Color van der Waals Force Acting in Heavy-Ion Scattering at Low Energies

M. S. Hussein, C. L. Lima, and M. P. Pato
Instituto de Física da Universidade de São Paulo, Caixa Postal 20516, 01498 São Paulo, São Paulo, Brazil
C. A. Bertulani
Instituto de Física da Universidade Federal do Rio de Janeiro, 21945 Rio de Janeiro, Rio de Janeiro, Brazil
(Received 6 December 1989; revised manuscript received 19 March 1990)

The influence of the color van der Waals force in the elastic scattering of 208Pb on 208Pb at sub-barrier energies is studied. The conspicuous changes in the Mott oscillation found here are suggested as a possible experimental test.

PACS numbers: 25.70.Cd, 21.30.+v

Several theoretical investigations have considered the possible existence of strong color van der Waals forces between hadrons.\(^1\)\(^-\)\(^6\) Just as the usual electromagnetic van der Waals (VDW) force between neutral atoms arises from two-photon exchange, the color VDW force is suggested by several theorists to come about from two-gluon and multigluon exchanges between color-singlet hadrons. There are, of course, important differences between the QCD and the color VDW forces. The most notable of these differences are related to confinement (in the MIT bag model this force does not exist) and the nonlinear structure of the Yang-Mills gluon fields. Although the overwhelming majority of particle physicists do not believe in the existence of the color VDW force, it is still important to set experimental limits on these forces. Estimates of the strength of the color VDW force have been made. We summarize these in the following:\(^4,5\)

\[
V_{\text{VDW}}(r) = -\frac{a_6}{r_0} \frac{\hbar c}{r} \left(\frac{r_0}{r} \right)^6, \tag{1a}
\]

or (1b), where A_i is the atomic number of nucleus i. We therefore propose to look for the color VDW force in the low-energy scattering of 208Pb+208Pb. By low energy we mean low enough to avoid the action of the strong short-range nuclear interaction. At these energies, the Coulomb repulsion completely dominates the scattering and consequently the cross section is structureless and almost entirely Rutherford. Small perturbations such as the color VDW force have to be looked for in quantum interference effects which would arise from, e.g., the identity of the projectile and the target. Thus our choice of 208Pb+208Pb. We proceed now to describe our calculation.

We first remind the reader that other small effects, besides the VDW interaction, have to be taken into account. These include QED vacuum polarization V_{VP} (Uehling potential\(^7\)), nuclear dipole and quadrupole polarizabilities V_D and V_Q, respectively,\(^8\)-\(^10\) electron screening V_{ES},\(^11\) and relativistic corrections V_R arising from using the Darwin Hamiltonian.\(^10\) These effects have been investigated experimentally by Lynch \textit{et al.}\(^12\) in the system 16O+208Pb. The sum of all these corrections and the VDW one is denoted by $\Delta V = \sum V_i$. Thus the interaction potential felt by the two nuclei is

\[
V_{A_iA_j}(r) = Z_1 Z_2 e^2/r + \Delta V(r). \tag{2}
\]

The Coulomb barrier of Pb+Pb is about 600 MeV. We take for the c.m. energy 500 MeV as a representative case. At this energy the classical distance of closest approach is 25 fm, at which the short-range nuclear interaction is negligible. So we are fully justified in taking (2) for an interaction.

At 500 MeV, the Sommerfeld parameter $\eta = Z_1 Z_2 e^2/\hbar v$ is about 480 which is large enough to guarantee that the semiclassical description of the scattering is quite adequate.\(^8\)-\(^10\) With the aid of the stationary-phase approximation, we obtain for the elastic-scattering amplitude

\[
f(\theta) = \frac{1}{k \sqrt{1 - \sin^2 \theta}} \left[\frac{\lambda_i}{|\Theta(\lambda_i)|} \right]^{1/2} \exp\left[2i\delta(\lambda_i) - i \lambda_i \theta \right] \left[\frac{d^2 \sigma_{\text{el}}}{d \Omega} \right]^{1/2} \exp\left[2i\delta(\lambda_i) - i \lambda_i \theta \right], \tag{3}
\]
where
\[
\frac{d\sigma_{\text{cl}}}{d\Omega} = \frac{1}{k \sin \theta} \begin{vmatrix} \lambda_i \end{vmatrix} \Theta(\lambda_i)
\]
is the classical cross section, \(\delta(\lambda_i)\) is the total phase shift, \(\lambda_i = l_i + \frac{1}{2}\), with \(l_i\) being the orbital angular momentum of the stationary phase defined by
\[
2 \frac{d}{d\lambda} \delta(\lambda_i) \bigg|_{\lambda_i} = \Theta(\lambda_i) = \theta,
\]
and \(\Theta\) is the classical deflection function. In Eq. (3), \(\Theta = \frac{d \Theta}{d \lambda} |_{\lambda_i}\).

The phase \(\delta(\lambda_i)\) is written as
\[
\delta(\lambda_i) = \sigma(\lambda_i) + \Delta \delta = \sigma(\lambda_i) + \sum_j \Delta \delta_j(\lambda_i),
\]
where \(\sigma\) is the Coulomb phase and \(\Delta \delta_j(\lambda_i)\) is the change in the phase due to the perturbing potential \(V_j\). The classical cross section \(d\sigma_{\text{cl}}/d\Omega\) can be calculated to first order in \(\Delta \Theta = 2d(\Delta \delta)/d\lambda\) as
\[
\frac{d\sigma_{\text{cl}}}{d\Omega} = \frac{d\sigma_{\text{Rath}}}{d\Omega} \left[1 + \frac{1}{2} \Delta \theta \tan \frac{\theta}{2} + \frac{3}{2} \Delta \theta \cot \frac{\theta}{2} - \frac{d}{d\theta} \Delta \theta \right],
\]
(5)

where \(d\sigma_{\text{Rath}}/d\Omega \equiv a^2/(4 \sin^2 \frac{1}{2} \theta)\) is the Rutherford cross section and \(a \equiv Z_1 Z_2 e^2/2E_{\text{c.m.}}\). With the above preliminaries, we can finally write the symmetrized cross section in the following form:
\[
\frac{d\sigma}{d\Omega} = |f(\theta) + f(\pi - \theta)|^2 = \frac{d\sigma_{\text{cl}}}{d\Omega}(\theta) + \frac{d\sigma_{\text{cl}}}{d\Omega}(\pi - \theta) + 2 \left[\frac{d\sigma_{\text{cl}}}{d\Omega}(\theta) \frac{d\sigma_{\text{cl}}}{d\Omega}(\pi - \theta) \right]^{1/2} \\
\times \cos \left[2 \ln \cot \frac{\theta}{2} + 2[\Delta \delta(\lambda_i(\theta)) - \Delta \delta(\lambda_i(\pi - \theta))] \right].
\]
(6)

In obtaining the phase in (6) the formula
\[
2\sigma(\lambda_i(\theta)) - 2\sigma(\lambda_i(\pi - \theta)) = 2\eta \ln \cot \frac{\theta}{2}
\]
has been used (this formula is valid as long as \(\eta \ll 1\)).

The numerical results presented below are obtained by calculating \(\Delta \sigma\) using first-order perturbation theory, which should be quite adequate considering the smallness of the perturbations involved. The quantity
\[
\Delta = \frac{d\sigma/d\Omega - d\sigma_{\text{Mott}}/d\Omega}{d\sigma/d\Omega + d\sigma_{\text{Mott}}/d\Omega}
\]
is then evaluated with \(d\sigma_{\text{Mott}}/d\Omega\) being the Mott cross section. In Fig. 1 we summarize our results for \(E_{\text{c.m.}} = 500\,\text{MeV}\) which is slightly below the Coulomb barrier, in both the 90° and the 125° angle regions.

For \(V_{\text{Coul}}(r)\), Eq. (1a), with \(\alpha_e = 8.0\), the effect is extremely small (not shown in Fig. 1). However, when \(V_{\text{Coul}}(r)\), Eq. (1b), is used with \(\alpha_\gamma = 100.0\), the effect on the Mott cross section is quite conspicuous, as can be seen in Fig. 1(a), where the shift in the position of the minima \(\xi\) due to the color VDW force is about \(\xi = 5 \times 10^{-4}\) deg in the 90° region and becomes much larger in the 125° region, attaining a value of \(\xi = 1 \times 10^{-2}\) deg. Therefore, an angle precision of 0.0005° is required in the 90° region and about 0.1° in the 125° region, in order to confirm our finding. It is clear from our calculation that larger values of \(\xi\) can be obtained with increasing (or decreasing) angles.

A clearer picture of the change in the oscillatory structure of the cross section due to the color VDW force is exhibited for completeness in Fig. 2. In Fig. 3 we show the individual contributions of the different effects mentioned earlier for comparison.

Recently, Vetterli et al. 14 have studied QED vacuum-polarization effects in \(^{12}\text{C} + ^{12}\text{C}\) at \(E_{\text{lab}} = 4\,\text{MeV}\) with a precision which is slightly smaller than the one required in our test calculation in the 90° region.

At this point, it is important to assess the importance of the possible uncertainties of other small contributions as compared to the size of the color-VGW-force effect.
We proceed now to discuss this in detail. Possible uncertainties in the polarization potentials can be assessed by looking at, for example, the dipole case. The next higher-order contribution to $V_{\text{dip}}(r) = -V_{\text{dip}}/r^4$ goes as $+(V_{\text{dip}}/r^4)^2$ and thus it would diminish even more the already negligible octupole polarization potential, which goes as $-V_{\text{oct}}/r^8$ (not shown in Fig. 3 as it is much smaller than the quadrupole contribution, which is already extremely small, as seen in the figure).

As far as the QED vacuum-polarization potential effects are concerned, we are assured that effects higher than the dominant $\alpha^2 \left[\frac{1}{16\pi} \right]^2$ contribution contribute by as little as 1×10^{-2} (Ref. 14) to the polarization potential and as little as 0.01% to the proposed effect exemplified by $\xi(90^\circ)$ and $\xi(125^\circ)$ (other angular regions could be easily explored as well).

Finally, a word about our semiclassical treatment of the elastic scattering. It is well known that the condition for the applicability of semiclassical concepts in scattering conditions can be generally expressed as

$$\frac{1}{2\eta} + \left[\frac{\Delta E}{E} \right]^2 \cos^2 \frac{\theta}{2} \ll \frac{(\theta/2)^2}{\sin^2(\theta/2)},$$

(7)

where η is the Sommerfeld parameter, and ΔE is the uncertainty in the energy of the incident beam. As far as Fig. 1 is concerned, the above condition translates to $(2\eta)^{-1} + \frac{1}{8} (\Delta E/E)^2 \ll 1$ at $\theta \sim 90^\circ$ and slightly different for $\theta \sim 125^\circ$. It is obvious that condition (7) is completely satisfied in our case; $\eta \sim 500$ and $\Delta E/E \sim 10^{-4}$ for $E_{\text{c.m.}} \sim 500$ MeV in a machine like GANIL.

Before ending, we should mention that we have not explicitly considered the charge form factors of the nuclei even though the momentum transfer in the experiment that we propose is large. Our discussion, however, is completely justified since in the semiclassical analysis that we give, what is relevant is the distance of closest approach, and at this distance the form-factor effect is negligible.

In summary, we have studied in this paper the influence of the color van der Waals force on the low-energy elastic scattering of identical heavy nuclei. With a precision in angle measurement which can be easily attained with a slight improvement of the procedure used in Ref. 14, one should be able to set an upper limit on the strength of the r^{-7} color VDW force.

M.S.H. would like to thank Kenneth Johnson and Arthur Kerman for useful discussions. We also thank A. C. Villari for a useful discussion concerning the experimental aspects of our work. This work was supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico.
5. G.费恩伯格, Comments Nucl. Part. Phys. 19, 51 (1989); a
general formula which contains the two limits, Eqs. (1a) and
(1b), depending on the value of r is given by $V_{DW}^C = -(\alpha/\pi^2)\arctan(d/r)$
with $d = \alpha^2a_0^2\hbar/16\pi a_0$ and a_0
the dipole polarizability. See H. B. G.卡西米尔和D.波尔德,
Phys. Rev. 73, 360 (1948).
Lett. 64, 1011 (1990).
113 (1977).
11. K.阿尔德和A.温瑟, Electromagnetic Excitations
(North-Holland, Amsterdam, 1975). The electron screening
potential for distances smaller than the Thomas-Fermi radius
can be approximated by $V_{ES} = -4.78 \times 10^{-5}(Z_1 Z_2^{1/3} + Z_1^{1/3} Z_2)$
MeV, and thus it is a small correction to the c.m. energy. For
Pb+Pb we get $V_{ES} = -2.7$ MeV.
13. M.阿布拉莫维茨和I. A.施坦, Handbook of Mathematical Functions
(Dover, New York, 1968).
14. D.贝特里, W.波格林, P.埃格尔霍夫, R.赫内克, M.
贾斯科拉, A.克莱因, H.迈克里, G. R.普劳特, I.施克, D.
特劳特曼, G.鲍尔, and A.韦勒, Phys. Rev. Lett. 62, 1453
(1989).
15. M. S.胡塞因, Y. T.陈, and F. I. A.阿尔梅达, Am. J.