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Background: One-nucleon removal reactions at or above the Fermi energy are important tools to explore the
single-particle structure of exotic nuclei. Experimental data must be compared with calculations to extract
structure information, evaluate correlation effects in nuclei, or determine reaction rates for nuclear astrophysics.
However, there is insufficient knowledge to calculate the cross sections for these reactions accurately.
Purpose: We evaluate the contributions of the final-state interaction (FSI) and of the medium modifications of
the nucleon-nucleon interactions and obtain the shapes and magnitudes of the momentum distributions. Such
effects have been often neglected in the literature.
Method: Calculations for reactions at energies of 35–1000 MeV/nucleon are reported and compared to published
data. For consistency, the state-of-the-art eikonal method for stripping and diffraction dissociation is used.
Results: We find that the two effects are important and their relative contributions vary with the energy and with
the atomic and mass number of the projectile involved.
Conclusions: These two often neglected effects modify considerably the one-nucleon-removal cross sections.
As expected, the effects are largest at lower energies, around 50 MeV/nucleon, and on heavy targets.
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I. INTRODUCTION

Nucleon knockout reactions in nuclear collisions at and
above the Fermi energy in nuclei have become an important
tool to determine the occupancy of single-particle states
and the correlation effects in the nuclear many-body system
(see, e.g., Refs. [1–5]). In peripheral, sudden collisions of
fast-moving projectiles with a target nucleus, a single nucleon
is removed from the projectile, producing projectile-like
residues in the exit channel, which are measured. Referred
to the center-of-mass system of the projectile, the transferred
momentum is kc. For the knockout reactions in the sudden
approximation, this must equal the momentum of the struck
nucleon before the collision. The standard reaction models
assume that the ground state of the projectile of spin and parity
Jπ can be approximated by a superposition of configurations
of the form [Iπc

c ⊗ nlj ]J
π

, where Iπc
c denote the core states and

the nlj are the quantum numbers for the single-particle wave
functions in a spherical mean-field potential. The measured
partial cross sections to individual final levels c of the
core allow us to extract, by comparison with theoretical
calculations, the spectroscopic factors for the individual core–
single-particle configurations. In complete analogy to the use
of angular distributions in transfer reactions, the orbital angular
momentum l is revealed by the shape of the momentum
distributions P (kc). It is obvious, then, that the accuracy of the
extracted spectroscopic factors, a measure of the occupancy of
the single-particle orbitals in nuclei, and the conclusions that
may follow from these spectroscopic factors about correlations
inside nuclei depend in direct measure on the accuracy of
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the cross-section calculations. Similarly, the cross sections
for one-proton-removal reactions X → Y + p are directly
related to the nonresonant part of the astrophysical S factors
for the inverse radiative proton capture Y(p,γ )X (see, e.g.,
Refs. [4] and [6–9]). Again, the results and their reliability
depend directly on the reliability and accuracy of the reaction
calculations (as discussed in [10]).

The one-nucleon-removal cross section is calculated in
most reaction models as an incoherent sum of the contributions
of all core–single-particle configurations making the ground
state of the fast-moving projectile

σ−1n =
∑

S(c; nlj )σsp(nlj ), (1)

where S(c; nlj ) and σsp are the spectroscopic factors of each
configuration and the single-particle-removal cross section,
respectively [4]. A similar relation is valid for the momentum
distributions. Systematic studies of projectiles and reactions
allow the determination of the ordering, spacing, and occu-
pancy of orbitals, essential in assessing how nuclei evolve
in the presence of a large neutron or proton excess. Much
work was done in this respect in the last decade in various
laboratories. This information can be compared to many-body
nuclear structure calculations, which are now able to reproduce
the measured masses, charge radii, and low-lying excited states
of a large number of nuclei. It was found that, e.g., for very
exotic nuclei, the small additional stability that comes with
the filling of a particular orbital can have profound effects
upon their existence as bound systems, lifetime, and structure
and can lead to the discovery of magic numbers that do not
manifest along the valley of stability.

Extensions of the nucleon knockout formalism including
the treatment of final-state interactions have been discussed
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in Ref. [11], where it is shown that Coulomb final-state
interactions are of relevance. In the meantime, the inclusion
of higher-order effects [12,13] and a theory for two-nucleon
knockout [14–16] have been developed. Knockout reactions
represent a particular case for which higher projectile energies
allow a simpler theoretical treatment of the reaction mecha-
nism, owing to the simplicity of the reaction mechanism and
the assumption of a single-step process.

A microscopic approach to direct reactions uses an effective
nucleon-nucleon (NN) interaction (e.g., those in Ref. [17])
to start with. This interaction is often used to construct an
optical potential with its imaginary part assumed to relate to
the real part and its strength adjusted to reproduce experimental
data. The real and imaginary parts of the potential can also be
independent as in Refs. [6] and [7], where the procedure starts
from an NN effective interaction with independent real and
imaginary parts. For collisions at high energies (E � 100),
it is possible to show that, instead of NN interactions, one
can use NN cross sections as the microscopic input [18].
In this case, an effective treatment of Pauli blocking of
NN scattering is needed, as it manifests through medium
modification of NN cross sections. It is well known that
medium modification of the NN cross sections is necessary
for an adequate numerical modeling of heavy-ion collision
dynamics in central collisions. In these collisions, the ultimate
purpose is to extract information about the nuclear equation of
state by studying global collective variables describing the
collision process. In direct reactions, such as one-nucleon
removal reactions, medium effects of NN scattering are
smaller because mostly low nuclear densities are probed.
The first study of this effect in knockout reactions was
carried out in Ref. [19]. Nonetheless, no comparison with
experimental data was provided. In this work we explore
further consequences of medium corrections and final-state
interactions in knockout reactions. We study medium effects in
the NN cross section in knockout reactions using the methods
reported in Ref. [19], namely, with a geometrical treatment of
Pauli blocking and with the Dirac-Brueckner theory in terms
of baryon densities. We also explore the effect of final-state
interaction, in particular, the effects of Coulomb distortion in
the entrance and final reaction channels. This is of relevance as
an increasing number of experiments use heavy targets with a
large nuclear charge. We compare our results of knockout
cross-section and momentum distribution calculations to a
large number of published experimental data. The purpose
is to improve the accuracy of the extracted spectroscopic
factors that will lead to a better understanding of nuclear
structure and to check and improve the reliability of the use of
one-nucleon removal reactions as indirect methods in nuclear
astrophysics.

II. MEDIUM AND DISTORTION EFFECTS

The geometrical treatment of Pauli corrections is performed
using the isotropic NN scattering approximation because the
numerical calculations can be largely simplified if we assume
that the free NN cross section is isotropic. In this case, a
formula which fits the numerical integration of the geometrical

TABLE I. Ground-state densities from Refs. [26,27,29–31],
where rch and rm are the root mean square radii of the charge and
nuclear matter densities, respectively.

Nucleus Model
〈
r2

ch

〉1/2 〈
r2
m

〉1/2
a α

(fm) (fm) (fm) (fm)

Target
9Be HOa 2.50(9) 2.367 1.77(6) 0.631
12C HOb – 2.332 1.584 –

Projectile-core
10Be HOa 2.50(9) 2.372 1.77(6) 0.631
14N HOa 2.540(20) 2.410 1.729(6) 1.291
16B LDMc – – – –
22Mg HFBd – 2.92 – –
23O LDMc – – – –
32Mg HFBd – 3.187 – –

aNuclear matter densities were obtained using the harmonic oscillator
(HO) charge densities with parameters a and α from Ref. [26] and
the method in Ref. [32].
bThe HO nuclear matter density is from Ref. [27].
cLDM, liquid droplet model [28].
dHFB, Hartree-Fock-Bogoliubov. HFB calculations are from
Refs. [29–31].

model reads [19]

σNN(E, ρp, ρt ) = σ free
NN (E)

1

1 + 1.892
( 2ρ<

ρ0

)( |ρp−ρt |
ρ̃ρ0

)2.75

×
{

1 − 37.02ρ̃2/3

E
if E > 46.27ρ̃2/3,

E
231.38ρ̃2/3 if E � 46.27ρ̃2/3,

(2)

where E is the laboratory energy (in MeV), ρ̃ = (ρp + ρt )/ρ0,
ρ< = min(ρp, ρt ), ρi=p,t is the local density of nucleus i, and
ρ0 = 0.17 fm−3. The parameters and models for the ρp and ρt

densities which are used to describe the nuclei in this work are
presented in Table I.

The Brueckner method goes beyond the simple geometrical
treatment of Pauli blocking. Some of the Brueckner results
that we used in this analysis have been reported in Refs. [20]
and [21], where a simple parametrization is given. It reads (the
misprinted factor 0.0256 in Ref. [21] has been corrected to
0.00256)

σnp = [31.5 + 0.092|20.2 − E0.53|2.9]
1 + 0.0034E1.51ρ2

1 + 21.55ρ1.34
,

σpp = [23.5 + 0.00256(18.2 − E0.5)4.0]
1 + 0.1667E1.05ρ3

1 + 9.704ρ1.2
.

(3)

The limits of validity of this parametrization are clearly
associated with the limits of validity of the Brueckner
calculations, which are valid only below the pion-production
threshold. A modification of this parametrization was intro-
duced in Ref. [22] and consists in combining the free NN
cross sections parametrized in Ref. [23] with the results of
Brueckner theory reported in Refs. [20] and [21].
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Current theoretical models for the calculation of momentum
distributions and cross sections in high-energy nucleon-
removal reactions follow a semiclassical probabilistic ap-
proach, described, e.g., in Refs. [24] and [25]. The method
relies on the use of “survival amplitudes” (or S matrices) in
the eikonal approximation,

Si(b) = exp[iχ (b)] = exp

[
− i

h̄v

∫ ∞

−∞
UiT(r)dz

]
, (4)

where r = √
b2 + z2, and UiT is the particle(i)-target(T)

optical potential. In Ref. [18], a relation has been developed
between the optical potential and the NN scattering amplitude.
This relation is often referred to in the literature as the “t-ρρ
approximation.” The t-ρρ approximation is the basis of most
calculations of elastic and inelastic scattering involving ra-
dioactive nuclei, as experimentally deduced optical potentials
are not often available. In this approximation, the eikonal phase
becomes

χ (b) = 1

kNN

∫ ∞

0
dq q ρp(q)ρt (q)fNN(q)J0(qb), (5)

where ρp,t (q) is the Fourier transform of the nuclear densities
of the projectile and target, and fNN(q) is the high-energy
NN scattering amplitude at forward angles, which can be
parametrized as

fNN(q) = kNN

4π
σNN(i + αNN) exp(−βNNq2). (6)

There are many ways of introducing final-state interactions
in direct nuclear reactions, some of which are discussed in
Refs. [11] and [33]. Besides Coulomb repulsion, included by
modifying the straight-line trajectories accordingly, we have
also modified the integral in Eq. (4) by using the optical
potential including the Coulomb potential, which modifies the
S matrices according to Si = SN

i · SC
i . The Coulomb phase in

SC
i is calculated by assuming a uniform charge distribution

with radius R and is given by

χC(b) = 2η
{

(b − R) ln(kb) + 
(R − b)

× [
ln(kR) + ln(1 +

√
1 − b2/R2)

−
√

1 − b2/R2 − 1
3 (1 − b2/R2)3/2

]}
, (7)

where 
 is the step function. The value R is chosen to be small
enough so that the nuclear S matrices are basically 0 below b =
R because of the strong absorption at small impact parameters.

III. RESULTS AND DISCUSSION

In this section the results for momentum distributions
and nucleon-removal cross sections are compared to several
experimental data. The focus is the importance of medium
corrections of NN cross sections and of Coulomb distortions.
Both effects are expected to decrease as the bombarding
energy increases. It is important to include such effects
in order to minimize the uncertainty in the extraction of
spectroscopic factors, especially at low bombarding energies.
To substantiate this assertion, we analyze low-energy data on
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FIG. 1. (Color online) Top and right scale: Ratio between average
in-medium and free nucleon-nucleon cross section as a function of
the impact parameter. Dashed and dotted curves represent core-target
and valence nucleon-target average nucleon-nucleon cross sections,
respectively. Note that the target center of mass is located at the
right of the top axis scale. Shaded areas represent the strong
absorption radii where the knockout reactions most likely occur
and rsa = bsa = (1.1 ± 0.1)(A1/3

P + A
1/3
T ) fm. Bottom and left scale:

Radial wave functions in arbitrary units (solid curves) for the valence
nucleon-core system and for a few representative reactions considered
in this work. We have taken only one configuration in cases of systems
with multiple configurations.

knockout reactions and compare them to high-energy data. In
order to identify the separate contribution of these two factors,
we do not vary the geometry of the nucleon binding potentials
used to calculate the single-particle radial wave functions.
This was identified in the literature as another major factor
in the calculations leading to large variations in the extracted
spectroscopic factors.

The relevance of medium corrections is motivated by
the effect summarized in Fig. 1. Cases shown in Fig. 1 are
for 12C(17C,16B) at 35 MeV/u, 9Be(15O,14N) at 56 MeV/u,
12C(23Al,22Mg) at 50 MeV/u, and 9Be(11Be,10Be) at
60 MeV/u. Later we discuss more results for each system
separately. Dashed and dotted curves show the ratio between
the average in-medium and the free NN cross section as a
function of the impact parameter (see top scale). We define the
average NN cross section at the distance of closest approach
between the projectile and the target using Eq. (2) and the
definition

〈σNN(E, b)〉 =
∫

d3rp ρp(rp)ρt (rp + b) σNN(E, ρp, ρt )∫
d3rρp(rp)ρt (rp + b)

,

(8)
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where b is the impact parameter vector, perpendicular to the
beam axis.

In Fig. 1, dashed and dotted curves are for core-target
and valence nucleon-target average NN cross sections, respec-
tively. Note that the target center of mass is located at the right
of the top axis scale. Also shown in the figure are the radial
wave functions (solid curves) for the valence nucleon-core
system and for a few representative reactions considered in
this work. For simplicity, in Fig. 1 we have used only one of
the main configurations for the projectile ground state (more
detailed and complete calculations are reported later in this
section). The binding energies “effectively” decrease from
the top to the bottom panels. We say “effectively” because,
although the binding energy of the valence proton in 23Al is
lower than for the valence neutron in 11Be, the Coulomb barrier
creates an effectively larger binding in 23Al.

It is clearly noticeable in Fig. 1 that the wave functions of
weakly bound systems extend far within the target where the
NN cross sections are strongly modified by the medium. We
must emphasize that the shaded areas in Fig. 1 are relevant to
stress the importance of medium effects in the surface region,
as the reaction is peripheral owing to strong absorption at
b < bsa. Momentum distributions and nucleon-removal cross
sections in knockout reactions are thus expected to change
appreciably with the inclusion of medium corrections of NN
cross section. Such corrections are also expected to play a
more significant role for loosely bound systems.

In the following, we discuss Coulomb corrections. Here we
consider the simplest and most straightforward correction one
can do, namely, the inclusion of a Coulomb phase, which
accounts for the distortion of the elastic scattering of the
core fragment. It has been usually taken for granted that
longitudinal momentum distributions are little affected by
elastic scattering of the core fragment, the reason being that
the longitudinal forces acting on the core fragment reverse
sign as the projectile passes by the target, leading to a
reduced distortion effect [1]. Further, as shown in Ref. [11],
the transverse momentum distributions are strongly affected
by both nuclear and Coulomb elastic scattering. For heavier
targets the distortions are predominantly caused by Coulomb
repulsion [11]. It is noteworthy that the implications of the
findings on Coulomb distortion effects presented in Ref. [11]
have been neglected in the literature. In order to avoid dealing
with the effects of the Coulomb scattering, experiments are
usually performed with light targets, such as 9Be, and at
relatively high energies, E � 50 MeV/nucleon. In this work
we show that these arguments are not always valid and need
to be studied with care.

As discussed in the previous section, in the presence
of a Coulomb field the eikonal S matrices factorize as the
product of the nuclear and the Coulomb contributions: S(b) =
Sn(b)SC(b). Although this does not make any difference for the
total stripping cross sections (see Eq. (20) in Ref. [19]), it has
an impact on the diffraction dissociation cross section (through
the second term of Eq. (21) in Ref. [19]). This means that
not only the transverse, but also the longitudinal momentum
distributions will be affected by the Coulomb field. This is
shown in Fig. 2 for the longitudinal momentum distributions of
several systems which we consider in detail later in this section.
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FIG. 2. Top: Display of Coulomb scattering effects in longi-
tudinal momentum distributions for the reaction T(17C,16B)X at
35 MeV/u as a function of the target T. Solid (dashed) curves
represent calculations with (without) Coulomb distortion. Bottom:
Same as above, but for 12C target and for different beam energies.

It is evident from the upper panels in Fig. 2 that longitudinal
momentum distributions in knockout reactions T(17C,16B)X
(and their total cross sections) are strongly influenced by
the Coulomb field of the target T at bombarding energies of
35 MeV/nucleon. Solid (dashed) curves are calculations with
(without) the inclusion of Coulomb scattering. It is also evident
that, even for the case of light targets, such as 9Be and 7Li,
the distributions change appreciably. The lower panels show
calculations for the same reaction, but for 12C targets and as a
function of the bombarding energy. It is clear that distortions
are important even for energies usually considered “safe,” such
as 100 MeV/nucleon.

We found that the effect of Coulomb scattering is relatively
larger for systems of smaller sizes. This is illustrated in
Fig. 3, where we present our calculations for the total
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FIG. 3. Total nucleon removal cross sections for the reactions
12C(17C,16B) (solid curve) and 12C(23Al,22Mg) (dashed curve) at
35 MeV/u. We artificially vary the separation energy S of the
proton in 17C and in 23Al. The dotted curve shows the calculation
for 12C(23Al,22Mg) at 50 MeV/u.
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nucleon-removal cross sections for the reactions 12C(17C,16B)
(solid curve) and 12C(23Al,22Mg) (dashed curve) at 35 MeV/u.
We artificially vary the binding energy of the proton in 17C
and in 23Al. As the separation energy increases, so does the
percentage difference of the cross section, (σ − σno Coul)/σ ,
where σno Coul is a cross section without the Coulomb scattering
phases. With increasing separation energy the relative valence
nucleon-core distance decreases and the nucleon-removal
cross section decreases, but the relative importance of the
Coulomb scattering increases. For very low energies the effects
of Coulomb dissociation (not considered here) should also
become relevant and increase the magnitude of the cross
sections. The relative importance of the Coulomb scattering
for the removal cross sections decreases with the bombarding
energy. This is shown in Fig. 3 with the calculation for
12C(23Al,22Mg) at 50 MeV/u (dotted curve).

These preliminary discussions support our conclusion that
both medium effects and Coulomb distortion play a relevant
role in knockout reactions. Next we consider a series of
published data for which neither medium nor Coulomb
corrections were included. We thus quantify the changes in the
extracted values of spectroscopic factors in case these effects
are to be included in the experimental analysis.

A. 12C(23Al,22Mg)X at 50 MeV/u

Recently, the 12C(23Al,22Mg)X knockout reaction has been
studied at 50 MeV/nucleon to investigate the ground-state
properties of 23Al [9]. It was shown that the ground-state
structure of 23Al is a configuration mixing of a d-orbital
valence proton coupled to four core states of 22Mg: 0+

gs,
2+

1 , 4+
1 , and 4+

2 . The ground-state spin and parity of 23Al
as Jπ = 5/2+ have been confirmed. This experiment had
the advantage that exclusive measurements were done and
momentum distributions were determined for the four major
configurations in the ground state of the projectile (23Al).

In this work, we have analyzed the 12C(23Al,22Mg)X system
to check the relevance of Coulomb and medium effects. The
1d5/2 wave functions for the valence proton were generated in
a spherical Woods-Saxon potential with the parameters listed
in Table III.

In the optical limit of the Glauber theory and the t-ρρ
approximation (explained in detail in Refs. [17] and [18]),
the eikonal phase is obtained from the input of the nuclear
ground-state densities and the energy-dependent nucleon-
nucleon cross sections. The ground-state density parameters
and models used in this work are listed in Table I, and our
results are presented in Fig. 4 and Table II.

To understand the effects of medium and Coulomb cor-
rections, we have performed the calculations with different
inputs. We show in Fig. 4 the calculations with both Coulomb
and medium corrections (solid curve), calculations without any
medium corrections (dashed lines), calculations that exclude
Coulomb distortions but keep medium corrections (dashed-
dotted curve), and calculations without either Coulomb or
medium corrections (dotted curve).

The numerical results for the single-particle cross sections
with different configurations are listed in Table II. For each
of the four 22Mg configurations—22Mg - 0+

gs, 2+
1 , 4+

1 , 4+
2 —the

0

0.05

0.1

0.15

0

0.1

0.2

d
σ/

dp
||  [

m
b/

(M
eV

/c
)]

0

0.02

0.04

0.06

-200 0 200
p

||
  (MeV/c)

0

0.02

0.04

0.06

FIG. 4. (Color online) Comparison of experimental data in
Ref. [9] and calculations for exclusive longitudinal momen-
tum distributions in the knockout reaction 12C(23Al,22Mg)X at
50 MeV/nucleon. The solid line includes both Coulomb and medium
corrections. The dashed-curve includes no medium corrections. The
dashed-dotted line includes calculations without Coulomb correc-
tions. The dotted curve includes neither medium effects nor Coulomb
corrections.

corresponding relative differences between full calculations
and calculations without Coulomb corrections are found to be
15%, 17%, 19%, and 20%, respectively, whereas between full
calculations and calculations without medium corrections the
corresponding percentage differences are found to be 24%,
21%, 16%, and 13%, respectively.

B. 9Be(15O,14N)X at 56 MeV/u

The one-proton-removal reaction from 15O on a Be target
has been measured at 56 MeV/nucleon and the total knockout
cross section is reported as 80 ± 20 mb in Ref. [34]. The
authors were able to explain the orbital occupancy of valence
protons with a pure 1p1/2 single-particle state using a Glauber

TABLE II. Single-particle cross sections shown for each case
separately.

Configuration Ex σsp(nlj ) (mb)

(keV) Full No medium No Coulomb Free
correction correction

22Mg(0+
gs) ⊗ π1d5/2 0 27.1 33.8 23.2 30.1

22Mg(2+
1 ) ⊗ π1d5/2 1247 23.7 28.7 19.9 25.1

22Mg(4+
1 ) ⊗ π1d5/2 3308 20.4 23.9 16.7 20.4

22Mg(4+
2 ) ⊗ π1d5/2 5293 18.4 21.0 14.8 17.6
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TABLE III. Bound-state potential parameters for the systems studied in the present work. r0, rs0, and rc are the reduced radius of the
bound-state potentials, where ri = Ri/A

1/3
p (i = 0, s0, c). Seff is the effective separation energy: Seff = Si + Ecore

x , where i = proton or neutron
and Ecore

x is the core excitation energy.

Jπ V0 (MeV) r0 (fm) a0 (fm) Vs0 (MeV) rs0 (fm) as0 (fm) rc (fm) Seff (MeV)

|10Be(J π )⊗ν2s1/2〉
0+

(g.s) 61.13 1.21 0.52 – – – 1.21 0.504

|14N(J π )⊗πnlj〉
1+

(g.s)(1p1/2) 48.36 1.19 0.60 – – – 1.19 7.297
1+

(g.s)(1p3/2) 48.36 1.19 0.60 – – – 1.19 7.297

|16B(J π )⊗π1p3/2〉
0+

(g.s) 79.46 1.09 0.50 35.0 1.09 0.50 1.09 23.330
3−

1 80.35 1.09 0.50 35.0 1.09 0.50 1.09 23.979
2−

1 80.75 1.09 0.50 35.0 1.09 0.50 1.09 24.273
2−

2 81.85 1.09 0.50 35.0 1.09 0.50 1.09 25.078
1−

1 82.17 1.09 0.50 35.0 1.09 0.50 1.09 25.318
3−

2 79.93 1.09 0.50 25.0 1.09 0.50 1.09 26.066

|22Mg(J π )⊗π1d5/2〉
0+

(g.s) 54.60 1.18 0.60 5.0 1.18 0.60 1.18 0.141
2+ 56.96 1.18 0.60 5.0 1.18 0.60 1.18 1.388
4+

1 60.67 1.18 0.60 5.0 1.18 0.60 1.18 3.449
4+

2 64.07 1.18 0.60 5.0 1.18 0.60 1.18 5.434

|23O(J π )⊗ν2s1/2〉
1/2+

(g.s) 42.40 1.27 0.70 – – – 1.27 3.610

|32Mg(J π )⊗νnlj〉
0+

(g.s)(1d3/2) – – – – – – – 2.21
3−(2p3/2) 79.92 1.04 0.70 10.0 1.03 0.70 1.04 5.07
3−(1f7/2) 86.63 1.04 0.70 10.0 1.03 0.70 1.04 5.07
2+

2 (2s1/2) 51.55 1.04 0.70 10.0 1.03 0.70 1.04 5.22

reaction model. Their calculations imply that the 1p3/2 state
could also have a small contribution because the calculations
with only the 1p1/2 state yield a narrower momentum distribu-
tion than observed in the experiment. The physical implication
of this is a possible knockout from more deeply bound protons
in the 1p3/2 state. The contributions from each of the p
states yield spectroscopic factors of 1.27(9) and 0.100(75) for
the 1p1/2 and the 1p3/2 orbitals, respectively (Ref. [34] and
references therein).

We have followed the interpretation of Ref. [34] and
calculated the one-proton-removal cross sections for the same
reaction with the same orbital occupancy assumption. The
parameters are listed in Tables I and III. Our calculations
with both Coulomb and medium corrections, upon slightly
changing the spectroscopic factors to 1.42 and 0.13, are
in agreement with the results in Ref. [34]. The calculated
one-proton-removal cross sections are 78.79, 75.20, 93.98,
and 90.74 mb with both Coulomb and medium corrections,
no Coulomb corrections, no medium corrections, and neither
medium effects nor Coulomb corrections, respectively. The
difference between full calculations, including medium and
Coulomb scattering effects, and calculations without Coulomb
corrections is of the order of 5%, and that between full
calculations and calculations without medium effects is nearly
19%. This is remarkable even though it again fits within
the error of the total knockout cross-section experimental
data. We thus conclude that, for this case, medium effects

and Coulomb distortion do not have a sizable impact on the
extraction of spectroscopic factors. However, one can easily
see from Fig. 5 that the data show an asymmetry which can
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FIG. 5. (Color online) Longitudinal momentum distributions for
the 9Be(15O,14N)X reaction at 56 MeV/u. Solid lines represent calcu-
lations that include both Coulomb and medium corrections. Dashed
lines stem from calculations that do not include medium corrections.
Calculations denoted by dashed-dotted curves are performed without
Coulomb corrections. The dotted curve does not include medium
effects or Coulomb corrections. Data are taken from Ref. [34].
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only be explained with the inclusion of higher-order effects in
the reaction mechanism. Distortions will be manifest owing
to continuum-continuum coupling of states involving the
interaction of core with the valence proton. These mechanisms
are not considered in the present work.

C. 12C(17C,16B)X at 35 MeV/u

1. Transverse momentum distributions

The one-proton-removal reaction from 17C, with a sepa-
ration energy of 23 MeV, has been measured in the reaction
12C(17C,16B)X at 35 MeV/nucleon with the goal of under-
standing the low-lying structure of the unbound 16B nucleus.
Using this reaction, Ref. [35] studied the unbound 15B + n
system with the assumption of a d-wave neutron decay. Our
interest is to compute the transverse momentum distribution
of the 16B fragment following the same assumptions as in
Ref. [35] in order to study the consequences of medium and
Coulomb corrections. The configuration of the proton removed
from 17C is assumed to be

|17C〉 = α1|16B(0−) ⊗ π1p3/2〉
+α2|16B(3−

1 ) ⊗ π1p3/2〉 + α3|16B(2−
1 ) ⊗ π1p3/2〉

+α4|16B(2−
2 ) ⊗ π1p3/2〉 + α5|16B(1−

1 ) ⊗ π1p3/2〉
+α6|16B(3−

2 ) ⊗ π1p3/2〉, (9)

where αi is the spectroscopic amplitude for a core–single-
particle configuration i = (c ⊗ nlj ).

Using spectroscopic factors obtained by means of a shell-
model calculation with the WBP interaction [36], Ref. [35]
obtained a good agreement between data and calculated
transverse momentum distributions. But the measured total
cross section is 6.5(1.5) mb, versus the theoretical result of
24.7 mb. The explanation for this large difference is proposed
in Ref. [37] as a reduction of the spectroscopic factor by 70%
for strongly bound nucleon systems. After this spectroscopic
reduction is accounted for, the theoretical estimates for the
cross section becomes 7.5 mb, in reasonable accordance with
the data.

In the present work, we do not elaborate on the assumption
introduced in Ref. [35], and we use the same configuration and
spectroscopic factors as in [35]. The proton binding potential
parameters listed in Table III are adjusted to obtain the effective
separation energies. The ground-state densities are also listed
in Table I. Here, as shown in Fig. 6, we find that medium
corrections change the total knockout cross sections by 5%,
but the Coulomb corrections have a very large effect, which
is almost 60% between calculations with Coulomb and those
without Coulomb distortion. The reason for this difference is
that the Coulomb distortion and repulsion effectively increase
the collision distance with the small impact parameters needed
to remove a strongly bound nucleon. This was not observed in
the previous case [9Be(15O,14N)X at 56 MeV/u] because of
the small nuclear binding in that case. We have also observed
that this effect sharply reduces the calculated cross sections
and the removal is more effective as the bombarding energy
decreases.
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FIG. 6. (Color online) Transverse momentum distributions for the
12C(17C,16B)X system at 35 MeV/u. Solid lines represent calculations
including both Coulomb and medium corrections. Dashed lines stem
from calculations that do not include medium corrections. Calcu-
lations represented by dashed-dotted curves are performed without
Coulomb corrections. The dotted curve does not include medium
effects or Coulomb corrections. Data are taken from Ref. [35]. Top:
One can see that, when properly scaled, all four curves from the
calculations reproduce the shape of the momentum distributions.
Bottom: Relative differences of our results are illustrated when the
full calculation (solid line) is scaled to the data.

2. Longitudinal momentum distributions

We have made a more systematic analysis to understand
the reason for the effect discussed in the previous subsection.
We have observed that the strong dependence on Coulomb
distortions is also present in longitudinal momentum distribu-
tions. It has long been thought that longitudinal momentum
distributions are free from uncertainties related to the knowl-
edge of the optical nucleus-nucleus potentials compared to
the transverse distributions. This was first shown in Ref. [1].
Here we report calculations for the same |16B(0−) ⊗ π1p3/2〉
configuration, with the same parameters and ground-state
densities, as discussed in the previous subsection. We find
that although the Coulomb distortions create a similar effect
for this particular knockout reaction on both transverse and
longitudinal momentum distributions, as shown in Fig. 2, the
effect on transverse momentum distributions is bigger than
the corresponding one for longitudinal momentum distribu-
tions, by about 5%. This is expected on physics grounds.
Nonetheless, such a large effect on longitudinal momentum
distributions was not initially anticipated. By comparison with
other cases, we found that this large effect is caused by the low
bombarding energy in this particular reaction combined with
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the large binding energy of the projectile. This interpretation
is also validated by inspection of Figs. 2 and 3.

The source of this difference stems from the diffraction
dissociation contribution to the cross sections. To substantiate
our claim, we have looked at the details of the knockout cross
section, which has two parts for the production of a given final
state of the residue. The most important of the two, commonly
referred to as stripping or inelastic breakup, represents all
events in which the removed nucleon reacts with and excites
the target from its ground state. The second component, called
diffractive or elastic breakup [38], represents the dissociation
of the nucleon from the residue through their two-body
interactions with the target, each being elastically scattered.
We note that the total stripping cross section is given by [11]

σstr = S(c; nlj )
2π

2l + 1

∑
m

∫ ∞

0
dbn bn [1 − |Sn(bn)|2]

×
∫

d3r |Sc(bc)|2|ψlm(r)|2, (10)

whereas the integrated diffraction dissociation cross section is
given by [33]

σdif = S(c; nlj )
2π

2l + 1

∑
m

∫ ∞

0
dbn bn

×
{∫

d3r|Sn(bn)Sc(bc)ψlm(r)|2

−
∑
m′

∣∣∣∣
∫

d3rψlm′(r)Sc(bc)Sn(bn)ψlm(r)

∣∣∣∣
2
}

. (11)

One can see from these expressions that the stripping
cross sections are not affected by the Coulomb distortions
because this distortion is manifest through a real phase in the
eikonal S matrices calculated in the Glauber approximation.
The magnitude of the cross sections is therefore not changed,
as the square of the S matrices entering Eq. (10) is only changed
by the imaginary part of the potential entering Eq. (4). On the
other hand, the second term of the diffraction dissociation cross
sections in Eq. (11) is appreciably modified by the Coulomb
phase factor. As shown in Fig. 2, the effect gets smaller with
decreasing target atomic number, because the Coulomb phase
increases, or when the beam energy increases, because then
the Coulomb recoil becomes irrelevant.

D. 9Be(11Be,10Be)X at 60 MeV/u

In order to further understand the dependence of the
Coulomb distortion on nuclear binding, we consider the
reaction 9Be(11Be,10Be)X at 60 MeV/u, which can be mod-
eled by a core-plus-valence system with the assumption
10Begs(0+) + n in the 2s1/2 orbital for the ground state of
11Begs(1/2+) (Sn = 0.504 MeV). Here we use the same
Woods-Saxon potential parameters for the bound state as
published in Ref. [25]: (R0 = 2.70 fm, a0 = 0.52 fm). In Fig. 7
and Table IV we present our results for the neutron-removal
longitudinal momentum distribution of 60 MeV/nucleon 11Be
projectiles incident on 9Be targets.
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FIG. 7. (Color online) Longitudinal momentum distributions of
the reaction 9Be(11Be,10Be) at 60 MeV/nucleon. Solid lines represent
calculations that include both Coulomb and medium corrections.
Dashed lines stem from calculations that do not include medium
corrections. Calculations denoted by dashed-dotted curves are per-
formed without Coulomb corrections. The dotted curve does not
include medium effects or Coulomb corrections. Data are taken from
Ref. [39]. Top: One can see that, when properly scaled, all four curves
from the calculations reproduce the shape of the momentum distribu-
tions. Bottom: Relative differences of our results are illustrated when
the full calculation (solid line) is scaled to the data.

It is evident from Fig. 1 that 17C has the smallest “effective”
size and that 11Be has the biggest size among the low-energy
systems in this study. The nuclear size is important for
low-energy cases because diffraction dissociation becomes
dominant when the nuclear size is smaller, but stripping
dissociation becomes dominant when the nuclear size is
bigger. The reason for this is that a large projectile feels the
nuclear interaction already at large impact parameters. A small
projectile can come closer to the target where the Coulomb
interaction is larger. The evidence of this is presented in
Table IV. It is thus clear why medium and Coulomb corrections
are more important in the 9Be(11Be,10Be) and the 12C(17C,16B)
cases, respectively.

E. 12C(24O,23O)X at 920 MeV/u

The momentum distribution of the one-neutron removal
residues from the 12C(24O,23O)X reaction was measured for
the first time at 920 MeV/nucleon and reported in Ref. [40].
The data can be explained by the spectroscopic factor S =
1.74(19) of an almost-pure 2s1/2 single-particle state for the
valence neutron. This work, together with recent theoretical
calculations, suggests that 24O is a newly discovered doubly
magic nucleus. The one-neutron-removal cross section was
found to be 63(7) mb. Calculations in Ref. [40] were based
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TABLE IV. Cross sections (in mb) calculated for the systems 12C(17C,16B) at 35 MeV/nucleon and 9Be(11Be,10Be) at 60 MeV/nucleon.

σ−1n = σdif + σstr
12C(17C,16B) 9Be(11Be,10Be)

Full No Coulomb correction No medium correction Full No Coulomb correction No medium correction

Strip. 7.10 7.10 5.09 126.5 126.5 169.7
Diff. 18.63 2.42 19.39 52.8 46.7 104.8

Total 25.74 9.52 24.48 179.3 173.2 274.5

on a few-body Glauber formalism [41] for two configurations:
(a) 23Ogs(1/2+) + n in the 2s1/2 orbital and (b) 23Ogs(5/2+) +
n in the 1d5/2 orbital. The wave functions for the configurations
are obtained with a Woods-Saxon potential by adjusting
the depth of the potential to reproduce the one-neutron
separation energy Sn = 3.61(27) MeV [29]. Using a pure 2s1/2

configuration with S = 1 leads to a cross section of 34 mb. The
calculation is in agreement with the data when it is multiplied
by S = 1.74(19). This large spectroscopic factor indicates that
the single-particle strength of the valence neutron is strongly
weighted in the 2s1/2 state.

In the present work we have reproduced the data of Ref. [40]
also by assuming a 2s1/2 orbital only. The potential parameters
for the bound-state wave function are given in Table III and
the ground-state density for the 23Ogs core is obtained using
liquid droplet model densities [42], as indicated in Table I. To
understand the differences between medium effect models,
four different calculations including Coulomb corrections
have been made for this system. The calculated one-neutron-
removal cross sections are 58.58, 54.08, 78.74, and 53.25 mb
using free [19], Pauli-corrected [Eq. (2)], Brueckner [Eq. (3)],
and phenomenological parameterizations [22] of the NN cross
sections, respectively. Except for the result obtained with the
Brueckner theory, they are all in agreement with the previous
work and with the data. The relative difference between the
results obtained using Brueckner corrections and with free NN
cross sections is about 34%. However, we do not consider a
real discrepancy, as the Brueckner parametrizations have been
extrapolated well beyond their validity. Brueckner calculations
are limited by the pion-production threshold and should only
be valid for projectile energies below 300 MeV/nucleon.

Thus we verify that the experimental data for the reaction
12C(24O,23O)X at 920 MeV/u is well reproduced with the use
of free NN cross sections (Fig. 8). The changes introduced
by Pauli blocking with the geometric model are small, and
the phenomenological account of medium effects at this high
energy also basically agree with the results using free cross
sections.

F. 12C(33Mg,32Mg)X at 898 MeV/u

The ground-state structure of 33Mg, a nucleus belonging to
the N = 20 island of inversion, has been studied in Ref. [43]
by means of nucleon-removal reactions on a carbon target at
898 MeV/nucleon. The longitudinal momentum distribution
of the 32Mg core was measured and the one-neutron-removal
cross section was found to be 74(4) mb. Most of the
contribution to the ground-state structure of 33Mg was shown
to arise from the 2p3/2 orbital.

The longitudinal momentum distribution obtained in
Ref. [43] cannot be reproduced with a pure single-particle
state (Fig. 9). Why a configuration mixing of different single-
particle states is needed has been discussed in detail in
Ref. [43]. Two different configuration mixings for the ground
state of 33Mg were assumed. The first one is

|33Mggs(3/2−)〉
= α1|32Mg(2+

1 ) ⊗ ν2p3/2〉 + α2|32Mg(1−) ⊗ ν2s1/2〉
+α3|32Mg(2+

1 ) ⊗ ν1f7/2〉 + α4|32Mg(1−) ⊗ ν1d3/2〉
+α5|32Mg(gs) ⊗ ν2p3/2〉, (12)

and the second is

|33Mggs(3/2+)〉
= α1|32Mg(3+) ⊗ ν2p3/2〉 + α2|32Mg(2+

2 ) ⊗ ν2s1/2〉
+ α3|32Mg(3+) ⊗ ν1f7/2〉 + α4|32Mg(gs) ⊗ ν1d3/2〉,

(13)

where αi are the spectroscopic amplitudes for each single-
particle orbital. The values of the corresponding spectroscopic
factor Si were found by χ2 minimization and their values
for the second configuration are S1 = 2.2+0.2

−0.5, S2 = 0.1+0.0
−0.1,

S3 = 1.1+0.1
−0.5, and S4 = 0.0+0.5

−0.0 [43].
In our calculations we have chosen the second configuration

set used in Ref. [43], Eq. (13), since the 33Mg ground
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FIG. 8. (Color online) Longitudinal momentum distributions for
the 12C(24O,23O)X reaction at 920 MeV/nucleon. Curves were
calculated with the free NN cross sections (solid), a geometrical
account of Pauli blocking (dashed), a phenomenological fit from
Ref. [22] (dotted), and a correction from Brueckner theory (dashed-
dotted). Data are taken from Ref. [40].
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FIG. 9. (Color online) Inclusive longitudinal momentum distri-
butions for the 12C(33Mg,32Mg)X system at 898 MeV/nucleon. Data
are taken from Kanungo et al. [43]. Curves were calculated with
the free NN cross sections (solid), a geometrical account of Pauli
blocking (dashed), a phenomenological fit from Ref. [22] (dotted),
and a correction from Brueckner theory (dashed-dotted).

state is usually accepted to be Jπ = 3/2+. We apply the
same procedure as described before to obtain bound-state
wave functions and eikonal phases. The parameters for the
bound-state potentials and ground-state densities are listed in
Tables III and I, respectively. We have used nearly the same
spectroscopic factors within the error bar range of Ref. [43]
to make a consistent comparison of the medium effects. Our
results yield a small but relevant variation of the one-neutron
removal cross sections using the free, Pauli-corrected, and
phenomenological NN cross sections, namely, 83.70, 77.90,
and 77.63 mb, respectively. As observed in the case of the
12C(24O,23O)X at 920 MeV/u, the use of Brueckner-corrected
NN cross sections yields 112.92 mb, about 35% relative to
the calculations using the free NN cross sections (Fig. 9). For
the same reason as for the previously considered reaction, this
discrepancy is meaningless, as one extrapolates the Brueckner
results beyond their regime of validity.

Both reactions considered above are very illustrative, as
they show a great consistency between the calculations per-
formed by different authors, with somewhat different methods.
They also show the expected relevance of medium corrections
for intermediate- and low-energy collisions.

G. Relevance of medium effects

As mentioned above, medium effects have been routinely
neglected in the experimental analysis of knockout reactions.
But their relevance has been known for a long time in the
analysis of elastic and inelastic scattering, as well as of total
reaction cross sections [17,18]. The effects are larger at lower
bombarding energies, where Pauli blocking strongly reduces
the NN cross sections in the medium. A systematic study of
these effects has been presented in Ref. [18].

To corroborate these statements, in Fig. 10 we show the data
on the p+12C reaction cross sections taken from the Ref. [44]
in the energy region of our interest, 20–100 MeV/nucleon.
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FIG. 10. (Color online) Total reaction cross section of p+12C
taken from Ref. [44]. Curves were calculated with the free NN
cross sections from Ref. [45] (solid), a geometrical account of
Pauli blocking (dashed), a phenomenological fit from Ref. [22]
(dotted), and a correction from Brueckner theory (dashed-dotted).
The triangle-dotted curve is calculated with the same free NN cross
sections from Ref. [45] but with another HFB calculation [46] for the
12C ground-state density.

The cross sections were calculated from the relation

σR = 2π

∫
db b[1 − |S(b)|2], (14)

where S(b) has been calculated using Eqs. (4)–(6) and the
carbon matter density from a Hartree-Fock-Bogoliubov (HFB)
calculation [46]. Several distinct calculations are shown. The
solid curve uses Eq. (5) with the free NN cross sections and the
carbon matter density from an HFB calculation [47], whereas
the triangle-dotted curve (the triangles are not data but are
used for better visibility) uses a different HFB density [46],
consistent with the calculations presented in Ref. [7]. As
expected, the agreement between the two calculations is very
good.

The other curves in Fig. 10 show the same calculation
procedure, but including medium corrections for the NN cross
section. The results are evidently very different from the
previous ones. The dotted, dashed-dotted, and dashed curves
use phenomenological, Brueckner, and Pauli geometrical
recipes, respectively, for medium effects on the cross sections.
Based on the large error bars and spread of the experimental
data, it is hard to judge which model adopted for medium
corrections yields the best agreement with the data. It is clear
that the inclusion of medium effects changes the results to
yield a closer reproduction of the data.

These findings are in agreement with our present under-
standing of medium modifications of the reaction cross sec-
tions and of several other reaction channels involving heavy-
ion scattering at intermediate energies (∼50 MeV/nucleon).

IV. CONCLUSIONS

Often neglected effects, such as medium modifications of
NN cross sections and Coulomb distortion, modify appreciably
the nucleon knockout cross sections. As we have shown,
these effects do not lead to an appreciable modification of
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the shapes of momentum distributions. This is explained by
the fact that the momentum distributions are largely the Fourier
transforms of the contributing parts of the single-particle wave
functions, overwhelmingly their asymptotic regions, which are
the Whittaker functions for protons or the Hankel functions
for neutrons, sensitive only to the orbital momentum and
the nucleon binding energies. We have shown these features
explicitly by comparing our results with a large number of
available experimental data. As expected on physics grounds,
these corrections are larger for experiments at lower energies,
around 50 MeV/nucleon, and for heavy targets.

As more experiments make use of heavier targets, it is
worthwhile to illustrate the relevance of Coulomb correc-
tions. Medium effects in knockout reactions have also been

frequently ignored in the past. We show that they also have to
be included in order to obtain a better accuracy of the extracted
spectroscopic factors. Although these conclusions might not
come as a big surprise, they have not been properly included
in many previous experimental analyses.
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