.

Reaction σ Free Pauli Brueckner Pheno.

9Be(11Be,10Be) σdif 11.0 10.3 8.64 10.0
σstr 74.4 73.0 66.0 71.7
σtot 85.8 83.1 75.0 81.7

9Be(15C,14C) σdif 5.14 4.78 3.90 4.63
σstr 53.4 52.3 48.2 51.8
σtot 58.5 57.1 52.1 56.4

9Be(34Ar,33Ar(1/2+)) σdif 0.801 0.785 0.749 0.778
σstr 9.62 9.55 9.47 9.55
σtot 10.5 10.4 10.2 10.4

within 1%, for calculations using all of the NN cross-section
parametrizations, either Eq. (1) or (2) or Eqs. (14), (15), or (16).

In Table II we show the same as in Table I but for Elab =
250 MeV/nucleon. For the reaction 9Be(34Ar,33Ar(3/2+)) the
values are σdis = 0.691 mb, σstr = 8.62 mb, and σtot = 9.32 mb
and have the same value, and as in Table I, these values differ
by less than 1%, for all NN cross-section parametrizations
used in the calculations.

In Fig. 8 we plot the longitudinal momentum distributions
for the reaction 9Be(11Be,10Be) at 250 MeV/nucleon. The cal-
culations are done using Eq. (17). The diffraction dissociation
cross sections have been calculated using the same profile
of the momentum distribution owing to stripping, but with
the total cross section normalized to Eq. (22). The different
contributions (stripping and diffraction dissociation) to this
reaction are given in Table II. In Fig. 8 the dashed curve is the
cross section calculated using the NN cross section from the
Brueckner theory [Eq. (15)] and the solid curve is obtained
the free cross section [Eq. (16)]. One sees that the momentum
distributions are reduced by 10%, about the same as the total
cross sections, but the shape remains basically unaltered. If one

FIG. 8. Longitudinal momentum distribution for the residue in
the 9Be(11Be,10Be) reaction at 250 MeV/nucleon. The dashed curve
is the cross section calculated using the NN cross section from the
Brueckner theory [Eq. (15)] and the solid curve is obtained the free
cross section [Eq. (16)].

FIG. 9. Same as in Fig. 8, but for the transverse momentum
distribution.

rescales the dashed curve to match the solid one, the differences
in the width are not visible. We do not show the momentum
distributions using the other two (Pauli and phenomenological)
NN cross sections because their shapes are the same as for
the Brueckner case and only the area below the curve (total
knockout cross section) changes.

In Fig. 9 we plot the transverse momentum distributions
for the reaction 9Be(11Be,10Be) at 250 MeV/nucleon. The
calculations are done using Eq. (20). As with Fig. 8, the
dashed curve in Fig. 9 is the cross section calculated using
the NN cross section from the Brueckner theory [Eq. (15)]
and the solid curve is obtained using the free cross section
[Eq. (16)]. The changes on the profile of the momentum
distribution are again visible, which is again ascribed to the
difference of about 10% between the total cross sections. The
forms of the momentum distributions are the same if the two
curves are scaled to have the same area.

These results clearly show that the effects of NN scattering
in the medium on knockout reactions are worth considering,
especially for reactions involving loosely bound halo nuclei.
It is not clear, however, which of the several parametrizations
of medium effects is more adequate for the precision required
by experiments.

IV. SUMMARY

The present work has extended the theory of one-nucleon
stripping and diffraction dissociation reactions to cover the
dependence of the nucleon knockout cross sections and
momentum distributions on the medium modifications of
the NN cross sections. We included the most commonly
used parametrizations in the literature and compared the
effects of Pauli blocking from a simple geometrical picture
to a more elaborated Dirac-Brueckner calculation, as well as
phenomenological parametrizations. We have shown that the
density dependencies vary rather strongly from model to model
for reasons that are not yet clear.

We have also shown that the nucleon knockout reactions
involving halo nuclei are more sensitive to medium modifica-
tions of the NN cross section than in the case of the removal
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of more bound nucleons. The changes amount to 10% in some
cases, especially at lower energies. However, owing to the
average of the NN cross sections over the local densities,
the changes are not always predictable at higher energies.
The stripping and diffraction dissociation cross sections
decrease and increase in the same way whenever the NN

cross sections decrease or increase from one parametrization
to another.

The momentum distributions are not appreciably different,
except for their absolute normalization, when the NN cross
sections change with medium modifications. This has been
verified for both longitudinal and transverse momentum
distributions.

The simple study of the density-dependent NN cross
section adopted in this work shows that the calculations are
sometimes sensitive to the value of the density-dependence
method under consideration. Besides Pauli-blocking and
medium changes in the NN cross section, Fermi motion
should probably play an important role in the nucleon knockout
reactions and is worth further investigation.

No attempt has been done to compare to experimental
results, which would probably affect the extracted values of
the spectroscopic strengths in reactions with rare isotopes. This
certainly deserves further theoretical study.

It is also worth mentioning that the magnitude of the
corrections observed in this work, of about 10% for the total
cross sections, are based on the optical limit (OL) of the
Glauber multiple scattering theory. The OL means that only
single binary NN collisions are included. In the present work

correlations within the projectile and target wave functions
have been neglected. These have been studied, for example,
in Ref. [28] or more recently in Ref. [7]. In these references,
the influence of these correlations on the calculations has been
studied and found to be also of the order of 10%. This is
of the same order of magnitude as the corrections observed
in the present work. It is not clear if these two unrelated
corrections will add up to a larger correction of the knockout
cross sections, which could in fact modify appreciably the
spectroscopic factors published in the literature where such
corrections were not included. This also qualifies for further
investigation.

It is worth mentioning that medium modifications of NN

scattering have also been studied in several publications related
to (p, 2p) reactions (see, e.g., Refs. [29–31]). The medium
effects were shown to play an important role on the total cross
sections and on the spin observables.
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