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Relativistic Continuum-Continuum Coupling in the Dissociation of Halo Nuclei
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A relativistic coupled-channels theory for the calculation of dissociation cross sections of halo nuclei is
developed. A comparison with nonrelativistic models is done for the dissociation of 8B projectiles. It is
shown that neglecting relativistic effects leads to sizable inaccuracies in the extraction of the astrophysical
S factor for the proton � beryllium radiative capture reaction.
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Reactions with radioactive nuclear beams have quickly
become a major research area in nuclear physics. Among
the newly developed techniques, the Coulomb dissociation
method is an important tool to obtain electromagnetic
matrix elements between continuum and bound states of
rare nuclear isotopes [1]. These matrix elements play an
essential role in nuclear astrophysics. At low continuum
energies, they are the same as the ones involved in radiative
capture processes of astrophysical interest. In particular,
the Coulomb dissociation of 8B projectiles allows one to
extract information on the radiative capture reaction p�
7Be ! 8B� �, of relevance for the standard solar model
and the production of high-energy neutrinos in the sun [2].

The dissociation of weakly bound nuclei, or halo nuclei,
is dominated by the Coulomb interaction, although the
nuclear interaction with the target cannot be neglected in
most cases. The final state interaction of the fragments with
the target leads to important continuum-continuum and
continuum-bound-state couplings which appreciably mod-
ify the reaction dynamics. Higher-order couplings are more
relevant in the dissociation of halo nuclei due to their low
binding. A known example is the ‘‘postacceleration’’ (or
‘‘reacceleration’’) effect observed in the dissociation of
11Li projectiles [3–6].

Two methods have been devised to study higher-order
effects in projectile dissociation. The method introduced in
Ref. [6] uses the direct solution of the Schrödinger equa-
tion (DSSE) by space-time discretization. One starts with a
ground-state wave function, propagates it through each
time step, and after a sufficiently long time the iterated
wave function is projected into a specific channel of inter-
est. Another method discretizes the continuum wave func-
tions jci and uses them as input to calculate the matrix
elements hc0jVintjci and hcjVintjbi, where jbi denotes a
bound state [3]. The matrix elements are then used in a
coupled-channels calculation for transition amplitudes to
dissociation channels. This is known as the continuum
discretized coupled-channels (CDCC) method and was
introduced by Rawitscher [7] to study nuclear breakup
reactions of the type a� A ! b� c� A. It has been
used extensively in the study of breakup reactions with
stable [8] and unstable nuclear projectiles [3,9,10]
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Special relativity, an obviously important concept in
physics, is quite often neglected in the aforementioned
dynamical calculations. Most rare isotope facilities use
projectile dissociation at 100 MeV=nucleon. At these en-
ergies, relativistic effects are expected to be of the order of
10%. Relativistic effects are accounted for in the collision
kinematics, in first-order perturbation calculations, but not
in dynamical calculations used so far in the analysis of
experiments. They also enter the dynamics in a nonlinear,
often unpredictable, way. The reason why these effects
have not been considered before is due to the inherent
theoretical difficulty in defining a nuclear potential be-
tween many-body relativistic systems. Because of retarda-
tion, an attempt to use a microscopic description starting
from binary collisions of the constituents is not possible. A
successful approach, known as ‘‘Dirac phenomenology,’’
has been achieved for nucleon-nucleus scattering [11]. But
for nucleus-nucleus collisions a reasonable account of
these features has not yet been accomplished. In the
present Letter, the case of dissociation of 8B projectiles
is studied. The major contribution comes from the
Coulomb interaction with well-known relativistic transfor-
mation properties. A coupled-channels method based on
the eikonal approximation with relativistic ingredients is
developed and compared to semiclassical methods [6].
Here I omit the consideration of other corrections in the
eikonal treatment of the scattering involving halo nuclei
which have also been shown to play a relevant role (see,
e.g., Refs. [12,13]).

Let us consider the Klein-Gordon (KG) equation with a
potential V0 which transforms as the timelike component
of a four-vector [11]. For a system with total energy E
(including the rest mass M), the KG equation can be cast
into the form of a Schrödinger equation (with h � c � 1),
�r2 � k2 
U�� � 0, where k2 � �E2 
M2� and U �
V0�2E
 V0�. When V0 � M, and E ’ M, one gets U �
2MV0, as in the nonrelativistic case. The condition V0 �
M is met in peripheral collisions between nuclei at all
collision energies. Thus, one can always write U �
2EV0. A further simplification is to assume that the
center-of-mass motion of the incoming projectile and out-
going fragments is only weakly modulated by the potential
1-1  2005 The American Physical Society



PRL 94, 072701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 FEBRUARY 2005
V0. To get the dynamical equations, one discretizes the
wave function in terms of the longitudinal center-of-mass
momentum kz, using the ansatz

� �
X
�

S��z;b� exp�ik�z��k����: (1)

In this equation, �z;b� is the projectile’s center-of-mass
coordinate, with b equal to the transverse coordinate. ����
is the projectile intrinsic wave function and �k;K� is the
projectile’s center-of-mass momentum with longitudinal
momentum k and transverse momentum K. There are
hidden, uncomfortable, assumptions in Eq. (1). The sepa-
ration between the center-of-mass and intrinsic coordinates
is not permissible under strict relativistic treatments. For
high-energy collisions we can at best justify Eq. (1) for the
scattering of light projectiles on heavy targets. Equation (1)
is reasonable only if the projectile and target closely main-
tain their integrity during the collision, as in the case of
very peripheral collisions.

Neglecting the internal structure means �k���� � 1 and
the sum in Eq. (1) reduces to a single term with � � 0, the
projectile remaining in its ground state. It is straightfor-
ward to show that inserting Eq. (1) in the KG equation
�r2 � k2 
 2EV0�� � 0, and neglecting r2S0�z;b� rela-
tive to ik@ZS0�z;b�, one gets ik@ZS0�z;b� � EV0S0�z;b�,
which leads to the center-of-mass scattering solution
S0�z;b� � exp�
iv
1

R
z

1 dz0V0�z0;b��, with v � k=E.

Using this result in the Lippmann-Schwinger equation,
one gets the familiar result for the eikonal elastic scatter-
ing amplitude, i.e., f0 � 
i�k=2��

R
db exp�iQ � b��

fexp�i��b�� 
 1g, where the eikonal phase is given by
exp�i��b�� � S0�1;b�, and Q � K0 
K is the transverse
momentum transfer. Therefore, the elastic scattering am-
plitude in the eikonal approximation has the same form as
that derived from the Schrödinger equation in the non-
relativistic case.

For inelastic collisions we insert Eq. (1) in the KG
equation and use the orthogonality of the intrinsic wave
functions �k����. This leads to a set of coupled-channels
equations for S�:

�r2 � k2�S�e
ik�z �

X
�

h�jUj�0iS�0eik�0 z; (2)

with the notation j�i � j�k�i. Neglecting terms of the
form r2S��z;b� relative to ik@ZS��z;b�, Eq. (2) reduces
to

iv
@S��z;b�

@z
�

X
�0

h�jV0j�0iS�0 �z;b�ei�k�0
k��z: (3)

The scattering amplitude for the transition 0 ! � is given
by

f��Q� � 

ik
2�

Z
db exp�iQ � b��S��b� 
 ��;0�; (4)

with S��b� � S��z � 1;b�. The set of Eqs. (3) and (4) are
the relativistic-CDCC equations (RCDCC).
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I have used the RCDCC equations to study the dissocia-
tion of 8B projectiles at high energies. The energies trans-
ferred to the projectile are small, so that the wave functions
can be treated nonrelativistically in the projectile frame of
reference. In this frame the wave functions will be de-
scribed in spherical coordinates, i.e., j�i � jjlJMi, where
j, l, J, and M denote the angular momentum numbers
characterizing the projectile state. Equation (3) is Lorentz
invariant if the potential V0 transforms as the timelike
component of a four-vector. The matrix element
h�jV0j�

0i is also Lorentz invariant, and we can therefore
calculate them in the projectile frame.

The longitudinal wave number k� ’ �E2 
M2�1=2 also
defines how much energy is gone into projectile excitation,
since for small energy and momentum transfers k0� 
 k� �
�E0

� 
 E��=v. In this limit, Eqs. (3) and (4) reduce to
semiclassical coupled-channels equations, if one uses z �
vt for a projectile moving along a straight line classical
trajectory, and changing to the notation S��z; b� �
a��t; b�, where a��t; b� is the time-dependent excitation
amplitude for a collision with impact parameter b [see
Eqs. (41) and (76) of Ref. [14] ]. Here I use the full version
of Eq. (4).

If the state j�i is in the continuum (positive proton �
7Be energy) the wave function is discretized according to
j�;E�i �

R
dE0

���E0
��j�;E0

�i, where the functions ��E��
are assumed to be strongly peaked around the energy E�
with width �E. For convenience the histogram set
[Eq. (3.6) of Ref. [3] ] is chosen. The inelastic cross section
is obtained by solving the RCDCC equations and using
d"=d�dE� � jf��Q�j2�2�E��.

The potential V0 contains contributions from the nuclear
and the Coulomb interaction. The nuclear potentials are
constructed along traditional lines of nonrelativistic theory.
The standard double-folding approximation V�aT�

N �R� �R
%a�r�v0�s�%T�r0�d3rd3r0 is used, where v0�s� is the ef-

fective nucleon-nucleon interaction, with s � r�R
 r0.
The ground-state densities for the proton, 7Be (%a), and Pb
target (%T), are taken from Ref. [15]. The Michigan
3-Yukawa (M3Y) effective interaction [16] is used for
v0�s�. The nucleus-nucleus potential is expanded into l �
0; 1; 2 multipolarities. These potentials are then trans-
formed as the timelike component of a four-vector, as
described above (see also Ref. [14]). The multipole expan-
sion of the Coulomb interaction in the projectile frame
including retardation and assuming a straight line motion
has been derived in Ref. [14]. The first term (monopole) of
the expansion is the retarded Lienard-Wiechert potential
which does not contribute to the excitation, but to the
center-of-mass scattering. Because of its long range, it is
hopeless to solve Eq. (3) with the Coulomb monopole
potential, as S��z;b� will always diverge. This can be
rectified by using the regularization scheme S��b� !
expfi�2' ln�kb� � �a�b��gS��b�, where ' � ZPZT= hv
and the S��b� on the right-hand side is now calculated
without inclusion of the Coulomb monopole potential in
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FIG. 1. Angular distributions for the dissociation reaction
8B� Pb ! p� 7Be� Pb at 50 MeV=nucleon. Data are from
Ref. [24] and are corrected for the detection efficiency ". The
dotted curve is the first-order perturbation result of Ref. [25].
The solid curve is the RCDCC calculation. The dashed curve is
obtained with the replacement of � by unity in the nuclear and
Coulomb potentials.
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FIG. 2. Cross sections for the dissociation reaction 8B� Pb !
p� 7Be� Pb at 83 MeV=nucleon and for /8 < 1:8�. Data are
from Ref. [23]. The dotted curve is the first-order perturbation
result. The solid curve is the RCDCC calculation. The dashed
curve is obtained with the replacement of � by unity in the
nuclear and Coulomb potentials.
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Eq. (3). The purely imaginary absorption phase, �a�b�, was
introduced to account for absorption at small impact pa-
rameters. It has been calculated using the imaginary part of
the ‘‘t%%’’ interaction [17], with the 8B density calculated
with a modified Hartree-Fock model [18]. The E1 and E2
interactions are taken from Ref. [14] replacing vt ! z.
Explicitly,

VE1) �

�������
2�
3

s
*Y1)��̂�

�ZTe1e

�b2 � �2z2�3=2

�
�b if ) � �1;���
2

p
z if ) � 0;

(5)

for the E1 (electric dipole) field, and

VE2) �

�������
3�
10

s
*2Y2)��̂�

�ZTe2e

�b2 � �2z2�5=2

�

8>>><>>>:
b2 if ) � �2;

�2�2bz if ) � �1;��������
2=3

p
�2�2z2 
 b2� if ) � 0;

(6)

for the E2 (electric quadrupole) field, where e1 �
3
8 e and

e2 �
53
64 e are effective charges for p� 7Be. For � ! 1

these potentials reduce to the nonrelativistic multipole
fields (see, e.g., Eq. (2) of Ref. [19]) in distant collisions.

A single-particle model was used for 8B with a Woods-
Saxon potential adjusted to reproduce the binding energy
of 0.139 MeV [20–22]. I follow the method of Ref. [3] and
divide the continuum into bins of widths �E� � 100 keV,
centered at E� � 0:01; 0:11; 0:21; . . . ; 1:01 MeV, bins of
widths �E� � 250 keV, centered at E� � 1:25;
1:5; . . . ; 2:0 MeV, and bins of width �E� � 0:75 MeV,
centered at E� � 2:50; 3:25; . . . ; 10:00 MeV. Each state
� is a combination of energy and angular momentum
quantum numbers � � fE�; l; j; J;Mg. Continuum s, p,
d, and f waves in 8B were included.

The calculations with the RCDCC equations were com-
pared to the data of Refs. [23,24]. The results were folded
with the efficiency matrix as well as the energy averaging
procedures explained in Ref. [24] and provided by the
RIKEN Collaboration [24]. At 83 MeV=nucleon, the an-
gular distribution was chosen to match the same scattering
angles referred to in Ref. [23].

Figure 1 shows the angular distributions for the
dissociation reaction 8B � Pb ! p � 7Be � Pb at
50 MeV=nucleon. Data are from Ref. [24]. The relative
energy E between the proton and 7Be is averaged over the
energy intervals E � 0:5–0:7 MeV (upper panel) and E �
1:25–1:5 MeV (lower panel). The dotted curve is the first-
order perturbation result reported in Ref. [25]. The solid
curve is the result of the RCDCC calculation. The dashed
curve is obtained with the replacement of � (Lorentz
factor) by unity in the nuclear and Coulomb potentials.
The dashed curve is on average 3%–6% lower than the
solid curves in Fig. 1. Using nonrelativistic potentials
yields results always smaller than the full RCDCC calcu-
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lation. It is a nontrivial task to predict what the relativistic
corrections do in a coupled-channels calculation.

Figure 2 shows the relative energy spectrum between the
proton and the 7Be after the breakup of 8B on lead targets at
83 MeV=nucleon. The data are from Ref. [23]. In this case,
the calculation was restricted to b > 30 fm. The dotted
curve is the first-order perturbation calculation, the solid
curve is the RCDCC calculation, and the dashed curve is
obtained with the replacement of � by unity in the nuclear
and Coulomb potentials. The difference between the solid
and the dashed curve is of the order of 4%–9%. I have also
1-3



TABLE I. Relativistic corrections in the dissociation of 8B
projectiles impinging on lead targets at different bombarding
energies. E is the relative energy of the proton and 7Be.

Lab energy
(MeV=nucleon)

�
E � 0:1 MeV

�
E � 1 MeV

�
E � 2 MeV

50 1.5% 4.2% 3.4%
80 3% 5.5% 4.1%

250 5.3% 14.6% 6.9%
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used the DSSE method, described in Ref. [6], to compute
the same spectrum, with the same partial waves, assuming
a large lower cutoff in the parameter of b � 30 fm. This
would justify a semiclassical limit. The same relativistic
nuclear and Coulomb potentials have been used in both
calculations. The difference between the two results (the
RCDCC and the DSSE) is very small (less than 2%) for the
whole range of the spectrum. To my knowledge such a
comparison has never been made before. This is proof that
the two methods yield the same result, if the same poten-
tials are used, and as long as large b’s are considered. Such
a comparison is possible only because the same potential
was used for the bound state and the continuum. The DSSE
method [6] does not allow for the use of different potentials
for p� 7B. This is not a problem in the RCDCC method,
since the states jbi and jci can be calculated within any
level of sophistication, beyond the simple potential model
adopted here. In this respect, the RCDCC is superior to the
DSSE method and is more suitable for an accurate descrip-
tion of dynamical calculations.

The conclusions drawn in this work are crucial in
the analysis of Coulomb breakup experiments at high
bombarding energies, as the GSI experiment at
254 MeV=nucleon [26]. In Table I I show the calculations
for the correction factor � � �"RCDCC 
 "CDCC�="CDCC

for the dissociation of 8B on lead targets at three bombard-
ing energies. E is the relative energy of the proton and 7Be.
One sees that the relativistic corrections tend to increase
the cross sections. At 250 MeV=nucleon they can reach a
15% value. This has been treated before in first-order
perturbation theory, but not in the dynamical calculations
with continuum-continuum coupling used in the experi-
mental analysis [23,26]. The consequence of using these
approximations on the extracted values of the astrophysical
S factors for the 7Be�p; �� reaction in the sun is not easy to
access. It might be necessary to review the results of some
of these data, using a proper treatment of the relativistic
corrections in the theory calculations used in the experi-
mental analysis. Other improvements of the present for-
malism need to be assessed. The relativistic effects in the
nuclear interaction have to be studied in more depth. The
effect of close Coulomb fields [27,28] should also be
considered in the case of dissociation of halo nuclei.
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