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Nucleus-nucleus interaction between boosted nuclei
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The nucleus-nucleus interaction potential has been studied within the relativistic mean field theory. The
systematics of the relativistic effects have been investigated by analyzing the relation between the potential and
the bombarding energy as a function of the impact parameter. It is shown that the potential barriers are noticeably
sensitive to the bombarding energy for a given impact parameter. At large bombarding energies, the slope at
the potential edge decreases with the impact parameter. Comparisons with a nonrelativistic treatment shows that
relativistic effects cannot be ignored at bombarding energies around and larger than 100 MeV/nucleon.
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I. INTRODUCTION

A consistent theoretical treatment of relativistic many-body
systems is still a challenge in many areas of physics. The
effects of the Dirac sea imply corrections due to vacuum
fluctuations, and other features of quantum field theory
may also become manifest. An important aspect of special
relativity, namely, causality, is only verified if sea effects are
properly incorporated. Unfortunately, up to now it has proved
to be very difficult to find unambiguous experimental evidence
for such effects. That might not be the case for static properties
of nuclear matter for which a successful project carried out for
many years has shown that nuclear energies for the ground and
lower excited states of nuclei are well described by a relativistic
mean field treatment of the collection of nucleons [1–6].

Almost nothing has been done to understand the rather
relevant problem of the influence of relativity on many-
body scattering. Usually, this is accounted for quite straight-
forwardly in quantum field theory for two-body scattering
including the sea effects with the help of perturbation theory.
But the scattering of relativistic composite objects where
the compositeness becomes an active part of the scattering
process is still a very difficult theoretical problem. This is an
obviously important problem in nuclear physics, due to an
inherent theoretical difficulty in defining a nuclear potential
between many-body relativistic systems. Nonetheless, nuclear
potentials are often used in the analysis of nucleus-nucleus
scattering at energies of 100 MeV/nucleon and higher. In fact,
many rare isotope facilities use reactions at these energies in
which relativistic effects are expected to be of the order of
10% or more for some processes of interest [7–9]. For proton-
nucleus scattering, a successful approach, known as “Dirac
phenomenology,” has been used for many years [10]. But
for nucleus-nucleus collisions, a reasonable account of these
features has not yet been accomplished. Due to retardation, an
attempt to use a microscopic description for nucleus-nucleus
potentials starting from binary collisions of the constituents
is not possible, because a nucleus-nucleus potential requires a

*longwh@lzu.edu.cn
†carlos bertulani@tamu-commerce.edu

simultaneous interaction between all constituents. In the case
of nucleus-nucleus collisions, a similar approach as in the
Dirac-phenomenology case can be followed up by using a
mean field theory.

The nucleus-nucleus potential used in the analysis of
elastic scattering experiments is a very complex object which
contains information about all possible inelastic processes. The
presence of inelastic channels leads to, among other things,
the introduction of an imaginary part for the nucleus-nucleus
potential. This potential is usually termed “optical potential.”
Although several microscopic models have been developed to
calculate the optical potential, due to its complexity, it is often
parametrized by a set of phenomenological functions depend-
ing on the distance between the center of mass of the interacting
nuclei. The parameter set (often with ambiguities) is obtained
by fitting elastic scattering data whenever available. Needless
to say that for many systems (e.g., most reactions with
radioactive beams), the elastic scattering data are unavailable,
and one has to resort to theoretical constructions of the optical
potential. A popular method is to build a folding potential in
which the real part of the optical potential is obtained from an
integral over the nucleon-nucleon densities weighted by their
individual (sometimes density-dependent) interactions. The
nuclear densities are taken as frozen, with all nucleons interact-
ing simultaneously. A method to deduce the magnitude of the
effects of relativity in nucleus-nucleus interactions is presented
in Refs. [7–9], where the nucleus-nucleus potential for a
relativistic projectile is modified in a similar way as the scalar
part of the electromagnetic interaction. This procedure has
shown that relativistic corrections lead to appreciable changes
of inelastic processes involving 100 MeV/nucleon projectiles.

In this work, we follow the steps of relativistic mean field
theories to construct a relativistic nucleus-nucleus potential.
Our goal is to study how relativistic effects would be
manifested in the coordinate dependence of a nucleus-nucleus
potential. We use a relativistic mean field theory for each
nucleus separately for consistency. The effect we are looking
for is obtained by boosting the projectile motion to the target
frame of reference (or to the laboratory frame of reference,
if both projectile and target are boosted) to analyze how
the interaction energy is modified. The interaction energy is
defined below as the total energy of the system when the nuclei
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are at a given finite separation subtracting from it the sum of
their individual energies when they are infinitely separated.
This is an oversimplification of the problem, and it also only
allows us to obtain the real part of the interaction potential.
To study the influence of relativistic effects on elastic cross
sections, we use, for simplicity, an imaginary part of the optical
potential having the same radial dependence as the real part.

II. ENERGY DENSITY FUNCTIONAL FOR SINGLE
AND TWO-NUCLEUS SYSTEMS

Based on the meson exchange theory, finite nuclear systems
can be well described by an energy density functional within
the relativistic mean field approach [1,2]. In the mean field
approach, the nucleons are treated as pointlike particles
interacting by the exchange of mesons and photons. The energy
functional [2–6] for a single nucleus, associated with σ , ω, and
ρ mesons and photon (A) exchange, is given by (h̄ = c = 1)

E =
∫

d r
∑

a

ψ̄a(−iγ · ∇ + M)ψa

+ 1

2

∑
φ=σ,ω,ρ,A

∫
d rd r ′ ∑

ab

ψ̄a(r)ψ̄b(r ′)�φ(r, r ′)

×Dφ(r − r ′)ψb(r ′)ψa(r), (1)

where the two-body interacting matrices read as

�σ (r, r ′) = −gσ (r)gσ (r ′), (2a)

�ω(r, r ′) = +(gωγ µ)r (gωγµ)r ′ , (2b)

�ρ(r, r ′) = +(gργ
µ�τ )r · (gργµ�τ )r ′ , (2c)

�A(r, r ′) = +e2

4
[γ µ(1 − τz)]r [γµ(1 − τz)]r ′ . (2d)

In the energy functional (1), ψa denotes stationary single-
particle states, M is the rest mass of the nucleon, and gσ ,
gω, and gρ are the coupling constants with baryonic density
dependence [11–15]. The propagators of mesons (φ = σ , ω,
and ρ and mφ for the meson mass) and photon (A) are given
by

Dφ = 1

4π

emφ |r − r ′|
|r − r ′| , DA = 1

|r − r ′| . (3)

In this paper, we use bold type to denote the space vectors and
arrows for isospin vectors. Based on the energy functional (1),
the single-particle configurations (ψa) can be obtained from
a self-consistent iterative procedure, aiming at describing the
physical properties for the ground state of the nucleus such as
binding energy, radii, density distributions, etc. [2–6].

The relativistic energy functional (1) described above for a
single nucleus can be also extended to describe the interaction
between two nuclei, i.e., the interaction between a target and a
boosted projectile. Here we only consider the same target and
projectile nuclei. As shown in Fig. 1, the two-nucleus system
consists of a target and a projectile with velocity v, separated by
a distance R. For simplicity, we assume straight-line dynamics,
appropriated for high-energy collisions. A given point in space
is denoted by r t = (xt , yt , zt ) in the frame of reference of the
target with respect to its center of mass. For a collision with

FIG. 1. (Color online) Two-nucleus system containing rest target
and boosted projectile with velocity v. The ellipse represents the
boosted projectile density as seen from the target reference frame. R

and b denote the distance and impact parameter between two nuclei
in the target reference frame.

impact parameter b this point can be related to its coordinate
rp = (xp, yp, zp) in the frame of reference of the projectile by
means of a Lienard-Wiechert transformation. If v is taken as
the z axis, this transformation reads

xp = xt + b, xt = xp − b,

yp = yt , yt = yp,

zp = γ (zt + R cos θ ), zt = γ (zp − R cos θ ),
(4)

where the impact parameter is related to the relative distance
between the center of mass of the nuclei by b = R sin θ . The
Lorentz factor is γ = (1 − β2)−1/2 and β = v/c.

The total energy functional for the two-nucleus system
shown in Fig. 1 is given by

E(At,Ap, v) = E(At ) + E(Ap, v) + E(At,Ap, v), (5)

where E(At ) and E(Ap, v) denote, respectively, the target
(with mass number At ) and the projectile (with mass number
Ap) energy functionals, and E(At,Ap, v) represents the inter-
acting potential energy. For the isolated target and projectile,
the energy functionals E(At ) and E(Ap, v) = E(Ap) can be
determined from Eq. (1). Similar to the second term in the
right-hand side of Eq. (1), the interacting one E(At,Ap, v)
can be obtained as

E(At,Ap, v) =
∑

φ=σ,ω,ρ,A

∫
d r

∫
d r ′ ∑

ab

ψ̄t,a(r)ψ̄p,b(r ′)

×�φ(r, r ′)Dφ(r − r ′)ψp,b(r ′)ψt,a(r), (6)

where the integral over r and r ′ are done within the same
reference frame, e.g., the target inertial frame. The single-
particle configurations ψt,a and ψp,b (subindex t for target
and p for projectile) can be determined from the individual
self-consistent calculations in the target and projectile frames,
respectively. Because the collisions are fast, we adopt a frozen
configuration scheme in which the rearrangement effects from
the nucleus-nucleus interaction are neglected in determining
the single configurations of each nucleus.

Taking σ and ω as examples, the corresponding contribu-
tions in Eq. (6) can be written as

Eσ = − 1

γ

∫
d r t

∫
d r ′

pgσ (r t )ρs,t (r t )

×Dσ (r t − r ′
t )ρs,p(r ′

p)gσ (r ′
p), (7)
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Eω = +
∫

d r t

∫
d r ′

pgω(r t )ρb,t (r t )

×Dω(r t − r ′
t )ρb,p(r ′

p)gω(r ′
p). (8)

The scalar and baryonic densities ρs and ρb can be obtained as

ρs(r) =
∑

a

ψ̄a(r)ψa(r), ρb(r) =
∑

a

ψ̄a(r)γ 0ψa(r), (9)

where the sums are restricted within one nucleus.
In the interacting energy functional (6), there exist two

types of couplings, the scalar (σ ) and the vectors (ω, ρ,
and A). For a straight-line motion, the Lorentz boosts are
{ρb,p(rp), 0} → {γρb,p(rp), γρb,p(rp)β}. The scalar coupling
remains invariant under the Lorentz transformations, because
d r ′

t = d r ′
p/γ and the Lorentz contraction of the longitudinal

distance cancels out the Lorentz enhancement of the field. This
contrasts with the vector coupling channels, where the Lorentz
transformation leads to a strong dependence on the projectile
velocity.

In energy functional (6), the coupling constants are func-
tions of density ρv = √

jµjµ and jµ = ψ̄tγψ
µ
t + ψ̄pγ µψp,

and the Lorentz transformation from the target to projectile,
and the reverse, leads to

ρv(r t ) =
√

ρ2
b,t (r t ) + 2γρb,t (r t )ρb,p(rp) + ρ2

b,p(rp), (10)

ρv(rp) =
√

ρ2
b,t (r t ) + 2γρb,t (r t )ρb,p(rp) + ρ2

b,p(rp). (11)

The method described above allows us to calculate the
interaction potential of the two nuclei in terms of the single-
particle states calculated within a relativistic mean field theory.
In practice, the calculations are very complicated because the
advantage of treating wave functions and densities in terms
of angular momentum expansions in spherical basis is lost.
Due to Eq. (4), the boosted quantities also include Lorentz γ

factors within the polar angles of the single-particle states for
the projectile, thus rendering a very complicated description
of their radial and angular dependence.

III. RESULTS AND DISCUSSIONS

In this work, we take 12C-12C as a typical example of
a two-nucleus system in Fig. 1 and study the nucleus-
nucleus interacting potential energy according to the method
described above. In the first step, each nucleus is treated in its
reference frame independently to obtain the single-particle
configurations, from which the nucleus-nucleus interacting
potential energy is determined via Eq. (6). The effective
interaction Peking Density-Dependent (PKDD) [15] is utilized
to determine the single-particle configurations as well as the
nucleus-nucleus potential.

In Fig. 2, we show the nucleus-nucleus potential energies
V (R) = E [see Eq. (6)] as a function of the distance R for
different values of Lorentz factor γ . The impact parameter is
set as b = 0 fm, and only the surface part of the potential has
any useful application. The inset gives the results from R = 5
to 10 fm with enlarged scale. The nucleus-nucleus potential
gets contributions from different fields at different times. At
first, the nuclei approach from a fairly large distance, there

FIG. 2. (Color online) Interaction potentials (MeV) as functions
of the distance R (fm) between rest target and boosted projectile
nuclei for impact parameter b = 0 fm and different values of γ . The
inset presents the potentials from R =5 to 10 fm with an enlarged
scale.

exists very little overlap between the target and projectile
densities, and the potential is mainly contributed to by the
long-range interaction, i.e., the photon field (A), which yields
the Coulomb barrier. As the distance decreases to, e.g.,
R ∼ 7.5 fm for γ = 1.0, the densities start to overlap, and the
nucleus-nucleus potentials bend toward a negative value. This
is due the contribution of the meson fields leading to attraction.
When R � 5 fm, the nucleus-nucleus potentials have only net
attractions. For the chosen nucleus 12C, the self-consistent
calculation with PKDD gives the neutron, proton, and total
radii, respectively, as rn = 2.26 fm, rp = 2.28 fm, and r =
2.27 fm. These values (multiplied by 2) are consistent with
the evolution of the nucleus-nucleus potential with respect to
separation distance R, as seen in Fig. 2.

The nucleus-nucleus potentials shown in Fig. 2 also display
a systematic behavior with respect to the Lorentz factor γ ,
which represents the boosted energy of the projectile, roughly
(γ − 1)M per nucleon. With increasing bombarding energy,
the nucleus-nucleus potential well becomes shallower, as seen
in Fig. 2. The point where the potential becomes attractive
does not change appreciably with the bombarding energy.
But, as shown in the inset, the potential barrier does have
a strong dependence on the bombarding energy. This hints
of a destructive additional (because of the boost) cancellation
between the attractive meson fields and the repulsive photon
field. These additional cancellations also tend to lead to a
shallower potential. The filled circles in the inset show the
tendency of this effect to stretch the nucleus-nucleus potential
outward as the energy increases.

To have better understanding about the systematics of the
nucleus-nucleus potentials, we show in Fig. 3 the detailed
contributions from four coupling channels: (a) ω-vector,
(b) σ -scalar, (c) Coulomb-vector, and (d) ρ-vector couplings.
The corresponding insets present the results from R = 5 to
10 fm with enlarged scales. In Fig. 3(d), it is clearly seen that
the contribution from the ρ field is very tiny, since in 12C the
nucleons are isospin saturated. Among the contributions to
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FIG. 3. (Color online) Contributions to the interaction potentials from the ω (a), σ (b), Coulomb (c), and ρ (d) fields are shown as functions
of distance R (fm) with different values of γ for the same two-nucleus system shown in Fig. 1. The insets show the details from R = 5 to 10 fm
with enlarged scales.

the nucleus-nucleus potential, the attraction mainly originates
from the σ -scalar coupling, whereas the repulsion is mainly
due to the ω and Coulomb fields. Starting from a fairly large
separation distance, the sole contributing photon field yields
an increasing Coulomb repulsion. At R ∼ 10 fm, the σ and
ω fields start to act with distinct contributions to turn the
Coulomb repulsion into nuclear attraction. From Figs. 3(a) and
3(b), one sees that the ω and σ contributions increase rapidly
when the target and projectile approach. This is mainly due to
the short-range character of the meson exchange interaction.

As seen from the inset of Fig. 3(c), the photon field has
a rather weak dependence on the boosted energy, whereas a
stronger dependence is found from the contributions from σ

and ω fields. As shown in the insets of Figs. 3(a) and 3(b), the
repulsive ω field and attractive σ field increase with the boosted
energy considerably. When the target and projectile approach
a close distance, the curves with different bombarding energies
tend to cross each another at some point, denoted by red circles
in Fig. 3. In fact these are turning points, where the trend of
the bombarding energy dependence is just reversed. Similar
turning points can be also found in Fig. 2, where the nucleus-
nucleus potential becomes attractive.

In Figs. 2 and 3, the impact parameter b is set to zero. In
Fig. 4, we show the nucleus-nucleus potential as a function
of the separation distance R with the impact parameter
b = 0, 1, 2, 3, and 4 fm. For comparison, the results with
four bombarding energies are shown in Fig. 4(a), γ = 0,
(b) γ = 1.1, (c) γ = 1.3, and (d) γ = 1.6. As seen from

Figs. 4(a) and 4(b), the nucleus-nucleus potentials with lower
bombarding energy are not sensitive to the impact parameter.
With increasing bombarding energy, the potentials show a
strong dependence on the impact parameter. As shown in
Figs. 4(c) and 4(d), the slope of the nucleus-nucleus potential
at large distances becomes smaller with increasing impact
parameter. It is also demonstrated by the insets in Fig. 4.

To assess the relativistic modifications of the nucleus-
nucleus potential on scattering observables, we consider the
elastic scattering cross section of spherically symmetric nuclei.
At high energies, the scattering amplitude is well described by
the eikonal approximation

f (ϑ) = fC(ϑ) + ik

∫ ∞

0
J0(qb)

× exp[iχC(b)]{1 − exp[iχN (b)]}b db, (12)

where J0 is the Bessel function of zeroth order, q =
2k sin(ϑ/2) is the momentum transfer for the scattering angle
ϑ , and projectile momentum h̄k = µv. The reduced mass
is µ = γm0/2, where m0 is the rest mass of 12C, and v =
c
√

(γ − 1)/γ . The Coulomb-scattering amplitude reads

fC(ϑ) = Z1Z2e
2

2µv2 sin2(ϑ/2)

× exp{−iη ln[sin2(ϑ/2)] + iπ + 2iφ0}, (13)

where η = 2Z1Z2e
2/h̄v, and φ0 = arg�(1 + η/2).
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FIG. 4. (Color online) Nucleus-nucleus interaction potentials (in MeV) are shown as functions of the distance R between the target and
projectile nuclei for different values of γ and different impact parameters b (fm). The insets show the results from R = 3.5 to 8 fm with
enlarged scales.

The eikonal phase χN and χC in Eq. (12) are given by

χN (b) = − 1

h̄v

∫ ∞

−∞
Uopt(b, z′) dz′,

(14)

χC(b) = 2Z1Z2e
2

h̄v
ln(kb),

where χC(b) represents the Coulomb eikonal phase.
As mentioned before, the imaginary part of the optical

potential has to be included by hand. In terms of the real
part of the nucleus-nucleus potential V (r) [r = (b, z) and
r = √

b2 + z2] calculated above, the nuclear optical potential
will assume to take the form

Uopt(r) = V (r) + iλV (r). (15)

The elastic cross section is then given by dσ/d� = |f (ϑ)|2.
As usual, the elastic cross sections will be described in units
of the the Rutherford differential cross section

dσ

d�
= |fRuth.(ϑ)|2 =

(
Z1Z2e

2

2µv2

)2
1

sin4 (ϑ/2)
. (16)

See Ref. [16] for a discussion of relativistic corrections of the
Rutherford cross sections, which are not considered here.

Our results for 12C + 12C scattering are compared to
experimental data at bombarding energies of 85 MeV/nucleon
[Fig. 5(a)] and 200 MeV/nucleon [Fig. 5(b)] in Fig. 5
(solid lines) [17]. We compare the cross sections with those

calculated with nonrelativistic dynamics shown in Fig. 5
by dashed lines. The coefficient λ is set to 0.5 (0.4) for
the bombarding energy of 85 (200) MeV per nucleon. One
observes that the minima of the elastic cross sections are
shifted to smaller values of the scattering angle. This is due
to the smaller effective radius of the nucleus-nucleus potential
when relativistic effects are included, as observed in Figs. 2–4.
For a discussion of the effects of size and diffuseness of optical
potentials on scattering observables, see, e.g., Ref. [18]. The
diffuseness of the potentials also increases with the inclusion
of relativistic effects. This is shown manifest in Fig. 5 by a
(slightly) faster decrease of the cross section as a function of
angle. We also notice that the relativistic effects become more
pronounced at larger bombarding energies, as expected.

In summary, we have investigated the effects of relativity
on nucleus-nucleus potentials within the relativistic mean field
theory. The relativistic effects have been studied by analyzing
the dependence of the potentials upon bombarding energies
and impact parameters. It is found that for a given impact
parameter the Coulomb barrier is softened with increasing
bombarding energy. For large bombarding energies, the po-
tential edge becomes increasingly flat with increasing impact
parameters, which indicates that the target and projectile have
to get closer to compensate for more attraction. We used
the relativistic corrected potentials in the analysis of elastic
scattering of 12C + 12C at bombarding energies of 85 and
200 MeV/nucleon. The imaginary part of the optical potential
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FIG. 5. (Color online) Elastic cross sections dσ/d� = |f (ϑ)|2
in units of Rutherford cross sections |fRuth.(ϑ)|2 as functions of the
scattering angle ϑ , with different values of Lorentz factor γ . For
comparison, the dashed lines represent the results with nonrelativistic
reduction, and filled circles denote the experimental values [19].

was assumed to have the same form as the real part, with a
scaling factor. Although not perfect, the agreement is rather

reasonable in view of the simplifications adopted to obtain the
optical potential.

The studies carried out here are exploratory in the sense that
a consistent theory of a nucleus-nucleus potential including
relativity requires a much more elaborated effort. Such a theory
is in fact missing in the literature. To be consistent, this theory
would have to include other effects such as exchange terms,
which are missing in our calculation, or the effects of multiple
scattering, which should also become relevant at increasing
energies. Both mentioned effects are challenging: (a) the
first involves the calculation of complex multidimensional
integrals and (b) the second involves handling retardation
effects in multiple, sequential, collisions. Many nucleus-
nucleus experiments at energies of 100 MeV/nucleon and
above are presently been carried out around the world with the
goal of extracting spectroscopic information on rare nuclear
species [18]. Our work shows that some modifications in the
values of the extracted spectroscopic quantities might occur
due to the relativistic dynamics missing in most methods
used to construct a nucleus-nucleus potential, such as the
folding models. An accurate assessment of such modifications
is worthwhile to pursue.
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