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Abstract: 
Here is presented a study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions. There is 

nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these 
relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe 
new forms of nuclear matter, like the quark-gluon plasma [Lu-84, Bay-86]. On the other hand, very strong electromagnetic fields for a very short 
time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. 

There have been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of 
special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct break-up of 
the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not 
accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due to the 
large cross sections, specially in the case of electron-positron pair creation. 

Although one can develop very elaborate and complicated calculations to explain the many processes originated in this way, the results can be 
understood in very simple terms because of our almost complete comprehension of the electromagnetic interaction. For those processes where the 
electromagnetic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong 
interaction in the nuclei or hadrons. 

I. Introduction 

For a very long time electromagnetic processes in nonrelativistic nuclear collisions, like e.g. Coulomb 
excitation, has been a subject of considerable theoretical and also experimental interest. The basic 
assumption of these kinds of reactions is that the nuclei do not penetrate each other. When they 
penetrate the reactions are overwhelmingly due to the strong interaction, what complicates the analysis 
of these reactions in the relativistic regime where the two possibilities occur. But, since the photon 
exchange amplitude is singular at four-momentum transfer G q f  = O, the virtual photon exchange 
makes a larger contribution to the amplitude for forward scattering angles than the exchange of strongly 
interacting particles. This allows one to separate the electromagnetic contribution for certain processes, 
and with certain experimental setups. Also, the passage of a relativistic charge provides a nuclear target 
with an electromagnetic pulse of short duration and enhanced due to the Lorentz contraction. Such a 
pulse can be sufficiently energetic to excite giant resonances in the nucleus, or to create particles 
(e-e+-pairs, pions, heavy leptons, etc.). The long range of the electromagnetic interaction leads to very 
large cross sections in some cases, which can be easily verified experimentally. 

The simplest way to describe the reaction mechanism in relativistic electromagnetic collisions is 
provided by the equivalent photon method, which is originally due to Fermi [Fe-24] and later on 
developed by Weizs~icker [We-34] and Williams [Wi-34, Wi-35]. In the literature it is also commonly 
referred to as the Weizs~icker-Williams method. Let us present a resum6 of the ideas involved in this 
method. A more complete description can be found in the excellent textbook of Jackson [Ja-75, p. 719] 
on classical electrodynamics. 

We shall consider the target nucleus as fixed, neglecting its recoil, and we place the origin of our 
coordinate system in its centre of mass. In this way we analyse the effects of the electromagnetic field 
generated by the projectile on the target. This is a simple matter of convention, to simplify the 
notations, since the role of the target and of the projectile can be exchanged, i.e. we can consider the 
case of internal excitation of the projectile by the electromagnetic field of the target, and vice versa. 
The charges and mass numbers of the projectile and target are given by (Zt, A1) and (Z2, A2) , 
respectively. The projectile is assumed to move in a straight line with velocity v and impact parameter 
b. When v -  c, where c is the velocity of light, the electromagnetic field generated by the projectile 
looks contracted in the direction perpendicular to its motion (see fig. 1.1a) and is given by 
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© 
( b )  P1 

Fig. 1.1. (a) A relativistic charged projectile incident on a target with impact parameter larger than the strong interaction radius. A sketch of the 
electric field generated by it is also shown. One of the effects of this field is to induce collective vibrations of the nuclear charges. (b) Two pulses of 
plane wave of light which produce the same effect on the target as the electromagnetic field created by the projectile's motion. 

Ez  = - Z m e 3 ' v t / [ b  2 + 3"2v21213/2, 

E T = - Z l e 3 " b / [ b  2 + 3"2V2t2] 3/2 ' 

(1.1a) 

(1.1b) 

BT = v / c  x E T  , and B z = O , (1.1c) 

where the z (T) indices denote the direction parallel (transverse) to the velocity of the projectile, and 

3' = (1 - v2/c2)  -1/2 , (1.2) 

is the relativistic Lorentz factor. 
When 3' >> 1, these fields will act during a very short time, of order 

A t = b / 7 c  , (1.3) 

and they are equivalent to two pulses of plane-polarized radiation incident on the target (see fig. 1. lb): 
one in the beam direction (P1), and the other perpendicular to it (P2). In the case of the pulse P1 the 
equivalency is exact. Since the electric field in the z-direction is not accompanied by a corresponding 
magnetic field, the equivalency is not complete for pulse P2, but this will not appreciably affect the 
dynamics of the problem since the effects of the field E~ are of minor relevance when v = c. Therefore, 
we add a field B~ = v E z / c  to eq. (1.1) in order to treat also P2 as a plane-wave pulse of radiation. This 
analogy permits one to calculate the amount of energy incident on the target per unit area and per 
frequency interval as 

/(to, b )=  (c/4~r)lE(a,) × B(~o) I , (1.4) 

where E(to) and B(to) are the Fourier transforms of the fields given by eq. (1.1). 
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Now, we associate the spectrum of the virtual radiation as obtained by means of eq. (1.4) to the one 
of a real pulse of light incident on the target. Then we can obtain the probability for a certain 
electromagnetic process in a relativistic nuclear collision to occur, in terms of the cross sections for the 
same process generated by an equivalent pulse of light, as 

f f dw (1.5) P(b) = I(oJ, b) o'.~(hw) d(hoJ) = N(w, b) ¢r (oJ) -~ - ,  

where a~(to) is the photo cross-section for the photon energy E~ = hto, and the integral runs over all the 
frequency spectrum of the virtual radiation. The quantities N(w, b) can be interpreted as the number of 
equivalent photons incident on the target per unit area. Performing a calculation of eq. (1.4) from eq. 
(1.1), and using the definition (1.5), we find 

N ( w , b ) =  ~ KZl(x)+ - -  KZo(X) , (1.6 / 
7r 3' 

where x = tobl3,v, Ko(K1) is the modified Bessel function of order zero (one), and a = e2/hc is the fine 
structure constant. In eq. (1.6) the first term inside parentheses comes from the contribution of the 
pulse P1, whereas the second term comes from the contribution of the pulse Pz. One immediately sees 
that the contribution of pulse P2 becomes negligible for 3' >> 1. The shape of the equivalent photon 
spectrum for a given impact parameter can be expressed in terms of the dimensionless function 
q~(X) = X 2 K21(x), if we neglect the pulse P2. In a crude approximation, ~0 = 0 for x > 1, and ~0 = 1 for 
x ~  < 1, as can be seen from fig. 1.2. This implies that, in a collision with impact parameter b, the 
spectrum will contain equivalent photons with energies up to a maximum value of order 

m a x  E~ = 3,hclb , (1.7) 

which we call by adiabatic cutoff energy. This means that in an electromagnetic collision of two nuclei 
the excitation of states with energies up to the above value can be reached. Although this result was 
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Fig. 1.2. The shape of the equivalent photon spectrum as a function of x = oJb/Tv. 
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obtained classically, we can make a quantum analogy to it by observing that in a collision with 
interaction time given by eq. (1.3) only states satisfying the condition T/At >> 1, where T is the period of 
the quantum states, will have an appreciable chance to be excited. Otherwise, the quantum system will 
respond adiabatically to the interaction. Later we shall see that quantum mechanical calculations 
confirm these expectations. In a collision with a typical impact parameter of b -- 10 fm one can reach 
states with energy around E~ nax-~ 203' MeV. Among the many possibilities, we cite the following: for 
Ev - 10-20 MeV (already small values of 3'), excitation of giant resonances, with subsequent nucleon 
emission; for E --- 20-100 MeV, the quasideuteron effect which corresponds to a photon absorption of a 
correlated N-N pair in the nucleus; and for Ev > 100 MeV, pion production through A-isobar excitation 
which has a maximum at E~ = 200 MeV. Also the production of lepton pairs (e+e -, lx+W -, "r+~ -)  are 
accessible with increasing value of 3'. 

The cross sections for electromagnetic processes in relativistic nuclear collisions are obtained by 
integrating eq. (1.5) from a minimum impact parameter, b = R, to b = ~. The value of R depends on 
the process considered. In the case of internal nuclear excitation, i.e. Coulomb excitation, R will be 
equal to the sum of the two nuclear radii. We obtain 

2oh p b, db--f n o, do 
to 

R 

(1.8) 

with 

i n(to)= 27rbU(to, b ) d b =  2 Z21o: ~KoK 1 
77" 

R 

O2~ 2 

2c 2 (K21 - K2o)], (1.9) 

where the modified Bessel functions are functions of the adiabaticity parameter 

= toR/3'v. (1.10) 

For 3' >> 1 (except for extreme low-energy frequencies, satisfying the relationship toR/c ~ 1) one can 
use the approximation 

n(to) = 1 Z21o / In + 1 Z l a  In 
7r 7r ~: 

(1.11a) 

where 6 = 0 .681, . . .  is a number related to the Euler's constant. This implies that the cross sections as 
given by eq. (1.8) will tend to increase logarithmically with the value of 3'. Except for minor differences, 
this general behaviour will be found in the applications we shall study. 

In the limit of very large frequencies, to ~> 3'v/R, an adiabatic cutoff sets in and we have 

n ( ~ )  = ( Z ~ a / 2 )  e - 2('°R/~v) . (1.11b) 

Although the above formulation of the electromagnetic collision of two fast nuclei was already 
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developed in the thirties with applications to many processes [see Ja-75], it was especially in the case of 
relativistic heavy ion (RHI) collisions, where these concepts were more useful. In some cases, the 
agreement of calculations based on the equivalent photon method and more exact quantum calculations 
are very good. This makes it a powerful tool for obtaining the values of probabilities and cross sections 
of a given electromagnetic process in RHI collisions with reasonable results, as compared to more 
complicated calculations. 

We feel that a review of electromagnetic processes in RHI collisions is appropriate at this time. There 
is a fairly complete and coherent theoretical framework which describes such processes. Already 
well-established experimental work (mainly at BEVALAC) on Coulomb fragmentation has been 
analysed. There are new RHI accelerators being built (like SIS, Darmstadt, with energies in the GeV/A 
range), or already in operation (Brookhaven, with 15 GeV/A oxygen beams; CERN, with 60 and 
200 GeV/A oxygen beams), or in the planning stage (relativistic heavy ion collider in the USA). New 
experiments related to electromagnetic processes are planned at these accelerators and many more 
could be envisaged. In view of these new possibilities, a review seems interesting for a large group of 
theoretical and experimental physicists at the present stage. 

In section 2 we will present more elaborate semiclassical and quantum calculations of the probability 
amplitudes and cross sections for relativistic Coulomb excitation. There we shall see that, for not too 
high values of T, there will be small deviations from the above results. We show that the equivalent 
photon spectrum can be decomposed in terms of a sum of different electric and magnetic multi- 
polarities, which reproduces the limits (1.11) for 3' >> 1. The study of the contributions of the different 
multipolarities is specially important for Coulomb excitation. 

In low-energy nuclear physics Coulomb excitation plays a key role in the study of collective low-lying 
states and multiple excitation has become a powerful tool to extract information about these states. In 
relativistic Coulomb collisions it is possible to excite high-lying states, like the giant E1 and E2 
resonances, which mostly decay by particle emission. We will consider these processes in section 3 
together with the possibilities for multiple Coulomb excitation of giant resonances which could lead to a 
disruption of the nuclei in fragments far from the stability line. In that section we also study the direct 
dissociation of weakly bound nuclei which is relevant for coincidence experiments. The different 
behaviour of the contributions of the electromagnetic and of the nuclear interaction to the differential 
and to the total cross sections is examined. 

In section 4 the relativistic Coulomb excitation of hadrons in the field of a nucleus with large charge 
(Primakoff effect) will be studied on the same grounds. It is shown how useful this process can be in 
order to obtain information about the internal structure of these particles. The successful experimental 
study of the measurement of the lifetime of the ~0 particle is shown as a nice application of the theory 
of relativistic Coulomb excitation. Due to the enhancement of the cross sections with the charges of the 
ions, the production of particles in two-photon processes is also of great interest. 

Although contributing little to the total emission of real photons (Bremsstrahlung) in RHI collisions, 
the Coulomb bremsstrahlung possesses have interesting features which will be studied in section 5. 

The ionization of atomic electrons in RHI collisions has very large cross sections and is an extensively 
studied process, and we will show in section 6 the main theoretical aspects of it. 

Section 7 is dedicated to the production of lepton pairs in RHI collisions. The consequences of the 
large cross sections for the production of electron-positron pairs are analysed. Of special interest for 
the development of relativistic heavy ion colliders is the case of electron-positron pair production with 
capture of the electron in an atomic orbit in the ions. 

Conclusions and an outlook are given in section 8. 



306 C.A. Bertulani and G. Baur, Electromagnetic processes in relativistic heavy ion collisions 

2. Theory of relativistic Coulomb excitation 

Recently, new interest on the theory of relativistic Coulomb excitation has appeared. Among others, 
we cite the works of Fill&, Pilkuhn, and collaborators [Ffi-74, Jfi-75]. In particular, J~ickle and Pilkuhn 
have deduced equivalent photon numbers for the lowest multipolarities with help of the eikonal 
approximation. A complete analytical evaluation of the contribution of all multipolarities was accom- 
plished by Winther and Alder [Wi-79] in terms of a semiclassical approach. The relation between the 
electric-dipole excitation cross section obtained by Winther and Alder and the equivalent photon 
method was demonstrated by Hoffman and Baur [Ho-84]. Later on, it was shown by Goldberg [Go-84] 
how one can extend the equivalent photon method in order to calculate the equivalent photon numbers 
not only for the E1 but also for all other multipolarities of the virtual radiation. Bertulani and Baur 
[Ber-85, Ber-86a] have done calculations based on the plane wave Born approximation for the same 
process and made a comparison of all these different approaches. 

In sections 2.1 and 2.2 we will show a resum6 of the nice semiclassical calculations performed by 
Winther and Alder which contain the main ingredients of the process, and in sections 2.3 and 2.4 we 
will show the calculations of Bertulani and Baur in the plane wave Born approximation (PWBA) which 
are useful wherever quantum diffraction effects appear. In section 2.5 we will extract the equivalent 
photon numbers from the previous results which help us to obtain more insight into the theory by 
comparing it with the results from other formulations, which we will do in section 2.6. In section 2.7 we 
will follow the approach of Baur, Bertulani, and Rebel [Ba-86c] to account for recoil corrections, which 
are important for intermediate energy problems. 

2.1. Excitation amplitude in the semiclassical approach 

In the following we shall calculate the electromagnetic excitation amplitude of a target nucleus with 
mass and charge number A 2 and Z 2, respectively, by means of a relativistic projectile with velocity v, 
impact parameter b, and mass and charge number A 1 and Z 1 . In fact, both nuclei will be excited and we 
can use all following results to calculate not only the target excitation amplitudes and cross sections, but 
also the projectile excitation ones, by exchanging the variables corresponding to the target and the 
projectile. 

We shall consider the target nucleus as fixed, neglecting its recoil, and we place the origin of our 
coordinate system in its centre of mass. The target will be described by an eigenstate ]IM), where I 
denotes its angular momentum and M the magnetic quantum number. In the semiclassical approach the 
projectile is assumed to move in a straight-line and will generate a time-dependent electromagnetic field 
which will excite the target. If the excitation is weak, we can calculate the excitation amplitude in the 
first order time-dependent perturbation theory as given by 

1 f dt e i'°t afi = ~-~ (IfMflV[r(t)]lliMi), (2.1.1) 

where 

o) = (El - Ei) /h ,  (2.1.2) 
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and E i (Ef) is the initial (final) excitation energy of the target. The interaction potential V[r(t)] is given 
by *) 

1 
f d3r A~,[r(t)] j~,(r), (2.1.3) V[r(t)] = c 

where ]~,-(cp, j )  is the internal target four-current and A~,-= (1, v/c)q~/c, where ~(r,  t) is the 
Lienard-Wiechert potential [see e.g. Ja-75, p. 654], 

Z l e T  

• (r, t) = [(x - bx) 2 + (y - by) z + ),2(z - vt)2] 1/2 (2.1.4) 

2 for a charged particle moving in a straight line with an impact parameter b = ~¢r~ + by. The z-axis is 
taken along the beam direction (see fig. 1.1). The Fourier components of the field (2.1.4) are 

• (r, to)= f  (r,t)e' "dt=2Zleei(O /V)ZKo(-  -) 
O 

(2.1.5) 

where K 0 is the modified Bessel function of zero order and the quantity q is given by 

q2 = (1/,/2)[(x _ bx)2 + (y _ by)Z]. (2.1.6) 

Now we expand ~(r,  to) in multipole components, i.e. 

qb(r, to)= E Wlm(r, to) rl=(r) (2.1.7) 
Im 

with 

Wtm(r , to) = f dO q~(r, to) Ylm(r) 

f - 2Zie e i(~/v)rc°s° Ytm(O,O) dcosO e im'~ Ko(toq/v)d¢.  
U 

o o 

(2.1.8) 

Since we are only treating the case in which the impact parameter b is larger than the nuclear radius, we 
can use the Graf addition theorem (see e.g. [Ab-64], p. 363, eq. (9.1.79)) 

go(~-~) = ~ e in4' g ( tobl  ] ( to  r2~U~_z2 ) 
n=-~ n \ y v /  " --~ " (2.1.9) 

Then the integral over ~b in eq. (2.1.8) leads to 

*) Here we use the notation A~, = (A0, A), and the sum convention A~B~ = AoB o - A .  B. 
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Wtm(r , 09) = 47r z l e  K m sin 0 dO e i('°/°)r Ytm(O, O) I m --~ sin 0 
v --~ " 

o 
(2.1.10) 

Writing Yl,,(O, 0) in terms of the Gegenbauer polynomials C"m(X ) [see e.g. Ab-64, p. 771], and using the 
Gegenbauer integraL(see e.g. [Gr-65], p. 832, eq. (7.333)) one finds for m/>0 

[ ]J2 Wtm(r, to) = Z,e V16rr(21 + 1) (1- m)! ~ (2m - 1 ) ! [ i  t + m  
- 7  

X (c/yv) m Km(tob/yv ) ¢~'+1/2(c/v) jt(Kr) ~ l-rn (2.1.11) 

with 

K = to~c, (2.1.12) 

and jt(Kr) is the spherical Bessel function. 
For m < 0 one finds 

Wl, _re(r, to) = ( - 1 )  m Wtm(r , to). (2.1.13) 

Now we substitute eq. (2.1.3) in eq. (2.1.1) and utilise the multipole expansion (2.1.7) together with 
the result (2.1.11). Using the continuity equation for the charge and current density in nucleus 2, and 
the recursion relations for the Gegenbauer polynomials, one may write (2.1.1) in terms of the multipole 
matrix elements [see e.g. AI-75] 

M ( E l m ) -  (2/+ 1)!! f KI+Ic(I q- 1) j(r)" V × L[j,(Kr) Elm(r)] d 3 r ,  

(2/+ 1)!! f M(MIm) = - i  K'c(! + 1) j (r) .  L[j~(Kr) Y,,(0] d3r 

for electric and magnetic excitations respectively. 
The result may be written in the form 

(c t afi = -i-~ ,~tm £ ( -1 )m  21v'2T'-~Kt G~rtm -0 Km -~ ( I f M f I M ( c r l ' - m ) l l i M i ) '  

(2.1.14a) 

(2.1.14b) 

(2.1.15) 

where 7r = E for electric excitations, and ~r = M for magnetic excitations. The functions G,~tm can be 
expressed in terms of the associated Legendre polynomials and are given in explicit form in appendix 
A. 

The amplitude (2.1.15) can be seen as a product of (i) a factor that only depends on the properties of 
the nuclear states involved through the matrix elements describing the electromagnetic decay of the 
state If) to the state li), (ii) a factor Km(X ) that describes the degree of adiabaticity of the excitation 
and which vanishes exponentially as x becomes larger than unity, and (iii) a factor giving the strength of 
the field as a function of the velocity. Due to the conservation laws, m is the angular momentum 
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transfer from the relative motion to the internal degrees of freedom of the excited nuclei. That is, 

m = M i - Mf. (2.1.16) 

2.2. Cross sections 

The square modulus of eq. (2.1.15) gives the probability amplitude of exciting the nucleus 2 from the 
initial state li) to the final state If)- If the orientation of the initial state is not specified, the cross section 
for exciting the nuclear state of spin If in collisions with impact parameters larger than R is 

bdb(2I +l) -1 Z la . I  2 
R MiMf 

(ZlO/) 2 2 2(1-1) 2 = ,, IG=z,.(c/v)l gm(¢) B(Trl. If)/e 2 , 
rrlm 

(2.2.1) 

where a is the fine-structure constant, ~: is given by eq. (1.10), 

1 ~ i(ifMflM(~rlm)lliM~)12 B(~rl ,  I i ----> I f )  = 2 i  i + 1 MiMf (2.2.2) 

is the reduced transition probability, and gm is given by 

gm( ~) = g-m(~) = 27r(°J/Yv) 2 f b db[K,n(tob/yv)] 2 
R 

2 
= 7r~ [ K m + l ( ~ ) K m _ l ( ~ )  - [ K m ( ~ ) ] 2 ]  . (2.2.3) 

In the limit s ¢ ,~ 1, the functions g m ( ~ )  reduce to 

[ ~r(m - 1)[(m - 2)!]2(2/s¢) 2m-2 , 

gin( s ¢) = ) ,r ln[(6/s¢) 2 + 1], 
k'B', 

for m > 1, 

for m = 1, 

f o r m = O ,  

(2.2.4) 

where 8 = 0.681085 . . . .  
We can obtain an estimate of the maximum angular deflection of the projectile due to Coulomb 

repulsion. It is given by (see [Ja-75, p. 643, eq. (13.89)]) 

Oc = 2ZIZ2e2/RE , (2.2.5) 

where E is the bombarding energy. For relativistic energies this quantity will be very small, justifying 
the use of straight lines for the projectile motion. For intermediate energy problems the recoil 
correction may be of importance and it amounts to small modifications in the above formulas, as we 
shall show in section 2.7. 
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2.3. Transition amplitude in the eikonal approximation 

The scattering of highly energetic particles is, for most purposes, conveniently described by the 
so-called eikonal approximation [see e.g. G1-59, Jo-74]. The transition amplitude in this approximation 
is given by 

Tfi "= 2---~ d2b eiqr'n F~(b), (2.3.1) 

where hk is the momentum of the projectile's motion, qT is the momentum transfer in the transverse 
direction, and F~(b) is the profile function for the Coulomb scattering. We can use first order 
perturbation to calculate the profile function (in which case eq. (2.3.1) is formally equal to the first 
order Born approximation), and introduce a cutoff to account for the strong absorption. In this case we 
can write 

O(b - R) f • F~(b, q,)= ~-~-~/¢ d2qT e-'qT'b TBorn(qT, qt), (2.3.2) 

where O(b- R) is the step function, and 

T B o r  n = _1 f d3 r At,(r) <itMflj~,(r)]i~Mi) 
c 

(2.3.3a) 

with 

At(r ) = 1 j d3r, e iKIr-r'l 
c I r -  r'---~ <kflL(r')lk ) ' (2.3.3b) 

where Jr,- (cp, j) is the target four-current and J~, is the projectile one; r (r') denotes the target 
(projectile) coordinate, and K is given by eq. (2.1.12). The function At, (r) represents the four-potential 
created by the transition current of the projectile. 

Inserting eqs. (2.3.3) and (2.3.2) in eq. (2.3.1), and performing the integration over b, we find that 
Tf~ is also given by eq. (2.3.3a), only that eq. (2.3.3b) is changed by the introduction of a cut-off 
function in the r' integration, i.e., 

A~,(r) = lc f d2p' O(p'- R ) f d z ' ~  
e ik l r - r ' l  

Ir- r'[ (kflJ~'(r')lki) " (2.3.4) 

Describing the projectile by a plane wave Ik), where k denotes its wave vector, and assuming that its 
velocity is not appreciably changed during the collision, we can put 

' k e iq'r' (k, lL(r  )1 ,> = Zlev , , (2.3.5) 

where 
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q = k i - k f  (2.3.6) 

is the momentum transfer, and 

= (c, v ) ,  

with v equal to the projectile's velocity. Choosing cylindrical coordinates for the projectile space 
integration and the z-axis in the incident beam direction, we obtain 

eiq.r ' = eiqL z' eiqTp ' c o s ( , - , ' )  , (2.3.7) 

where q, is the azimuthal scattering angle and qL (qT) is the longitudinal (transverse) momentum 
transfer to the projectile. For relativistic energies the polar scattering angle 0 due to the electromagnetic 
interaction is very small and we can put 

q L  ----" ki  - k f  c o s  O -  k i - k f  = to / i )  , 

qT = kf sin 0 = (E/hc)(i)/c) sin O, 

(2.3.8a) 

(2.3.8b) 

where we also assumed that the excitation energy E i - Ef = hto is much smaller than the relative motion 
energy E = E i = Ef. 

Using these approximations we can write 

ei,,Ir-r'l 
A~(r)=Z~e(v~, /c )  f dzp' f dz'ei(°'/v)z'¢qTP'C°s(*-~") i r _ r , i  . (2.3.9) 

The z' integration can be performed by defining 

d 2 = p2 + p,2 _ 2pp' cos(¢ - ¢ ' ) .  

This leads to 

+ o o  

e iKI r - r ' l  

f d z '  e i(°~/v)z' Ir- r'l 
- -  o o  

- -  = 2e i'°'/°)z K ( od~ 
o\ ~v ] " (2.3.10) 

Using the Graf addition theorem in order to separate the target and projectile coordinates, the ¢ '  
integration is easily obtained and A~,(r) becomes 

A~ = 4¢rZle(v~,/c ) e i('°/°)z ~ i" e -i"* e in¢ Jn(top/~,v) x n ( R ) ,  (2.3.11) 
n = - - o o  

where 
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z e  

f ,.[o,p'l , 

x.(R)= J.(q~p')^.[--~-jp dp' 
R 

= [qZ +(to/yv)2] --~ J,(qTR) K,+I - ~  -qvJ,+I(qTR)K, . (2.3.12) 

After these considerations, many steps of this calculation are exactly the same as in the semiclassical 
approach. Doing a multipole expansion of A~,(r) we find 

]1/2 C m (l-m),] (2m-i),,() 

C,,+1/2( c] j,(xr) YTm(~) (2.3.13) X e -im¢' xm(R)  ,-m \ 0 ]  

Now, inserting this relation into eq. (2.3.1), using the continuity equation for the nuclear current, and 
the recursion relations of the Gegenbauer polynomials, one can write Tf~ in terms of the matrix 
elements of nuclear excitation: 

r f i  =(2¢rZ,  e / y )  ~ imKtv~--+ 1 e -imq' Xm(R) G~tm(C/V ) ( IfMt[M(Trl,-m)lliMi) . 
7rlm 

(2.3.14) 

This expression is analogous to the one found in the semiclassical treatment, eq. (2.1.15). Again, we 
find a factorization into a kinematical part and a nuclear matrix element, which describes the 
electromagnetic transition of the state If) to the state li). Quite in contrast to the case of electron 
scattering [see e.g. FW-66], one does not obtain nuclear form factors which depend on q. The reason is 
the introduction of the cutoff due to the strong absorption (see eq. 2.3.2). 

2.4. Differential cross section in the eikonal approximation 

The differential cross section; for the case in which the orientation of the target is ignored, is given 
by 

dO 2I i + 1 MiM t " 

From eq. (2.3.14), the Wigner-Eckart theorem and the orthogonality properties of the Clebsch- 
Gordan coefficients, one can show that 

d ° r _ ( l l ° t E ]  2 2l 2 2 B ( ~  1) 
\ ~ l  ~k tG,,,,,I [X,,(R)] - . (2.4.2) 

l,m e 

The dependence of the differential cross section on the scattering angle is given implicitly by the 
function X,,(R). For forward scattering, qT = 0, and we obtain 
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1 Xm(R'R02=O)-8toO ~ KI(S¢) , (2.4.3) 

where ~ is given by the eq. (1.10). This implies that 

dtr ( 0 = 0 ) =  (Zla)2 ( ~  ~ )2  ( ) z  dO ~2[K1(~)12~k2(,_l) G c B(EI) 
l ElO O e 2 

(2.4.4) 

The quantity m is equal to the angular momentum transfer to the target in the direction of the incident 
beam, and eq. (2.4.3) shows that, for exact forward scattering, it is equal to zero. In this case there is 
no magnetic excitation of the target. This can be explained in terms of the symmetry properties of the 
scattering of spin-zero particles. The conservation of parity of the total system forbids the change of 
internal parity of the target by (--1) l+1 in the case m = 0 [see e.g. Ja-59, eq. (43)]. Since magnetic 
excitations are accompanied by this change of parity, the forward scattering amplitude must vanish in 
this case. 

For 0 S0 one can use the integral (2.3.12) to obtain the dependence of the cross section on the 
scattering angle. It will be extremely forward-peaked with a diffraction angle of about 

1 Ev 
0 D - ~  with A = - - R  (2.4.5) 

h C  2 " 

The parameter A is equal to the ratio between the nuclear dimension R and the quantum wavelength of 
the relative motion energy. For relativistic heavy ion collisions this quantity is much greater than unity 
and 0 D will be very small. We can also compare the diffraction angle 0 D with the classically expected 
Coulomb deflection given by eq. (2.2.5). The ratio of these two quantities is 

0c/0 D = (2/137)Z1Z 2 , (2.4.6) 

showing that only for small projectile and (or) target charge the diffraction effects will be comparable to 
the Coulomb deflection. 

The total cross section is obtained by integrating (2.4.2) over the scattering angle 0. But, by means of 
(2.3.8b) we can transform the angular integration to one involving the momentum transfer qT: 

da = ( hc2/ Ev)2qT dqT d~b. (2.4.7) 

Accordingly, the integration in qT must go from 0 to Ev/hc:. Nevertheless, expressions (2.3.8b) and 
(2.4.5) imply that already for qT = 1/R ~ Eo/hc: the differential cross section is negligible. It then 
makes no difference if we take the integral in qT until infinity. In this case we can use the closure 
relation of the Bessel functions 

o o  

f qT Jm(qTP') Jm(qTP") dqT = 1 6(p' p") P' 
o 

(2.4.8) 

in order to obtain the total cross section 
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O'i--~f = (Z  1 0~) 2 E k2(l-1) gm(~)lG=,m(c/v)l=n(~l, I~ ~ I f ) / e  2 , (2.4.9)  
trim 

which is equal to the Coulomb excitation cross section given by the semiclassical calculation. Also in the 
case where no absorption (cutoff radius) is assumed (for example, in atomic excitation processes), the 
cross sections in the PWBA and in the semiclassical formulations can be proven to be the same. For this 
general proof, see appendix B. 

2.5. Equivalent photon numbers 

According to the equivalent photon method, the excitation of the target nucleus can be described as 
the absorption of equivalent photons whose spectrum is determined by the Fourier transform of the 
time-dependent electromagnetic field generated by the projectile [see Ja-75]. The multipole expansion 
of the electromagnetic interaction as done in the last sections, permits us to deduce the equivalent 
photon spectrum for all multipolarities [see Ber-85]. 

Integrating (2.2.1) for all energy transfers e--hw and summing over all possible final states of the 
target, we obtain 

IYc= E f oi_.f(e) pf(e)de, (2.5.1) 
f 

where pf(e) represents now the density of final states of the target, with e n e r g y  El2 = Ei2 + e. Inserting 
eq. (2.2.1) in eq. (2.5.1), we can rewrite it in the form 

ac=  ~] ~f {ne,(to) el o'~ (to)} --to ' (2.5.2) + nM,(o ) Ml 
/ 

where aF t are the photonuclear absorption cross sections for a given multipolarity zrl: 

,~, (27r)3(1 + 1) k2t_ 1 
% (~o)- 1[(21 + 1)!!] 2 ~f &(e) B(zd). (2.5.3a) 

The total photonuclear cross section is a sum of all these multipolarities: 

o" X " (2.5.3b) = 

zrl 

This allows us to obtain the equivalent photon numbers n,~t(w ) given by 

1[(21 + (27r)3( 1+1 ) 1)'[] 2 ( C )  2 nTrl(t°)= Z21°l ~m arrlm gm( ~) " (2 .5 .4)  

Since all nuclear excitation dynamics is contained in the photoabsorption cross section, the equivalent 
photon numbers (2.5.4) do not depend on this process. They only depend on the way that the projectile 
moves. The equivalent photon method consists of using its kinematics to calculate the intensity of the 
equivalent photon spectrum, which for a straight-line-moving projectile must be the same as those of 
eq. (2.5.4). 
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It was shown by Hoffmann and Baur [Ho-84] that, for E1 excitations, the equivalent photon 
numbers obtained from the total cross section (2.2.1) are really equal to that calculated by Fermi, 
Weizs~icker, and Williams in the equivalent photon method [Fe-24, We-34, Wi-34 and Wi-35], which 
was presented in section 1. Nevertheless, while that method gives an expression for the equivalent 
photon numbers independent of the multipolarities, eq. (2.5.4) shows that this is not correct in general. 
Indeed, a merit of eq. (2.5.4) is that it gives an analytical expression to calculate the equivalent photon 
numbers for all multipolarities and radiation types. 

Using the expressions of G~t m as given in appendix A, we can write explicitly 

----- 2 C 2 Z~a (KoK , (K21- K2o)  (2.5.5a) nEl(tO) = hE1, m = - I  q- hE1, m = + l  "~ hE1, m=0 77" U 2c 2 ' 

nM,(W) = [nE1 . . . .  1 + nEl, m=+l] = 2_.TrZl a2 ~KoK ~ - -~-  (K2~- K2o) , (2.5.5b) 

nEE(W) = 2 zZa  2 1 - K1 + ~: 2 -  KoK ~ - - -  (KZ~- K2o) (2.5.5c) 
7r 7 7 ] 2C 4 ' 

where all K's are functions of s c as given by eq. (1.10). 
In the limit y >> 1 simpler expressions can be obtained for the equivalent photon numbers. Using eq. 

(2.2.4) and the approximations given in the appendix A, we find that in the sum over m of eq. (2.5.4) 
the leading term for y ~> 1 is the one with m = 1, which gives a logarithmic rise with 3', since for m > 1 
there is no dependence on y. In this case the equivalent photon numbers are equal to 

1 Z~a In + 1 = Z~a In , (2.5.6) 
n ~t = "17" 71" 

valid for all multipoles, which is exactly equal to eq. (1.11a). Since s c=  wR/7o~O,  we have a 
logarithmic rise of the cross section for all multipolarities with 3'. The impinging projectile acts like a 
spectrum of plane wave photons with helicity m = -+ 1. Such a photon spectrum contains equally all 
multipolarities 7rl. 

For 1 > 1 and a not too large value of y, the m = I term can still be substantial. For a comparison we 
retain only the terms m = l in the sum (2.5.4), obtaining 

1 (2/)! 
n,~t(m = I contribution) = zzLa 2--~ (l + 1) / ( / -  1) (kR)Z-zt" (2.5.7) 

For kR ~ 1, as is the case for low-lying excited levels, this term dominates over the m = 1 term (2.5.6), 
unless y is extremely large. However, it must be kept in mind that in relativistic Coulomb collisions it is 
possible to excite states with kR = 1, or as we shall see, even kR > 1 is possible. In this case the term 
m = 1 dominates, and the cross sections will always increase logarithmically with the beam energy. 

In fig. 2.1 we show n,~ t (with Z~ = unity) as given by eq. (2.5.5), as a function of wR/c. We see that 
hE2 ~ hE1 ~ riM1 for small values of y, in contrast to the limit y ~> 1. The physical reason for these two 
different behaviours of the equivalent photon spectrum is the following. The electric field of a charged 
particle moving at low energies is approximately radial and the lines of force of the field are 
isotropically distributed, with their relative spacing increasing with the radial distance. When interacting 
with a target of finite dimension, the non-uniformity of the field inside the target is responsible for the 
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Fig. 2.1. Equivalent photon number per unit projectile charge, for El, M1 and E2 radiation, and as a function of the ratio between R and the 
photon wavelength. 7 is the ratio of the projectile energy to its rest energy. 

large electric quadrupole interaction between them. The same lines of force of an ultrarelativistic 
(7 >> 1) charged particle appear more parallel and compressed in the direction transverse to the 
particle's motion, due to the Lorentz contraction (see fig. 1.1a). As seen from the target, this field looks 
like a pulse of a plane wave. But plane waves contain all electric and magnetic multipolarities with the 
same weight. This is the cause for the equality between the equivalent photon numbers as 7---> oo. 

In the limit of large frequencies, o~ >> 7v/R, an adiabatic cutoff sets in and g,n(~)--*(cr2/2)e -2~. 
From eq. (2.5.4) one obtains that in this limit 

n~, ~ e-2e. (2.5.8) 

This means that a useful approximation in many cases is to use the relation (2.5.6) for ~: <~ 1, and 
n~t(oJ ) = 0 for ~: > 1. 

For general purposes, the utility of eq. (2.5.2) is twofold: (a) if one multipolarity is favoured in a 
certain reaction, then by measuring the total Coulomb reaction cross section one can get information 
about the respective photo-induced process; (b) if the experimental data on the photo-induced process 
are available, one can use eq. (2.5.2) to calculate the contribution of the electromagnetic interaction to 
the same process in a RHI collision. 

2.6. Comparison with other methods 

Also by means of the eikonal approximation, Jfickle and Pilkuhn [J~i-75] derived other expressions 
for hE1 and nM1. In their calculations it was assumed that the projectile had a Yukawa charge 
distribution with length parameter a--  ~ (r~)/6,  where ~/(/1) is the charge mean square radius of the 
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projectile. We can compare their expressions with the eq. (2.5.5) if we take in their results the 
projectile as a point particle ( a~0) .  This leads to 

n E  tJP = !rr ' 

Y (2.6.1) 

where the K's are the modified Bessel functions as a function of ~: given by eq. (1.10), except for the 
ones that are explicitly written as functions of 4~ = toR/v. In the same limit, one can show that 

JP nM1 = nM1. But one cannot reduce eq. (2.6.1) to eq. (2.5.5a). However, for 3' >> 1 they will be equal 
(see fig. 2.2). But the consideration of a charge distribution for the projectile should not modify the 
final results, apart from influencing the value of the minimum impact parameter R. The Coulomb 
potential for a projectile, with a spherical distribution of charge in its rest frame is the same as that for a 
point particle with equal total charge. A Lorentz transformation to another inertial frame of reference 
obviously cannot modify this equality. All following results, such as cross sections or equivalent photon 
numbers, are therefore not changed by the introduction of a spherical charge distribution for the 
projectile. Therefore, the minor differences (El case) in the final results of Jfickle and Pilkuhn [Jfi-75] 
and Bertulani and Baur [Ber-85] must be due to the small kinematic corrections used by the former 
authors. 

Goldberg [Go-84] has also performed a calculation of the equivalent photon numbers by a direct 
multipole expansion of the electromagnetic field generated by the projectile. The final results are then 
obtained by performing, numerically, complicated integrals along the projectile trajectory. Actually, a 
merit of eq. (2.5.4) is that it gives an analytical expression to calculate the equivalent photon numbers 
for all different multipolarities and radiation types. 
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Fig. 2.2. Comparison of the equivalent photon number per unit charge with the J/ickle and Pilkuhn result (JPE1), for the electric-dipole radiation 
(see text). 



318 C.A. Bertulani and G. Baur, Electromagnetic processes in relativistic heavy ion collisions 

For small-mass projectiles one can improve eq. (2.5.4), based on semiclassical ideas. In order to see 
how it works, we compare the final improved expressions with those obtained in the ultrarelativistic 
electron-nucleus scattering. But, besides the spin interactions, electron scattering is different from 
Coulomb excitation because the electrons can penetrate the nucleus and continue interacting only 
electromagnetically with it. Nevertheless, in the long-wavelength limit qe R "~ 1, where qe is the 
momentum transfer of the electron, the nuclear volume plays a minor role and the matrix elements 
contributing to the excitation in the near-forward scattering are just those appearing in the photo- 
excitation process, with qe = k [Ei-70]. To disregard the nuclear volume means to put R = 0 in the 
expression (2.5.4). But in that case it goes to infinity. If we now evoke semiclassical ideas, we note that 
a normal procedure [see Ja-75] within the equivalent photon method is to use the quantum wavelength 
h / y M v  of the projectile, instead of the nuclear radius, as the minimum impact parameter when the 
projectile's mass M is small. This assumption is based on the uncertainty principle, which introduces a 
"smearing out" of the projectile's coordinates in a space interval of about its wavelength. By means of 
this recipe, we then replace eq. (1.10) by 

¢e = hw/YZme v2 , (2.6.2) 

where m e is the electron rest mass. This quantity is generally much less than one, so that the expressions 
(2.5.5) become 

electron 2 6 electron 
= - a In ~e = nral ' (2.6.3a) nE1 7/" 

elecroo 2 1 1  
= - a  ~ + l n ~ e  ' (2.6.3b) hE2 7r Y ¢; e 

These are just the results that one derives from the equivalent photon numbers for electron 
scattering, first obtained by Thie, Mullin and Guth [Th-52], in the ultra-relativistic limit with small 
energy loss, where one can put E i -~  Ef = Yme c2 >> mec 2. 

When the above conditions (forw/~rd scattering, long-wavelength approximation) are not matched, 
then this analogy is not valid at all. For example, electron scattering can generate longitudinal (E0) 
interactions with the nucleus, which are not accessible in Coulomb scattering. 

Recently, Galletti, Kodama and Nemes [Ga-87] have studied the quantum and relativistic recoil 
effects in the theory of relativistic Coulomb excitation and found that relatively large transverse 
momentum transfers are allowed, which are not obtainable in the simple semiclassical or eikonal 
approaches described here. For the sake of simplicity, we shall not enter into the discussion of these 
effects, since they play minor roles in most of the cases we shall treat here. Instead of that, in the next 
section we will show how one can make a comparison of the previous results with Coulomb excitation at 
nonrelativistic energies in order to derive simple recoil corrections for the equivalent photon spectrum. 

2. 7. Effects o f  the Rutherford bending 

In nonrelativistic Coulomb excitation the double differential cross section can also be expressed in 
the terms of equivalent photon numbers as 
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d2or _ 1 ~ dn~t tr,~t 
dO dE~ E~ ~ v ' (2.7.1) 

where 

dn,~,d~2 - Zzla l[(2l(2~)3( l+ 1)!!12+ 1) sr-2'+z ( c)2'  df,~,(O,da ~') (2.7.2) 

are the equivalent photon numbers per unit solid angle. They are functions of the adiabaticity parameter 

= E.~a/hv = toa/v,  (2.7.3) 

where 

a = Z1Zze2/mo v2 (2.7.4) 

is half the distance of closest approach in a head-on collision and m 0 is the reduced mass of the ions. 
The functions f,~t(O, ~) are given in terms of orbital integrals and can be found in a tabulated form in the 
textbook of Alder and Winther [A1-75] on Coulomb excitation. The first calculations of the functions 
f,~l(O, ~) were performed by Ter-Martirosyan [Te-52], who found an analytical expression for the E1 
multipolarity. Since this is the more important case, let us study it first. 

Inserting the expression for dfEl(0, ~') [see AI-75, p. 93] in eq. (2.7.2) we obtain 

dnE1 2E4~2 e - ~  [ g i t ( e ~ ) l  2 + [Kit(e~')] , (2.7.5) 
dO 4,n "2 e 

where e = (sin (0/2)) -1 is the eccentricity parameter, and Ki'~(y ) means the derivative of Kic(y ) with 
respect to the argument y. 

For relativistic projectile energies the Rutherford trajectory can be substituted by a straight-line and, 
instead of the scattering angle 0, the concept of impact parameter b is used. The equivalent photon 
numbers in those cases is given by eq. (1.6), that is 

dnE~ = N(to, b )=  --'5- KZ1(x) + - -  K2o(X) (2.7.6) 
2~'b db 1r y 

with x = rob~yr. Since, for a Rutherford trajectory, the impact parameter is related to the scattering 
angle by the expression b = a ctg(0/2), we can rewrite the above equation as 

/ ~, - 4 Ir~ ~ e - ~  K l ( x ) + -~ . (2.7.7) 

Of course, for relativistic energies 0 ,~ 1 and x = (e~'/y) cos(0/2) --- e~'/y. 
For the nonrelativistic limit a small scattering angle is related to a large impact parameter trajectory 

e--b/a>>l.  If we assume ~',~ 1, then by use of Ko= - K  1 we obtain from eq. (2.7.5) 
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dnEl Z~a (c) 2 
d a  ]nonrel- art 2 e2 x2[K21(x) + K2°(x)] ' (2.7.8) 

which is just eq. (2.7.7) for y = 1. 
For not too large impact parameters, which still lead to small scattering angles the Rutherford 

bending of the trajectory is mainly reflected through the parameter ~'. In that case eq. (2.7.5) is 
approximately 

t 2 
- -  --  - -  6 2 e - ~  x 2 { [ K v . ( x ) ]  2 + [Ki~,(x)] } .  ( 2 . 7 . 9 )  
dO 4~ -2 

Figure 2.3 displays the ratio r(sr, x) = [eq. (2.7.9)/eq. (2.7.8)] which shows the effect of the 
Rutherford-bending to the straight-line calculation. This effect increases steadily with (. 

In eq. (2.7.5) the Rutherford trajectory is accounted for properly in the calculations, but retardation 
effects in the interaction are ignored. The reverse is true in the calculations which lead to eq. (2.7.6). 
While one can safely use eq. (2.7.5) in nonrelativistic problems and eq. (2.7.6) in relativistic ones, the 
previous discussion has shown that none of them is suitable for intermediate energy problems, where 
both effects are present. But, by a direct look at eqs. (2.7.5) and (2.7.7), we see that the main effect of 
the Rutherford trajectory would be present in the imaginary indices (i~') of the modified Bessel 
functions as well as in the factor e -~.  On the other hand, retardation effects imply in the appearance of 
the y-factors in the eq. (2.7.7), thus suggesting that one can account simultaneously for both effects by 
defining the new variable 

r l= ( / y =  wa/yv ,  

and setting 

d n E l  _ Z21 a (c)  2_1 , 2 / 
284'r/2e-=n 2 2 [Kin(er/)] +[Kin(erl)] • (2.7.10) 

dO 47r 2 e 
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Fig. 2.3. Effect of Rutherford bending of the projectile motion for different values of the adiabacity parameter r = Eva~hr. The ratio of eq. (2.7.9) 
and eq. (2.7.8) is plotted as a function of x = e~" (for y = 1). 
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This equation reduces to eq. (2.7.5) for 3' = 1 and to eq. (2.7.7) for ,/>> 1, e >> 1 and should be a good 
improvement for the intermediate energy region. 

According to eq. (2.7.1) the differential Coulomb excitation cross section for the E1 multipolarity 
integrated over angles is 

dO'E1 1 El 
dE.y - Ev nEIO'v  (2.7.11) 

The equivalent photon number hE1 is obtained by an integration of eq. (2.7.10) over all angles 
corresponding to pure Coulomb trajectories. In terms of the eccentricity parameter, this integral can be 
expressed as 

2 2 2 1 - 1  
nE1  = --7r Zlctrl e-'~n e de Y2 8,2 

e 0 

' )12} - -  [ K i n ( e r l ) ]  2 + [gin(er/ • (2.7.12) 

The minimum value of the eccentricity parameter depends on whether the relative motion energy is 
smaller or greater than the Coulomb barrier energy EB: 

1, for E ~< E s , 

e° = ~/1 + 4(E/Es)2(1 - E s / E  ) , for E > E s . 
(2.7.13) 

We see that when E ~> E B = ZIZEe2/R, then e 0 - 2 E / E  a = R/a,  where R is the sum of the two nuclear 
radii. The integration (2.7.12) can also be expressed in terms of the Bessel functions of imaginary or 
complex indices by means of the Lommel integral formulas [see e.g. Wa-58, p. 133]. This gives 

= __ -rr'O C t 2 Z21o f e -xKinKin hE1  7/" 

2 
/) 2 

2 

a r ' .  , 

80 
(2.7.14) 

where all K's are functions of ~ = eo~ 7. In the nonrelativistic limit/3 = v / c ~ O ,  e o ~  1, and we obtain 

(c)2 
2 Z2a~, e_,~c gi~.(~ ) K~¢(~') (2.7.15a) hE1  = --  -~ 

In the relativistic l imi t /3~1 ,  e0= R / a ~ o o  and 7/= st/7 ~ 0 ,  so that 

nEI(W) = 2 Z2a ~KoK 1 _ _ _  (K2x_ K2o) 
71" 2C  2 ' 

(2.7.15b) 

where the K's are functions of ~: = eor / - o~R/yv. 
Of course, both expressions (2.7.15) agree with the known results of previous calculations (see eq. 

(2.5.5a) and ref. [AI-75, p. 96]). But, besides reproducing the nonrelativistic and the relativistic limits, 
eqs. (2.7.10) and (2.7.14) might be useful for intermediate energy problems. 
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Unfortunately, for the other multipolarities it is not possible to calculate the nonrelativistic functions 
df,~t(O, ~) in an analytical form. But we can correct the equivalent photon numbers in the relativistic 
case to obtain approximate expressions for the angular distribution in intermediate energy problems, by 
making the same substitutions which lead to eq. (2.7.10) (disregarding the effects of the imaginary 
indices). We obtain 

{4 ( ) 
dO -4 , r r  2 v]  e e ~ - - [ K ~ + x K o K , + x 2 K g l + x 2  2 - K2~ , 

3' 

with all K's as functions of x = r/e, and 

(2.7.16a) 

dnM, Z2~ a 2 4 -'n"q K21(X) ( 2 . 7 . 1 6 b )  
dO - 477 .2 71 e e 

In fig. 2.4 we plot the ratio between the exact nonrelativistic equivalent photon numbers, defined by 
eq. (2.7.2) in terms of the functions df,~t(O, ~), and eqs. (2.7.16) for 3, = 1, that is 

r~(O, ~')= [eq. (2.7.2)/eq. (2.7.16)], (2.7.17) 

where i = 1 for the E2 case (solid line) and i = 2 for the M1 case (dashed line). We observe that for very 
forward angles, and 3 ' -  1, the expressions (2.7.16a, b) give the same values as the exact nonrelativistic 
calculations. Indeed, it can be shown that for very forward scattering angles all the functions df,~t(O, ~) 
can be expressed in terms of the modified Bessel functions [see AI-66, p. 483, and also the appendix of 
Wi-79], which when inserted in eq. (2.7.2) will reproduce eq. (2.7.16) for 3'--- 1. As the scattering angle 
increases, there will be deviations of eq. (2.7.16) from the exact values of eq. (2.7.2), specially for the 
M1 case which depends more strongly on the bending of the Rutherford trajectories. But, for ( ,~ 1, the 
agreement between the two calculations is very good, which make expressions (2.7.16a, b) useful 
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Fig. 2.4. Ratio of the exact nonrelativistic equivalent photon numbers given by eq. (2.7.2) and the approximate expressions (2.7.16), for y = 1, and 
for the E2 (solid curves) and M1 (dashed curves) multipolarities. 
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approximations for intermediate energy Coulomb excitation problems. For example, these ideas have 
been considered by Baur, Bertulani and Rebel [Ba-86c] for the study of Coulomb dissociation cross 
sections as a source of information on radiative capture processes of astrophysical interest. The 
integration of (2.7.16) over the scattering angle can be performed in the same way as in eq. (2.7.12). 

We observe that, for E >> E B, a simpler recoil correction of the equivalent photon numbers as given 
by eqs. (2.5.5) is a rescaling of the minimum impact parameter of the form 

R--> R + (~r/2)a, (2.7.18a) 

where the factor ~-/2 can be obtained in a detailed analysis of the effects of the rescaling of the 
minimum impact parameter. Such a rescaling correction has indeed been observed by Winther and 
Alder [Wi-79] and later confirmed by the numerical calculations of Goldberg [Go-84]. For each impact 
parameter separately there will be a rescaling of the form (2.7.18a), i.e. for 0 ,~ 1 

e~" t o (  7r ) (2.7.18b) x = - -  cos(0/2)---> b + a • 

These corrections can be understood as following: the effects of the electromagnetic field are larger 
when the ions are closer together, but the closest distance will also be bigger than the initial impact 
parameter due to the Rutherford bending of the trajectory, and that is the reason for the rescaling 
(2.7.18b). 

3. Electromagnetic fragmentation in RHI collisions 

In the preceding section a complete description of the theory of relativistic Coulomb excitation was 
presented. In this section we shall apply this theory in the analysis of the Coulomb fragmentation of 
heavy ions in relativistic collisions. The first experimental hint for the possibility of existence of such 
processes was obtained in cosmic rays experiments by Balasubrahmanyan et al. [Ba-72]. They studied 
the absorption of carbon and oxygen nuclei in tungsten from 1 GeV/nucleon up to about 10 GeV/ 
nucleon and obtained decreasing absorption lengths with increasing energies. Artru and Yodh [Art-72] 
were the first who suggested that Coulomb (electromagnetic) fragmentation could explain these 
phenomena, and made predictions about the Coulomb cross sections in the equivalent photon method. 
The first laboratory experiment which clearly confirmed the existence of an appreciable electromagnetic 
fragmentation in RHI collisions was reported by Heckman and Lindstrom [He-76]. Subsequently, 
electromagnetic fragmentation was observed by several other experiments [see e.g. We-79, OI-81, 
Me-84, and Me-86]. A theoretical analysis of this process has been performed by Baur and Bertulani 
[Ber-86b, Ba-86a and Ba-86b]. 

In section 3.1 we will make an analysis of the experimental data of Mercier et al. [Me-84, Me-86], 
and introduce a harmonic vibrator model for the nuclei in order to obtain an illustrative way of 
describing the fragmentation problem. It is remarkable that classical, semiclassical and quantum 
descriptions of the process give approximately the same results. In particular, we show that, by using 
simple sum rules, the experimental data can be well explained. Of course, a more detailed considera- 
tion of the nuclear structure will be necessary in a more specific analysis of each reaction. 
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In section 3.2 we will study the consequences of a possible multiple excitation of giant resonances in 
the nuclei, and make some predictions based on the harmonic vibrator model. 

In section 3.3 we will make a short analysis of the cross sections for production ofpions. 
The coincidence experiments for the dissociation of weakly bound nuclei are of great interest for the 

study of nuclear structure of, e.g., neutron-rich nuclei, and in section 3.4 we will make a study of the 
angular distributions of the fragments, and of the dependence of the cross sections on the reaction 
parameters. 

3.1. Excitation of giant resonances 

3.1.1. Coulomb and nuclear fragmentation in peripheral collisions 
The passage of a particle with charge Zle, velocity v and impact parameter b (larger than the nuclear 

interaction radius) along a nucleus initially at rest will predominantly cause a momentum change of the 
charged constituents of the nucleus, i.e. the protons. This momentum is larger in the x-direction 
(perpendicular to the projectile's motion), and is given classically by [see e.g. Ja-75, p. 619] 

Ap = 2ZlZ2e2/bv . (3.1.1) 

From this we calculate the energy transferred to the nucleus as a whole as 

(Ap) z 2(Z1ZEe2) 2 
A E A -  2m-------g -- AzmsbZv 2 ' (3.1.2) 

where m N is the nucleon mass. For very fast collisions we can assume the protons to move almost 
freely; the total amount of energy transferred to all protons being 

AE z = 2(ZleZ)ZZz/myb2v 2 " (3.1.3) 

The difference gives the internal excitation energy of the nucleus 

2NzZ: (Z21e2) 2 
AEin  t = AE z - A E  A -  A2 mNb2v2 . (3.1.4) 

(This amounts to giving effective charges of Ne/A for protons and ( - Z e / A )  for neutrons, respectively.) 
If the incident particle is also a nucleus, the same eq. (3.1.4) can be used for the determination of the 
internal excitation energy of it by exchanging the indices 1 and 2. As an example, we consider the case 
of relativistic (v = c) 238U + 238U collisions with b = 15 fm. We obtain 

AE A = 5 MeV, AE z = 15 MeV, A E i n  t = 10 MeV. 

This internal excitation energy corresponds to about the excitation energy of the giant dipole and 
quadrupole resonances in 238U. From this simple classical estimate we can already deduce that there is a 
large probability for the excitation of giant resonances in peripheral RHI collisions. Since the giant 
resonances mainly decay by particle emission, this process will have an appreciable contribution to the 
fragmentation of the nuclei. 
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Indeed, among others, a group of experimentalists of the Lawrence Berkeley Laboratory and Iowa 
State University [Me-84, Me-86] have presented clear evidence of Coulomb fragmentation in RHI 
collisions. In those experiments one obtained the cross sections for one-neutron removal of 59Co, 89y, 
and 197Au targets due to the irradiation by relativistic beams of 1H, 12C, 2°Ne (2.1 GeV/nucleon), 4°Ar 
(1.8 GeV/nucleon) and 56Fe (1.7 GeV/nucleon). From the data on fragmentation cross sections of the 
same targets by means of relativistic proton beams (for which Coulomb effects are negligible) they were 
able to deduce the nuclear contribution to the one-neutron removal cross sections by RHI beams. An 
example of their results is shown in fig. 3.1 which gives the cross section of one-neutron removal from 
197Au as a function of the atomic number of the incident projectile. One observes that the cross section 
increases with Z22, which is a characteristic of Coulomb processes. A precise theoretical explanation of 
the experimental results is complicated by the presence of the nuclear contribution (shown in fig. 3.1 by 
the lower dashed curve) which can arise from a direct knockout of the neutrons or by means of a 
two-step process involving first the excitation of a giant resonance in the nuclei followed by the emission 
of one neutron. The nuclear contribution to this process is peaked at a certain impact parameter and 
falls down with increasing distances. It also falls down when the nuclei come closer together since other 
channels than the one-neutron removal process become more important [see e.g. Hii-81 or Hu-85]. In 
this way one can reasonably assume that the probability to remove one-neutron by means of the nuclear 
interaction in a RHI collision is given by a Gaussian function of the impact parameter b, such as 

P(b) = / 3  exp - (3.1.5) 

where 28 is the thickness of the surface area contributing to that process and /3 is the maximum 
probability at an optimal impact parameter which, for simplicity, we set to the touching distance of the 
two nuclei 
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Fig. 3.1. One-neutron removal cross section of 197Au by means of relativistic heavy ions as a function of the atomic number of the projectile. The 
squares are the total experimental cross sections. The circles represent the nuclear contribution to the cross section. The lower dashed curve is a fit 
of the form a(1 + bA21/3), and the upper dashed curve is the sum of the experimental nuclear cross sections o'r~ and the estimates o- c based on the 
equivalent photon method. 
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R = R~ + R 2 = 1.2 × (Z~/3 + Z~/3) fm. (3.1.6) 

Such a parametrization has also been found in theoretical calculations of fragmentation processes at 
nonrelativistic energies [see e.g. Ba-84a]. A justification of this surface peaked form can also be given in 
terms of a Glauber'model [see, e.g., Hii-81 and Hu-85]. The cross section will be 

w 

o- N = 2rr J b P(b) db = 2(Tr)3/2R/3~$. (3.1.7) 
0 

In order to have an estimate of 138 we set the cross section given by eq. (3.1.7) to the experimental 
values determined by Mercier et al. [Me-86]. We find the values of/38 as given in table 3.1, which are 
collected in fig. 3.2 as a function of A 1 + A 2. From that one infers an average value of 

/35 --- (1.1 --- 0.1) fm. (3.1.8) 

The question now arises about what the value of the maximum probability/3 should be. Clearly, there 
are other channels for fragmentation, like e.g. fission, two-nucleon removal, etc., in the peripheral 
collisions with small nuclear contact. Rasmussen, Canto and Qiu [Ra-86] have shown that there is an 

Table 3.1 
The thickness parameters/3& in fm, extracted from the experimental results of Mercier et al. [Me-86] for 

various projectiles and targets combinations used in these experiments 

RHI 59Co(RHI, X) 5 8 C o  89y(RHI, X) 88y 197Au(RHI, X) 196Au 

~2C (2.1 GeV/nucleon) 1.00 -+ 0.08 1.17 -+ 0.11 0.95 -+ 0.11 
2°Ne (2.1 GeV/nucleon) 1.13 -+ 0.09 1.22 +- 0.1 1.00 -+ 0.12 
4°Ar (1.8 GeV/nucleon) - -  1.43 +- 0.12 0.93 -+ 0.12 
56Fe (1.7 GeV/nucleon) 1.02 --- 0.1 1.22 -+ 0.12 0.82 +- 0.I1 

2 . 0  

E 
q- 

1 . 5  

1 .0  

0 . 5  

0 . 0  i I i I i I i I 

50 I00 150 200 250 

FI l +F I  2 

Fig. 3.2. Thickness f18 of the ring area contributing to the one-neutron removal cross section in peripheral RHI collisions as a function of the sum of 
the target and projectile mass number A 1 + A 2. 
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appreciable contribution to the fission channel in 238U projectiles (1 GeV/nucleon) incident on nuclear 
emulsion. But, since the energy deposit in such collisions is small, the one-neutron removal process 
must be of greatest probability in most cases. If we use fl = 1, we get 8 = 1 fin from eq. (3.1.8). This 
means that the nuclear contribution is restricted within a small range of impact parameters in 
comparison to a much wider interval for the Coulomb contribution to the same process. In spite of the 
smaller energy deposit by means of the Coulomb interaction in a RHI collision, its long range leads to 
total cross sections which can be even larger than the geometrical cross section. 

The Coulomb contribution to the nuclear fragmentation in RHI collisions is a two-step process 
involving the excitation of the giant resonances followed by particle decay. The cross section for it can 
be calculated according to eq. (2.5.2). While, normally, the 7rl = E1 contribution to the sum (2.5.3b) is 
much larger than the others, the fact that nE2 >> hE1 for beam energies around 1 GeV/nucleon leads to 
an appreciable contribution (5-20%) of the quadrupole multipolarity to the total Coulomb cross section 
(2.5.2) at these energies. It is interesting to compare the experimental values of Mercier et al. [Me-86] 
with theoretical predictions based on eq. (2.5.2) and on sum rules for the photonuclear cross sections. 

It is well known that heavy nuclei exhibit an electric dipole resonance at approximately 

E(l) = 80/A1/3 MeV 
GR (3.1.9a) 

and a quadrupole resonance at 

E(2)  = 62/A1/3 MeV 
GR (3.1.9b) 

To a good approximation we can take the factors nEX(O)) and nE2(tO) outside the integrals in eq. 
(2.5.2) 

n i E ( 1 ) ] f  f E2 Elt GR.I EX n IE(2) |E (2) °s  (Ev) dEs 
trc - E(1)OR o" (Ev) dE s + E2t GRI OR (Es)2 (3.1.10) 

and make use of the Thomas-Reiche-Kuhn (TRK) sum rule for the electric dipole resonance [see e.g. 
Bo-75] 

f EXz E x try t s) dEv = 60NZ/A MeV mb (3.1.11a) 

and the energy weighted sum rule for the electric quadrupole resonance 

f orE2(Es)/(Es)2 dE s =0.22 ZA z/3 lab MeV -~ . (3.1.11b) 

In addition to the E2 isoscalar resonance, there exists also an isovector E2 resonance at an even higher 
E2 energy of about E~R = 120MeV/A x/3. Since it decays mainly by two-neutron emission, it will not 

contribute much to the one-neutron removal experiment discussed here. 
Within these approximations the dependence of the Coulomb excitation cross sections tr c on the 

energy of the projectile E~a b is due to the dependence of nEx and nE2 on that parameter. As an example, 
in fig. 3.3 we plotted the Coulomb fragmentation cross section of 4°Ca projectiles incident on 238U 
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Fig. 3.3. Coulomb excitation cross section of giant resonances in 4°Ca projectiles hitting a 238U target as a function of the laboratory energy per 
nucleon. The dashed line corresponds to the excitation of the giant electric dipole resonance, the dotted to the electric quadrupole, and the lower 
line to the magnetic dipole. The solid curve is the sum of these contributions. 

targets as a function of the laboratory energy per nucleon. We use eq. (2.5.5) with the recoil correction 
R---> R + 7ra/2 (see section 2.7), which will only be important for Elab/A <~ 100 MeV. We also used the 
fact that 4°Ca has a giant M1 resonance at E ~  - 10.3 MeV and a B-value of order B(M1) 1 2 ~--- IILN, t o  

calculate the contribution of the Ml-mode to the Coulomb fragmentation cross section. The lower 
curve corresponds to the M1 fragmentation mode, the dashed line to the E1 mode, and the dotted line 
to the E2 one. The solid line is the sum of the three contributions. We note that the Coulomb excitation 
cross section overcomes the geometrical cross section tr G --- 7r(R m + R2) 2 for very high energies. One 
also observes that the E2 fragmentation mode is very important at intermediate energies (around some 
hundreds of MeV/nucleon) and even for very high energies it can account for approximately 10% of %. 
Indeed, since for high energies hE2 = hEm , the cross section for the E2 excitation mode will be smaller 
than that for the E1 case by the relative strength of the two giant resonances o'E2/o "El~ 
ZtOlto2R2/6Nc 2 "--0.12, where to m (tOe) are the frequencies of the giant dipole (quadrupole) resonance. 
The excitation of giant magnetic dipole resonances in RHI collisions is of less importance, since for low 
energies nMt "~ hE1 (nMm = (V/C)2rIEI), and for high energies, where nMt = nE1 , it will be smaller than 
the excitation of electric dipole resonances by the relative strength O'Mm/orEI=(tXN/eR)Z= 
(h/2mscR) 2 ~ 1. 

Table 3.2 shows the theoretical values based on eqs. (3.1.9-3.1.11) for the reactions studied by 

Table 3.2 
Theoretical electromagnetic excitation cross sections of E1 and E2 giant resonances for various projectile and 
target combinations. The incident projectile energy is given in parentheses and the cross sections are given in 

mb 

59Co(RHI, X) 58C0  89y(RHI, X) SSy ~97Au(RHI, X) 196Au 

RHI E1 E2 E1 E2 E1 E2 

~2C (2.1 GeV/nucleon) 8.7 1.88 15.5 3.39 46.5 10.3 
2°Ne (2.1 GeV/nucleon) 22.9 4.65 41.1 8.45 124 26.2 
4°Ar (1.8 GeV/nucleon) 63.0 12.7 114 23.4 354 74.6 
56Fe (1.7 GeV/nucleon) 121 24.2 221 45 694 145 
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Mercier et al. One clearly sees the relevance of the E2 mode as compared to El .  From the ratio 
between the experimental data and the theoretical predictions, 

Orc xp O-exp 

r = E1 E2 -- , (3.1.12) 
O" C 4- or C OrSR 

we obtain the values gathered in fig. 3.4 as a function of A t 4- A 2. On the average, r ~  < 1, which is a 
reasonable result since Orsa includes the total strength of the giant resonances which can decay not only 
by means of one-neutron emission. In principle, one could also use the experimental photonuclear cross 
sections tr(y, n) to do a more exact calculation of the one-neutron removal cross section by means of 
eq. (2.5.2) [see e.g. He-76]. However, the decomposition of ~r(y, n) into E1 and E2 (or other) 
multipolarities is not exactly known. 

The only empirical parameter entering in eq. (2.5.2) is the minimum impact parameter which we set 
to R as given by eq. (3.1.6). For impact parameters in the interval R -  8 ~< b ~< R 4- 8 there is 
interference between the nuclear and the Coulomb interaction. By using bmi n = R -  8 in eq. (3.1.10) 
the theoretically estimated Coulomb cross sections increase by less than 10%. Because of our lack of 
knowledge of the nuclear and Coulomb interference effects, there exists even a greater uncertainty in 
the theoretical determination of the induced cross section in peripheral RHI collisions. The situation 
becomes simpler at higher energies and when both projectile and target are heavy nuclei, for which the 
Coulomb cross sections depend much less on the uncertainty in the minimum impact parameter. In that 
case the Coulomb interaction leads to much greater cross sections than the nuclear interaction and for 
practical purposes one can disregard the nuclear contributions in peripheral RHI collisions. 

A semi-empirical black sphere expression for the reaction cross sections in RHI collisions, introduced 
by Bradt and Peters [Br-50], and extensively used in the literature, is 

2,,--1/3 A1/3 4- A)2 o- R = ,rrro~,A 1 + , l  2 (3.1.13) 

where r o - 1 . 2  fm. The overlap parameter A is meant to represent the diffuseness and partial trans- 
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Fig. 3.4. The ratio of the experimentally determined Coulomb excitation cross section ~e,p and the theoretical CrsR value, as derived from the sum 
rule model, as a function of the sum of the target and projectile mass numbers A 1 + A s. 
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parency of the nuclear surfaces. Nevertheless, it has been already shown [see e.g. Gr-85] that the fit of 
expressions like eq. (3.1.13) with very high energy experiments are quite poor. This has also been the 
object of a theoretical analysis in ref. [Ber-86c]. The overprediction at low projectile and/or target 
masses is thought to be due to nuclear transparency effects and the underprediction at larger masses 
might be explained by the addition of Coulomb processes. In fact, since the Coulomb fragmentation 
cross sections increase approximately logarithmically with energy, there can be no parametrization of 
the reaction cross sections as implied by eq. (3.1.13) for sufficiently high energies. 

As we have seen, there is a satisfactory agreement at the present stage between theory and 
experiment. The experiments are and will be going on at Brookhaven, CERN and SIS (Darmstadt). 
Many more accurate data will become available and perhaps need a further refined theoretical 
treatment. An interesting possibility of further experimental improvements is the Projectile Fragment 
Separator at SIS [Ge-87]. The production of relativistic radioactive beams (e.g. 19Ne, a /3 ÷ emitter) 
from a 2°Ne projectile, to be studied in Darmstadt can be useful for radiation biophysics [Ge-87]. 

Recently, Canto et al. [Ca-87] have analysed theoretically the so-called clean fission experiment of 
0.2 TeV uranium beams on nuclear emulsion. The experiments have been performed by Friedlander et 
al. [Fr-83] and Jain et al. [Ja-84], which classified the reactions into dirty or clean fission, according to 
whether fission is or is not, respectively, accompanied by other tracks. It is, in principle, expected that 
the relativistic Coulomb excitation of the projectile would be of great relevance for the total reaction 
cross section for clean fission, which must be originated in the peripheral collisions. Nevertheless, they 
found that even with the inclusion of the nuclear contribution, the available theories are not able to 
explain the high values of the cross sections. A possible explanation is proposed by Galetti, Kodama 
and Nemes [Ga-87], who claim that a covariant study of the theory of Coulomb excitation, together 
with recoil effects can be a hint to explain not only the cross sections, but also the angular distribution 
of the fragments. We indicate the above references for a discussion of these experiments and theoretical 
problems. 

3.1.2. Harmonic vibrator model 
The internal excitation energy of a nucleus by means of a relativistic charged particle as given by eq. 

(3.1.4) does not take into account the binding energy of the nucleons. But we can account for it very 
easily if we use the harmonic vibrator model for the nucleus. The energy transferred to a harmonically 
bound particle, with charge e i and mass Mi, by a relativistic particle with charge Zle is given by [see 
Ja-75, p. 623] 

,~,-.2 2/ e~ ~ 1 [ 2  12 ] AEi(b)= zgle  ~--~) V--~ x 2  K1 + - -  K2° ' (3.1.14) 
7 

where the modified Bessel functions are functions of x = wb/yv. 
We now apply this result to the excitation of giant dipole resonances (GDR) in nuclei. In this case we (1) assume that all nucleons vibrate with the same frequency w = EaD R -- EaR and, to disregard the centre 

of mass motion, we use the effective charge of a nucleon as (ei)e, = Ne/A for protons and (e~)eff = 
-(Ze/A)  for neutrons. Summing for all nucleons 

(~/) ea [i_~1(N)2 ~ (~_)2] N Z  e 2 _ - -  - - -  (3.1.15) = + A m N ' i • m N  - i = Z +  1 
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we obtain 

mE(b'=~imEi(b' -2[EGDR]2OI2Z21N2Z2. mNC--------T ~ (C)4 712 [g21 + ~-712 K20] • (3.1.16) 

One can easily verify that eq. (3.1.16) reduces to eq. (3.1.4) in the limit x = tob/3,o ~ 1, corresponding 
to the low-frequency limit. In this limit the interaction is so sudden that the binding energy of the 
nucleons is unimportant and they can be considered as free. 

One can also interpret AE(b)/EGD R as the probability q0(b) of exciting a GDR in a collision with 
impact parameter b, i.e., 

tJ~(b) - 2EGDR 2Z21N2Z2(c) 4 12 [K21+ lzK2o] (3.1.17, 
rnr~c2 a A2 7 7 " 

By taking EGD R = 80 MeV/A 1/3, we obtain 

2 2 2 
• ( b )  = a o + a t + a _  l , (3.1.18a) 

where 

a0 = 0.41a a2/3 --~ Ko(x) ~A 2 
(3.1.18b) 

and 

a 1 = 0.29a ZI2/3 -~ Kl(X ) . 
- 12 

(3.1.18c) 

We can also calculate these excitation amplitudes by using the eq. (2.1.15) and the TRK sum rule to 
evaluate the matrix elements for the excitation of GDR states [see Ber-86b, Ba-86a, Ba-86b]. The result 

F Z 

m=o 0 Ex 

vibrations 
m =-+1 

Zt v 

Fig. 3.5. Proton and neutron vibrations induced by the passage of a relativistic heavy ion. 
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will be exactly the same as that obtained above by means of a purely classical derivation. This indicates 
that a m = lafml is the probability of exciting a nucleus by transferring to it an amount mh of angular 
momentum in the beam direction. Classically the amplitude a o corresponds to the action of the electric 
field E z (see fig. 3.5) which generates vibrations along the beam direction. These vibrations correspond 
to an angular momentum perpendicular to the beam direction, i.e. m = 0. The field E x will generate 
m = ---1 vibrations and the excitation probability, by symmetry, must be equally distributed between 
m = -1  and m = + 1. Since E x dominates for 3' >> 1, the target (or the projectile) will gain essentially 
internal vibrations perpendicular to the beam direction in that limit. 

3.1.3. Angular distribution of the fragments 
From the dynamics of the electromagnetic excitation process, the angular distribution of the 

fragments can be directly calculated. For the sake of simplicity of presentation, we illustrate the 
essential points for spinless projectiles and fragments. We consider the projectile fragmentation process 
A ~  B + C in the system of reference of the projectile. The transition from the projectile's ground state 

6i = ( l / r )  fir) Y00(f), (3.1.19) 

described by a B + C cluster wave function, to the final state, characterised by the relative momentum 
kf, given by the wave function 

1 
~Of = r ~ Y~* (~) Yl'(kf) g,(r, kf), (3.1.20) 

is determined by the excitation amplitude 

2Zze2 [ x i z] 
% -  hb------v x Kl(x ) Dfi + ~ Ko(x ) Dfi , (3.1.21) 

where the K's are functions of x = rob~yr. The x- and z-components of the nuclear dipole matrix 
elements are denoted by D~i and D~i, respectively. As usual, these matrix elements can be separated 
into a geometrical part determined entirely by the angular momentum quantum numbers and an overall 
strength factor, which gives the B(E1)-value (in the simplified model given here it is determined by the 
radial dipole matrix element R(kf) = .~ dr gt=l(r, kf) r f(r)). One finds for afi 

2Z2e2 [ ]R(kf )  
a,  hbv x (.-sin 0 cos ~b) Kl(x ) + i - - -  - cos 0 Ko(x) (3.1.22) 

where 0 and ~b denote the polar angles of kf. As we saw before, the m = -1  excitations are proportional 
to first term, the m = 0 one to the second term. For tob/yv ,~ 1 this leads to a very strong alignment of 
the final fragment state, as has already been seen above (cf. fig. 3.5). Because of the phase difference 
there is no interference of the m = - 1  and m = 0 excitations for the angular distributions. Averaging 
over the azimuthal angle ~b, one obtains 

4 E ] laeilz_ z22 a2 ( w ) 2 ( c )  jR(k,)]2 K21(x)sin 2 O+ 12 K2o(X)COS2 0 (3.1.23) 
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i.e., for tobyv ~ 1, as will usually be the case, there is a strong tendency of emission perpendicular to 
the beam axis. 

Let us compare the momentum of the fragment obtained from the decay of the excited resonance 
state to the momentum obtained from the Coulomb repulsion of the whole projectile during the 
collision. The momentum due to the Coulomb repulsion is perpendicular to the beam and is given by 
eq. (3.1.1). The momentum due to the decay of the resonant state is given by 

Apd = ~/2m o AE d , 

where AE d is the decay energy and m 0 is the reduced mass of B + C. As seen above, the main 
component of Apd is also perpendicular to the beam axis. As an example, for Z 2 = 92, Z 1 = 8, 
b = 1 5 f m ,  and v=c, we obtain from eq. (3.1.1) Ap=15OMeV/c for the momentum due to the 
Coulomb repulsion of the projectile. If we assume a decay energy of AE d = 10 MeV (i.e. excitation 
energy above the threshold for A---> B + C) and a reduced mass m 0 = 1 GeV (which is about the reduced 
mass in the case of one-nucleon emission), then Apd=14OMeV/c. Compared to the incident 
momentum 

Plab ----- Elab/C ~-- (Y -- 1)A G e V / c  

the above quantities are only a small percent of it. This means that a study of the angular distribution of 
the fragments can only be achieved in very high precision measurements [see Br-85 and Em-87]. It is 
also proposed [Fi-87] to study y- and particle decay of GDR of target nuclei in peripheral collisions at 
SIS. 

3.2. Multiphonon excitation of giant dipole resonances 

3.2.1. Failure of first order perturbation theory 
Quantum-mechanically, the relation (3.1.17) is the result of a first order perturbation theory. In 

principle this is a good approximation since, roughly speaking, the Coulomb interaction time in a RHI 
collision is so short that one expects that at most one virtual photon can be exchanged. In the 
time-dependent perturbation theory this means that the excitation amplitudes must be much smaller 
than one to justify the use of a first order perturbation method. In fig. 3.6 we plot the values of a 0 and 
a 1, as given by eqs. (3.1.18b) and (3.1.18c), for the excitation of 160 in the reaction 160 + 2°8pb, and of 
238U in the reaction Z38U + 238U, as a function of the laboratory energy per nucleon and in the case at 
which they could be as large as possible, namely, when the impact parameter b is equal to the sum of 
the two nuclear radii R = R I + R z. We observe that in both cases a 0 decreases with increasing 
laboratory energy while al reaches a constant value. This occurs because a 0 is equivalent to the 
excitation generated by a pulse of light in the direction perpendicular to the ion beam while a 1 is 
equivalent to the excitation due to another pulse in the beam direction (see section 1 and fig. 1.1). For 
high energies the first pulse becomes negligible and only the second one is important [see Ja-75, p. 719]. 
One also notes that the Coulomb excitation (mainly al) of light systems like 160 by heavy ions has a 
small amplitude, while the same is not true for a heavy system like 238U. We took the smallest possible 
impact parameter; for larger impact parameters the excitation amplitudes will diminish. Nevertheless, a 
study of the role of multiple excitation in RHI collisions is worthwhile, since the first order effects are so 
large. The possibility of multiple excitation in RHI collisions would also be of great experimental 
interest. 
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respectively, as a function of the laboratory energy per nucleon. The amplitude ao(1) = la,tlmoo(,) corresponds to an angular momentum transfer of 
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The problem of multiple excitation can be put in a tractable form if we use the simple harmonic 
vibrator model for the collective dipole oscillations in the nuclei. In the exact theory of multiple 
excitations of a quantum harmonic oscillator [see e.g. Me-70] one obtains a Poisson distribution for the 
excitation probability of a N-phonon state 

1 ~N e - ,  (3.2.1) PN= . 

In our case, q)(b) is given by eq. (3.1.17). This result can also be interpreted classically. The probability 
PN to excite an oscillator by an energy amount Nhto is equivalent to the probability to excite N 
uncoupled oscillators from a given ensemble, each by an energy amount hto. In the limit that this 
ensemble possesses an infinite number of oscillators, PN will be given by a Poisson distribution of the 
probability to excite only one oscillator [see e.g. AI-66, p. 269]. In the equivalent photon method one 
can use eq. (1.6), and assume that the probability for a nucleus to absorb N photons from the 
equivalent photon spectrum is given statistically by a Poisson distribution. This procedure will also give 
exactly the expression (3.2.1) with ~(b) given by eq. (3.1.17), as mentioned by Braun-Munzinger et al. 
[Br-85]. 

One interesting feature is that, for the mean excitation energy, we obtain 

AE(b) = ~ Nhto Pu(b) = hto @(b) . (3.2.2) 
N 

this means that the energy transfer, calculated in first order perturbation theory, gives the correct 
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average value, even in the case where first order excitation calculations are not justified (e.g., if 
• (b) >~ 1). This is a special property of the harmonic oscillator model. 

3.2.2. Ultrarelativistic limit 

As quoted above, in the high energy limit 7 >> 1, a 0 ,~ a±l , and a good approximation, as long as 
b < 7c/to, is 

a_+,=0.29a ZI NV~2Z~ c 
A2/3 cob ' a 0 = 0,  (3.2.3) 

2 

and (3.2.1) becomes 

1 S N 
PN(b)= ~.v (~-~) e -s/b2 , (3.2.4a) 

where 

Z:IN:Z: 
S = 5 . 4 5 x 1 0  -5 42/3 fm 2. 

-A 2 

(3.2.4b) 

The total cross section is obtained by integrating over the impact parameter, starting from a minimum 
impact parameter bmin = R, where the nuclear absorption sets in: 

O'~cN) = 27r fb PN(b)db. 
R 

(3.2.5) 

If we use the approximation (3.2.4), then for N = 1 it is necessary to introduce the adiabatic cutoff 
radius bma x-~ yc/to (see eq. 1.7) in order to have a convergent integral. For N>~2 the excitation 
probability decreases fast enough to ensure convergence. We obtain 

o.(N=I) c = 27rS l n ( T c / t o R ) ,  (3.2.6a) 

and 

N-2 U k ] _(N>~2) 7rS _ e_  u 7rSu N-1 
" c  - N ( N - 1 )  1 k=0~ ~.V - N ! ( N - 1 ) '  (3.2.6b) 

where u = SIR 2, and the last approximation is valid for u ,~ 1, which is generally the case for light ions. 
With these values, the maximum possible cross section ~c m can be immediately calculated. The cross 

sections for the excitation of relativistic 160, a2S and 238U projectiles in the collision with 238U targets 
are given in table 3.3. We also show in fig. 3.7 the N-phonon Coulomb fragmentation cross sections of 
160 projectiles incident on 238U as a function of the laboratory energy per nucleon. The solid lines 
correspond to the use of eqs. (3.1.17), (3.1.18) and (3.2.1), and the dashed lines correspond to the 
approximations (3.2.6). As is expected from the increase of S with the mass, N-phonon states are 
excited with larger cross sections with increasing mass. On the other hand, the amplitude of the 
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Table 3.3 
Ultrarelativistic limit of the total cross sections for 
N-phonon GDR excitation of ~60, 32S and 238U pro- 

jectiles with 238U as the target nucleus 

J~O 32S 238U 

N=2 3.1rob 17mb 1.28b 
N=3 22~b 0.25 mb 0.14b 
N=4 0.16 gb 4~b 15mb 

10 s 

1 0  2 

L 1 
1 0  

.D 

"- 10 ° 

~: 1 0 - 1  

z u 
b 10-~ 

10 -s 

/ N=Z 160+Z38 U 

/ ~  N=3 1 
i i . . , , .,i i i A i i i Ii 
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E E G e V / n u c l e o n ]  1 ab 

Fig. 3.7. Total cross sections for the excitation of N-phonon GDR states in t60 projectiles hitting 238U targets as a function of the incident energy 
E~a b. The exact results are given by a continuous line; the dashed lines correspond to the approximations (3.2.6). 

collective motion of all protons against all neutrons are larger for light nuclei than for heavier ones. 
This can be readily seen from the simple model adopted for the GDR. The dipole operator is given by 

A 

b = E ( P i -  1~cm) = ( N Z / A ) ~ ,  (3 .2 .7 )  
i=1 

where Rcm is the centre of mass and 

1 m 

= Z P i -  N E pi , ( 3 .2 .8 )  
i=1 i=z+ i  

is the difference between the centre of mass of all protons with respect to all neutrons. Assuming that 
the TRK sum rule is exhausted by the GDR, one obtains 

D2 i<  D lbl%>12 ( 2 ) - 0 . 2 6  fm2 . N Z  (3.2.9) 

In terms of the collective coordinate p, one has 

to = ( A / N Z ) D  = 0.51(A2/3/V'-~) fm. (3.2.10) 
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It decreases like A-1/3 with A. Thus neutrons and protons are more effectively separated in low-mass 
nuclei. However, the excitation cross sections are smaller. The average p-n  separating distance over a 
period of vibration in a N-phonon state is p~N)= ~ lp. For 160 one finds an average p-n  
separating distance in a GDR of about p~l) _ 0.7 fm. It would be interesting to know about the response 
of the nuclear system to a N t> 2 phonon state. For N = 4 we would obtain an average p-n  separating 
distance of pt4) = 1.2 fm in 160, which is a quite high value, since this is an averaged quantity. Indeed, 
the excitation energy of such a state would be E (N=4) = 4EGD R -- 127 MeV which is exactly the energy 
necessary to separate all protons from all neutrons in 160. In the simple harmonic model, the maximum 
separating distance of the p-n  vibrations, i.e. the amplitude of the vibration, is given by d = V~p, which 
implies that in a N = 4 state the protons and neutrons would separate beyond the range of the nuclear 
forces. Since the cross sections for the excitation of this state by means of the electromagnetic 
interaction in a RHI collision with a heavy target are of orders of millibarns this process could be of 
great importance for producing neutron-rich fragments. 

The usual GDR is a one-phonon state of angular momentum l (assuming a spin zero nuclear ground 
state 10)) 

I1,1 > =c 10), (3.2.11) 

where c~ denotes the creation operator for a GDR phonon with angular momentum projection/z. The 
operators c~ and % satisfy the usual boson commutation relations. The two-phonon states 12, IM), 
coupled to good angular momentum I, M with I = 0 and 2, are given explicitly by (see e.g. [AI-75, p. 
197]) 

]2, IM) = (1/V'2) ~] (1/zl/z'llM) c;¢;,Io). 
p.p.' 

(3.2.12) 

These states are explicitly given by 

12, oo ) = (1/x/~)( 2c 1 c-+1 - co co )l 0 ) = 2v 11, o, 1 ) - ( 1/X/-3 )lO, 2, 0 ) ,  (3.2.13a) 

[2,20) =(1/V~)(CoC o + cic-+l)[O ) = 2V 1o,2,0) + (1/V'3)[1,O, 1) ,  (3.2.13b) 

12, 21) = c mcolO ) = IO, 1, 1 ) ,  (3.2.13c) 

12,22) = (1/V2)c~d(lO) = IO, 0 , 2 ) ,  (3.2.13d) 

and similarly for M = - 1  and -2 .  Here we have introduced the uncoupled normalized states 
I n  1, n o, n 1 ), where n~, denotes the number of phonons with angular momentum projection/~. Since 
for y ,> 1 the m = -+ 1 excitation amplitude completely dominates over the m = 0 excitation, we can put 
a o - 0, and a .  1 = X, to obtain the excitation probability P,-1,o,1 of the uncoupled states In_l, no, n 1 ) as 

P101 X 4 e-2x2 P o 0 2  = P 2 0 0  1 . 4 - 2 x  2 = , = 2 , , {  ~" • (3.2.14a) 

The other combinations give only a negligible contribution. From eq. (3.2.13) we obtain for the 
excitation probability P2, 1M of the angular momentum coupled states 12, IM) 
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P2 22 = P2 2 2 = IX4  e-2x2 P2 21 = P2 2 1 = 0 , , -- , , , -- , 

P 2  20  1 4 e - 2 X 2  2 4 e - 2 X 2  
, = ~ X  , P 2 , 0 0 =  ~ X  • 

(3.2.14b) 

The total N = 2 excitation probability adds of course up to the value PN=2 which has already been 
obtained above (eq. (3.2.1) with 2X 2= qb). From eqs. (3.2.14a) and (3.2.14b) we conclude that the 
ratio of excitation of 0 + and 2 + states is 1:2. 

The possible signatures of the N 1> 2 phonon states remain a speculation, specially what the specific 
decay widths and decay channels will be, like the probability of formation of polyneutrons and other 
exotic phenomena. For more details about the possible experimental identification of these states, see 
the proposals of Braun-Munzinger et al. [Br-85] and of Emling et al. [Em-87]. The study of 
polyneutrons at SIS is proposed by Hilscher et al. [Hi-87]. Yet it is interesting and necessary to discuss 
the influence of damping of the GDR motion on the excitation process in more general terms. 

3.2.3. The influence of damping: a dissipative quantum vibrator 
The giant dipole state is a very short-lived state. Being high in the continuum, it couples strongly to 

other more complicated states and eventually decays, mainly statistically by particle (neutron) emission. 
A typical width of F = 5 MeV corresponds to a lifetime of Tdecay = 10 -22. The width of the N-phonon 
(N I> 2) GDR states can be expected to be even larger. In a situation where the lifetime of a state is 
comparable or even smaller than the collision time, an essential modification of the usual description of 
Coulomb excitation has to be introduced. This was accomplished by Weidenmiiller and Winther 
[We-71]. The nuclear states are divided into bound and continuum states, direct excitation of continuum 
states as well as continuum-continuum coupling is neglected. In this case, the usual coupled equations 
for the time dependent amplitudes CN(t ) read 

o e  

ih dCN(t)dt - ~M (NIV(t)IM) ei(EN-eM)t/n CM(t) + J dt' KN(t- t') CN(t') , (3.2.15) 

where the function K N takes the coupling to the more complicated channels into account (in our 
example, the N-phonon states are identified with the bound states of the nucleus; all the complicated 
decay channels of these states correspond to the continuum, which is assumed to be excited only via the 
GDR-doorway states). This function is given in terms of the width FN(E ) by 

i f ei,,,(t_t, ) KN(t- t') - £zr dw IN(w + EN/h ) . 
- o e  

(3.2.16) 

For F N = constant, one obtains Ks( t - t ' )=- i (FN/2  ) 6 ( t - t ' )  and the coupled equations (3.2.15) 
become 

ih dCN(t )/dt = ~,  ( NIV(t)IM) e ~eN-eM)t/h CM(t) - i ( F N / 2 )  CN(t) . 
M 

(3.2.17) 

Since V(t) is very well known for the Coulomb interaction and the nuclear states [N) are assumed to be 
solutions of the harmonic oscillator with energies E N -- Nhw, the excitation amplitudes Cu(t ) can be 
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calculated from eq. (3.2.17) and the initial condition CN(-o0 ) = 8N0. For that aim, more about the 
values of the widths F N should be known. Up to now we only know that F 0 = 0 and F~ = FOD R. The 
solution for F N = 0 (N = 0, 1, 2 , . . . )  was given in the preceding section. 

As a consequence of having F N # 0, the total probability /'tot = E I CN(t)l 2 is no longer conserved 
because a flux is now put into the decay channels. Multiplying eq. (3.2.17) by C~ and its complex 
conjugate by CN(t ) and subtracting the results, we obtain for the change of the occupation probability 
PN(t) = [CN(t)[ 2, 

dfN(t) 2 { ~  e i(eN-Eu)t/h } FN f N(t) . (3.2.18) dt = h Im (NIV(t)IM) CNC  - T 

The first part of the RHS of eq. (3.2.18) describes the redistribution of the flux among the N channels 
during the collision. If only this term were present, we would have conservation of the total probability 
Ptot(t) = E N fN(t), since V(t) is Hermitian. This term leads to a change of the occupation probability 
given by 

2 ei(gN_Eu)t/~ t C,N(t) } . an(t)= ~ Im{~ (NIV(t)IM) CM(t) (3.2.19) 

The non-Hermitian part of the interaction leads to a loss out of channel N, given by 

LN(t) = (FN/h) fiN(t), (3.2.20) 

i.e., we have the balance equation 

dPN(t)/dt= GN(t)- LN(t ) . (3.2.21) 

This equation can also be written as the integral equation 

t 

fiN(t) = f e -FN(t-t')/n GN(t' ) at' + 8NO, (3.2.22) 
- o o  

where we used the initial condition fN(-oo) = 8N0. A further insight into eq. (3.2.21) can be obtained 
by summing it over all states: 

dPN(t) - ~ LN(t) (3.2.23) 
N dt N " 

Defining the flux function 

i FN fN(t') dt' FN(t = LN(t' ) d t ' =  T (3.2.24) 

the integration of eq. (3.2.23) can be written as 
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1 = E flu(t) + ~ FN(t). (3.2.25) 
N N 

Due to the exponential decay of the states with N t> 1, we have for t~oo the limit flu(oo) = 6so flo(~) 
and 

1 =/30(oo) + E FN(°°) • (3.2.26) 
N 

This means that for t ~  ~ there is a probability to find the system in the ground state given by fl0(~) and 
a probability that it has been excited and decayed through the channel N which is given by Fu(o0 ). If the 
widths F u are known, eq. (3.2.17) can be solved and from eq. (3.2.24) the contribution to the 
fragmentation through the channel N can be deduced. 

An approximate solution can be found in the case of linearly increasing widths with increasing 
energy, i.e. F u = NF. An explanation for this possibility in terms of N-particle-N-hole excitations was 
given by Baur and Bertulani [Ba-86e]. Following the classical interpretation leading to the Poisson 
distribution as discussed in section 3.2.1, the excitation probability of the state IN) is equal to the 
excitation probability of N uncoupled oscillators, each having a decay width of F. Instead of eq. 
(3.1.16), the energy transferred to a damped oscillator will be given by [see Ja-75, eq. (13.24)] 

A/~(b) ~ 2h/~ 2 Z21N2Z2 ( c ) 4  1 
s ~x - 5  

7fraNC A s  "y 

{ f  04 K21(nb/yo)dn 
×o s 7 h-rrTahS 

1 f 0 4Kzo(Ob/yv)dO 
+ J 

2EGo R a2 ZINzZ s 1 
mNC- ~ A2 -'~ g,(x, rl) K](x) + ~ go(X, rl) KZ(x) , 

(3.2.27) 

where 

rl y4K2m(rlxy) dy (3.2.28) 
gm(X, rl) = 7r KZm(X) (y2_ 1/7/2)2 + y2/4' 

o 

with x = wb/yv and r/= F/hw = F/E~o R. In terms of g,,(x, 7) the excitation probability in first order 
is, as in eq. (3.1.18), given by 

~2 ~ ~(b) = ~ + a, + a2_1, (3.2.29a) 

with 

-2 2EoDR z Z~N2Z2 KZo(x), (3.2.29b) 
= - -  a g o ( x ,  n )  

go mN C2 A 2 

and 
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a = - -  a - -  gl( x, 17) r21 (x )  • 
1 mNC2 A 2  3" 

(3.2.29c) 

The functions gm(X, 7) are plotted in fig. 3.8 for r /= 0.1 and rl = 0.3. When r/---> 0, then gin---> 1 and we 
obtain the same results as given by eq. (3.1.18). For r /~  0, then we observe that go will have the greater 
influence, specially for x ,~ 1. Since, as we saw in section 3.1.2, a o ,~ a 1 in the limit of high energies of 
collision, we expect that in this limit the influence of the widths of the states in the cross sections 
calculated in section 3.2.2 will be very small. Inserting eq. (3.2.29) in the eqs. (3.2.1) and (3.2.5) we 
find the results given in table 3.4 for the reaction 160 + 238U as a function of the laboratory energy. One 
observes that the inclusion of the widths of the states modifies appreciably the previous calculations 
only for low energies and for large N. In the limit 3' >> 1, the interaction is very sudden and the widths of 
the states have practically no influence on the excitation process. In that limit the theoretical results of 
section 3.1 are of enough accuracy for application in RHI collisions. However, if the widths of the states 
are too large, then this approach is unrealistic and, moreover, the experimental detection of those states 
will be very difficult. 

As a final remark, we observe that here the interesting possibilities are not studied, which arise in the 
channelling of relativistic heavy ions in crystals. Due to the periodicity of the crystal lattice this may 
lead to resonance effects which influence the cross sections and which may be of use for the production 
of monochromatic beams of highly energetic neutrons. An analysis of these effects is given by 
Pivovarov et al. [Pi-80, Pi-83, and references therein]. 
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Table 3.4 
Cross sections for N-phonon Coulomb excitation of 160 in the reaction 160 + 238U. The values 

-(N), (N), take (do not take) into account the widths of the states (see text) corresponding to (r c ~(r c ) 

E,.~ (GeV/nucleon) ~(:> #<," ~(o') #(?> ~<o') ~(o'> 
0.5 36 mb 34 mb 0.13 mb 0.12 mb 0.5 l~b 0.43 )~b 
2 0.14 b 0.13 b 0.81 mb 0.67 mb 4.9 )~b 3.9 ~b 

I0 0.43 b 0.41 b 2.4 mb 2.2 mb 18 ~b 16 ~b 
100 1.0 b 1.0 b 3.1 mb 3.1 mb 23 g,b 22 g,b 
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3.3. Production of pions 

Another very interesting subject is that concerning pion-production in RHI collisions. The pions 
produced are supposed to be a source of information of the violent hadronic processes occurring in the 
central collisions. As implied by the relation (1.7) more and more equivalent photons become available 
for energies E~ I> 140 MeV corresponding to the photonuclear pion threshold, as one goes to higher 
beam energies. Above this energy the total photonuclear cross section is dominated by pion production 
and can be approximated by 

[z N ] 
O'x = Aeff(o9 ) ~- O'.v,proton(O)) + ~- O'%neutron(O)) • (3.3.1) 

Experimentally it is found that Aef f is approximately independent of to, and shows a pronounced 
shadowing effect Ae, = A ~, with a = 0.6-0.9. We assume, for simplicity, 

orT,proton --- 0"7 . . . .  tron ~ Or~/p , (3.3.2) 

and take a = 0.7. Then, pion production in RHI collisions through the electromagnetic interaction can 
be approximately written as 

~(XY-~ IrXY)--- n1(E~) A~ 7 ~p(E~) ~ + n2(E~) A1 E~ 
0.14 GeV 0.14 GeV 

(3.3.3) 

where n 1 corresponds to the equivalent photon spectrum generated by the nucleus X and that will cause 
the production of pions by the interaction with nucleus Y, and n 2 corresponds to the inverse case. We 
use ~-l = M1 since the pions are mostly produced through the nucleonic excitation to a A-state, which 
we assume to be of magnetic dipole origin. But the exact treatment of the multipolarity in this process is 
unimportant, since for the relevant equivalent photon energies which lead to pion production, the 
equivalent photon numbers are all approximately given by eq. (2.5.6). We used the experimental data 
of Armstrong et al. [Ar-72] for Crp. The results of the integrations in eq. (3.3.3) is shown in fig. 3.9 for 
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Fig. 3.9. Coulomb production cross sections of pions in the reactions *°Ca + 4°Ca and 238U + 238U as a function of the relativistic Lorentz factor y. 
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the reactions 4°Ca+ 4°Ca and 238U + 238U as a function of 3' (roughly Elab/A 1 =3' GeV, for 3' ,>1). 
There is a steep increase of the cross sections until a stage where they increase approximately 
proportional to (A1Z22 + AzZ21)In 3'. The cross sections at this stage are quite large and for very heavy 
systems like 238U + 238U it even can compete with those arising from hadronic interactions. The main 
difference is that, while in a given Coulomb collision (b > R 1 + R2) the pion multiplicity can be at most 
one, in a central collision a large amount of pions can be produced. 

3.4. Dissociation of light ions in coincidence experiments 

3.4.1. Breakup of weakly bound nuclei in high-energy collisions 
The coincidence experiments for breakup of loosely bound nuclei in high-energy collisions can also 

give precious information about the structure of these nuclei and about the related photonuclear 
reactions. For instance, the cross sections for radiative capture of a-particles, deuterons and protons by 
light nuclei at very low relative energies are of particular importance for the understanding of the 
nucleosynthesis of chemical elements and for determining the relative elemental abundances in stellar 
burning processes at various astrophysical sites [see e.g. Fo-84, Ro-78]. However, the direct experimen- 
tal determination of the cross sections at astrophysically relevant energies under laboratory conditions is 
rather difficult or even precluded, mainly as the Coulomb barrier strongly supresses the cross sections 
for the reactions of interest. For example, the 3He("He, ~/) 7Be reaction, which at solar temperatures 
affects the solar neutrino flux and bears strongly on the solar neutrino problem [see e.g. Ka-84, Os-82, 
Os-84], is experimentally studied [Os-82, Os-84, Na-69] down to c.m. energies EcM = 165 keV, while the 
cross section is actually needed at EcM = 1-20 keV. A similar situation is found for the 12C(a, ~/) 160 
reaction [Ke-82, La-85] which is important for the stellar helium-burning process and where the values 
of the low-energy cross section (at EcM -- 0.3 MeV corresponding to temperatures of 2 × 108 K) are 
actually a matter of controversial discussion presently. In cases of nonresonant direct capture reactions 
the energy dependence is dominated by the Coulomb barrier penetration, which is usually factored out 
by defining the astrophysical S-factor 

S(EcM ) = EcMOVcapt e 2"¢ , (3.4.1) 

where 

= ZlZ2e2/hvcM (3.4.2) 

is the usual Sommerfeld parameter. This S-factor shows a smooth energy dependence and seems to be 
adequate for an extrapolation of the measured values to astrophysically relevant energy ranges. But in 
most cases of interest the extrapolation covers several orders of magnitude and is particularly suspect if 
resonances and subthreshold resonances are expected to be present in the considered reaction [see 
Ro-78]. In addition, the extrapolation needs often considerable theoretical support and bias, and 
despite strong efforts to understand nuclear reactions on theoretical grounds, it appears to be generally 
impossible to predict the astrophysically interesting cross sections with sufficient accuracy. 

In view of this situation, all dedicated efforts which are able to explore additional experimental 
information on the quantities determining low-energy nuclear reaction cross sections are of considerable 
interest. Recently the investigation of continuum stripping processes has been discussed [Ba-84a, b, 
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Ba-85, Ba-86f] as a possible method to overcome the problem arising from the Coulomb barrier. 
However, the method involves a theoretical reaction model which might cast some doubts on the 
results. 

Baur, Bertulani and Rebel [Re-85, Ba-86c and Ba-86d] have proposed a different approach for the 
investigation of the electromagnetic transitions between a bound state of two nuclear particles and 
continuum states at small relative energies. The proposal suggests to use the nuclear Coulomb field as a 
source of the photodisintegration processes. In fact, instead of studying directly the radiative capture 
process 

b +  c ~ a + ~ ,  (3.4.3) 

one may consider the time reversed process (a being in the ground state) 

~/+ a--~b + c.  

The corresponding cross sections are related by the detailed balance theorem 

2 

2(2ja + 1) kv tr(a + ~/~ b + c). 
o'(b + c ~ a  + 3') = (2jb + 1)(2jc + 1) k2M 

The wave number in the (b + c) channel is 

(3.4.4) 

(3.4.5) 

k 2M = 2ta,ocEcu/ h 2 , (3.4.6) 

with ~ c  the reduced mass, while the photon wave number is given by 

Ev _ Ecu + Q 
k v -  hc hc (3.4.7) 

(neglecting a small recoil correction) in terms of the Q-value of the capture reaction (3.4.3). Except for 
the extreme case very close to threshold (kcM ~ 0), we have kv ,~ kcM, so that the phase space favours 
the disintegration cross section as compared with the radiative capture. However, direct measurements 
of the photodisintegration near the breakup threshold do hardly provide experimental advantages and 
seem presently impracticable [Re-85]. On the other hand, the copious source of equivalent photons 
acting on a fast charged nuclear projectile when passing the Coulomb field of a (large-Z) nucleus offers 
a more promising way to study the photodisintegration process as Coulomb dissociation. As an example 
we cite the reactions 

7Be + 2°8pb---~ ot + 3He + 2°8pb - 1.58 MeV, 

160 -4- 2°spb----~ ot + 12C + 2°8pb - 7.58 MeV. 

Figure 3.10 indicates schematically the dissociation reactions due to the Coulomb and to the nuclear 
interaction. 

At sufficiently high projectile energy the two fragments b and c emerge with rather high energies 
(around the beam-velocity energies) which facilitates the detection of these particles. At the same time, 
the choice of adequate kinematical conditions for coincidence measurements allows one to study rather 
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d 

g,, 

Fig. 3.10. Top: Coulomb dissociation a ~  b + c in the field of a target nucleus (ZT). Bottom: dissociation due to the nuclear interaction on the target 
surface. 

low relative energies Ecu of b and c and to ensure that the target nucleus stays in the ground state 
(elastic breakup). By repeating the experiment for different projectile energies and different angular 
measurements, and by using eq. (2.7.1) one can extract the values of the photonuclear cross sections for 
each multipolarity which contributes to the breakup. A more detailed analysis of the experimental 
conditions for such experiments is shown in refs. [Ba-86c, Ba-86d, and Re-86]. The most favourable 
theoretical and experimental conditions seem to be practicable for energies around 50 MeV/nucleon. 

Another interesting possibility is the study of the nuclear matter distribution of extremely neutron- 
rich nuclei like, e.g., nLi. Some high-energy experiments [Ta-85a, Ta-85b, HK-87] for the breakup of 
such nuclei are beginning to be available, and seem to be a very promising field of study of such nuclei. 
Nevertheless, these experiments up to now have been inclusive ones, i.e., only one fragment is 
observed. Therefore, a summation has to be done over all unobserved channels, leading to a partial loss 
of information about the process. More useful would be the exclusive experiments, where the 
dissociation process of the projectile is separated from the background of other reactions by means of 
the coincidence detection of the two outgoing fragments together with a simultaneous measurement of 
their energies. Perhaps, one could also determine the momentum transfer in these reactions by a 
measurement of the recoil energy of the target nucleus. Although these experiments are much harder to 
perform in high-energy collisions, they certainly seem to be realisable and there are some experimental 
proposals in this direction [see, e.g., Re-87, Ge-87, and Br-85]. 

Next, we shall use some simple assumptions about the structure of the weakly bound nuclei 
composed of two clusters, disregarding some more specific details, for the sake of simplicity. We use the 
diffraction dissociation theory to account for the nuclear interaction. This theoretical approach has been 
introduced by Akhiezer and Sitenko [Ak-57], Glauber [GI-55], and Feinberg [Fe-55], to describe the 
dissociation of high-energetic deuterons. Also important in this context are the so-called stripping 
reactions in which one of the clusters of the projectile suffers a strong inelastic collision with the target 
while the other is diffracted inelastically [GI-55]. The cross sections for the stripping reactions depend 
much more on the exact knowledge of the nuclear structure and can be only approximately calculated 
[Ffi-70a, F/i-70b]. The following study is complementary to several works on the fragmentation of 
relativistic particles. We refer, for example, to the works of Hiifner and Nemes [Hii-81], Ffildt [Ffi-70a], 
and of Evlanov and Sokolov [Ev-86a, Ev-86b]. 
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3.4.2. Amplitudes for diffraction and Coulomb dissociation 
The amplitude for the dissociation of the incident projectile on a target nucleus, assumed to stay in 

its ground state, in the eikonal approximation is 

ik ( eiQ. o f~(q, Q) = ~--~ d2b Fd(b), (3.4.8) 

where k is the centre of mass momentum of the projectile, Q is the momentum change in the scattering 
(Q = 2k sin(0/2)---kO, where 0 is the scattering angle of the centre of mass), q is the relative motion 
momentum of the outgoing fragments, and k I and k 2 are the momenta of the corresponding clusters 
with masses m 1 and m 2, respectively. In non-relativistic collisions q = (m2k ~ - mlk2)/(m 1 + m2) , while 
for high-energetic collisions q can be determined by the invariant mass of the two fragments. F0(b ) is 
the profile function for the dissociation. In the approximations we will use, it contains contributions 
from diffraction dissociation on the target surface, and from Coulomb dissociation for impact 
parameters b larger than the sum of the nuclear interaction radii. Assuming a sharp boundary target, it 
can be written as Fd(b ) =/'N(b) + Fc(b)i where FN(b ) vanishes for b > R and Fc(b ) vanishes for b < R. 
Therefore, we obtain 

fd(q, Q) =fN(q, Q) + fc(q, Q)" (3.4.9) 

The total dissociation cross section is given by 

dcr = IL(q, Q)I 2 dg2 d3q/(27r) 3 , (3.4.10a) 

where 

dO = (2zr/kZ)Q dQ (3.4.10b) 

for high-energy collisions. 
The relative motion of the clusters within the projectile is described by the wave function 

~i(r) = ~f~/2zr e-" / r ,  (3.4.11) 

where ~7 = W~t xelh: is determined by the separation energy e of the clusters (1 + 2) and /z is the 
reduced mass of the system (1 + 2). The relative motion of the clusters released after the disintegration 
of the projectile is described by the wavefunction 

1 e -iqr 
~bi(r) = e is'" + • (3.4.12) 

lq - 77 r 

These wavefunctions correspond to the assumption of zero-range nuclear forces between the clusters in 
the projectile. They are very useful because most of the following calculations can be performed 
analytically. An extension to the use of more realistic wavefunctions is straight-forward. They form a 
complete set of orthonormal functions satisfying the relation 
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a f  ~bi(r ) ~b*(r') + ~ ~bf(r)~(r') d3q = 8 ( r -  r ' ) .  

The use of the above wavefunctions presupposes a simple model, where the Coulomb repulsion 
between the clusters are not taken into account (as would be important in systems like a + 3He, d + 
p , . . . ) .  The Coulomb repulsion between the clusters must lose its importance for high relative motion 
after their dissociation. 

By using the energy and momentum conservation laws, we can also express eq. (3.4.10a) in terms of 
coincidence cross sections which are of interest in inclusive experiments. One finds 

d3o" _ t z k l k 2  

dO~ dO E dE z (27r)ah z k Ifd(q, Q)l z , (3.4.13) 

where O 1 and O 2 are the solid angles of emission of the two fragments, and E 2 is the energy of one of 
them. But, since the theoretical analysis is more transparent by using the variables q and Q, we shall 
keep them, and use eq. (3.4.10) in what follows. 

The amplitudes for diffraction dissociation of deuterons by a black nucleus were calculated by 
Akhiezer and Sitenko [Ak-57]. The extension to the dissociation of other weakly bound nuclei gives 

fN( q, Q) = ikR{ J~ ( QR ) [F(-fl2Q' q) + F(fllQ, q)] 

ikR2 f d2Q, JI(Q 'R) Jl(IQ - Q'I R) } 
2~r Q' IQ- Q'I F(fllQ- Q'' q) ' (3.4.14) 

where fll = m2/(ml + m2), f12 = m~/(m~ + m2), R = 1.2A 1/3 fm is the radius of the target nucleus, and 

F(Q, q) = ~ d3r ~b~ (r) e iQ'r ~bi(r ) 1 
= 8V~--~ ~12+(Q_q)2 

1 [q+o+i:]} 
+ 2Q(i~7- q)In q -  Q+  . 

(3.4.15) 

The first term in eq. (3.4.14) corresponds to the impulse approximation, i.e., the independent scattering 
of separate clusters by the target. The second term corresponds to the simultaneous scattering of the 
clusters, also called by eclipse term. In order to describe the differential cross sections, we shall keep the 
impulse approximation, which gives reasonable results for small scattering angles. But, in order to 
obtain the total diffraction cross sections we have to include this term, since it decreases more slowly 
with increasing Q, and becomes the dominant contribution to the scattering amplitude (3.4.14) for 
larger values of Q. 

The amplitude for Coulomb dissociation is given by eq. (2.3.14), which we shall multiply by a factor 
in order to have the same normalization for fc and fs. We shall restrict ourselves to the electric dipole 
and to the electric quadrupole modes, which are the most important ones. We obtain 

f c (q ,Q)=iz la  k i m V ~ + I X m ( R )  E~,, V M(El, m), (3.4.16) 

where 



348 C.A. Bertulani and G. Baur, Electromagnetic processes in relativistic heavy ion collisions 

h(.o = E ~- Eq  = (h2/2tz)(rf + q2) (3.4.17) 

is the sum of the absolute value of the binding energy and the kinetic energy of the relative motion of 
the separated clusters. The functions Get m are tabulated in the appendix A, and Xm(R) is given by eq. 
(2.3.12) with qv = Q" 

The functions M(Elm) are given by eqs. (2.1.14). Since the energy transferred to the dissociation of 
clusters (1 + 2) is rather small, we can use the so-called long-wavelength approximation, and obtain 

f *  ' Ytm(h~) ~bi(r ) d3r, (3.4.18) M(Elm)= ~ Zke Of(r) r k 
k = l , 2  

where r I = t i l t ,  r 2 = -/32r and h 2 = - h  1 are the position and direction of orientation of the clusters 1 
and 2 in the centre of mass of the projectile, and Z k are their respective charges. Inserting the 
wavefunctions (3.4.11) and (3.4.12) in (3.4.18), expanding it in multipoles, and using the integral 

f _ l!(2q) t 
e -'7' r/+1 jt(qr) dr (rf + q2),+l , 

0 

we obtain 

l 

qq2),+l Y,m(O)" M(Elm) = e 2~/~--~l(-i)tl!2t+l[ Zlflt! + (-1)lZzflt2l (r/2 + (3.4.19) 

We observe that for fllZ1 = flzZ2 there will exist no electric dipole contribution to the Coulomb 
dissociation. This is a well-known result and can be readily understood: in this case the electric dipole 
field pushes the two clusters with the same acceleration in the same direction, and does not lead to their 
separation. In such situations the E2 multipolarity will be the most effective one for dissociating the 
projectile. This result is a direct consequence of the assumption of a cluster-like structure for the 
projectile. For more complicated nuclear wavefunctions a deviation from this result is to be expected. 
For example, in the reaction 3,+ 1 6 0 ~ a +  12C one indeed finds experimentally an appreciable 
suppression of the E1 multipolarity, but not completely. In fact, it is found that both multipolarities 
play important roles in such reaction [see, e.g., Re-85]. 

As an application of the formulas above, we plot in figure 3.11 the differential cross section 
d4tr/d3q dQ for the dissociation of the simplest cluster-like nucleus, i.e., the deuteron, incident on 2°8pb 
with energy E d = 200 MeV. We take q = r/, Q = 1/R and 0 = 90 °, corresponding to the emission of the 
fragments perpendicular to the beam, in the reference frame of the projectile. Sq is the angle between Q 
and the component of q perpendicular to the incident beam. We observe that the Coulomb contribu- 
tion, C, is approximately proportional to cos Sq. The nuclear contribution, N, and the interference, 
CN, between them, are also shown. The interference tends to be destructive, oscillating around zero 
with approximately the same amplitude. This is a common trend, valid for all values of q and Q, as can 
be easily checked by using the formulas developed above. 

Next, we shall integrate eq. (3.4.10) over the angular distribution Oq of the relative motion between 
the fragments. We obtain the differential cross section d2tr/dq dQ, which can be related to dZtr/ 
dEq d O ,  where Eq is the energy of the relative motion of the final fragments and 12 is the solid angle of 
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Fig. 3.11. The differential cross section d~/d3q dO for the dissociation of the deuteron, incident on 2°apb with energy E d = 200MeV. We used 
q = ~h Q = 1/R and 0 = 90 °. ~bq is the angle between Q and the component of q perpendicular to the incident beam. 

scattering of their centre of mass. By using the impulse approximation, and eq. (3.4.15), we find for the 
nuclear contribution, after performing some simple integrals, 

d20"N { 1 
dq d------Q = 8qZR2 -Q j2(QR) [7/2 + ( q + fit Q)Z][r/2 + (q -/3~ Q)2] 

+ 
[r/2 + ( q + flzQ)2][rl 2 + ( q - flzQ) 2] 

+ M 
2qQ(rl2 + q2 + fl, flzQ2) q M) M (~?N- -~ 

+ 4qQ2(q2+ 2 )  

+ 402(q2 + r/2) + N 2 , (3.4.20a) 

where 

1 ln[rlZ+(q+fllQ)2]+ 1 ln[rl2+_(q+~2Q) 2] 
M= -~ 772 + ( q - f l ,  Q)2 -~ r/2 +(q_f l zQ)Zj ,  (3.4.20b) 

and 

1 ( 2fllrlQ ) 1 { 2fl2r/Q ) 
U = ~ arctan t-~2.,'~2 2 ~22 " 0 2 ~  -- q -- rt P l ~  --  q - 2 + arctan/~2..-.-~---~- 2 " (3.4.20c) 

The Coulomb contribution is easily obtained from the orthonormality of the spherical harmonics and 
one finds after inserting eqs. (3.4.16-3.4.19) in eq. (3.4.10a), integrating over g2q, and summing over 
m ,  
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d20rc d20rE1 d 2 E 2  

dq d-Q - dq dQ + dq d-----Q ' (3.4.21a) 

where 

d20"El 
dqd -128--  v (13'ZI-&ZD2nQR" X l+X2 (q%°/c)2 (,q2 + q2)4 ' 

and 

(3.4.21b) 

dq dO 15 3, 2 (3~Z1 + ~Z2)277QR4 
+ (2-- U2 2 2 3X2o] qZ(q___~/c) 4 

XI+  (r/2 + q-- " 
(3.4.21c) 

The El-E2 interference is lost after the integration over g2q. However, in coincidence experiments, 
where d4tr/d2q dQ is measured, the El-E2 interference is important. 

The interference term between Coulomb and nuclear amplitudes can be found by computing 
numerically the integral in the expression 

dZo.cN_ qZQ f ( f ,  + , 
dq dQ (27r)Zk 2 f .  fc) dOq, (3.4.22) 

In fig. 3.12 we plot d2oddqdQ for the reaction d+2°spb-->n+p+ 2°spb, at deuteron energy 
E d = 200 MeV, for q = 77, and as a function of QR. The Coulomb, C, the nuclear, N, and the 
interference, CN, contributions are shown separately. One observes that the Coulomb contribution is 
peaked at low values of Q. Actually, it peaks around Qc "x --- to/yv, so that for increasing beam energies 
the peak moves to lower values of Q, i.e., to more forward angles, and will also increase in height. This 
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Fig. 3.12. The double differential cross section dZ~r/dq dQ for the dissociation of the deuteron, incident on 2°sPb, with energy E d = 200 MeV, for 
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is in contrast with the nuclear contribution, which within our approach will always extend to large 
values of Q, being peaked around QN aX= 1/R. This behaviour may help to separate the nuclear and 
Coulomb dissociation from the measurement of the scattering angle of the centre of mass of the 
two-cluster system in intermediate energy collisions. Unfortunately, with increasing energy both nuclear 
and Coulomb dissociation will lead to very forward angular distributions, with O max= 1/kR ~ 1, what 
makes the experimental measurements very difficult to proceed. For Z~Z2a >~ 1, the effects of Coulomb 
repulsion between the projectile and the target will considerably change the Q-dependence of the 
Coulomb dissociation amplitude. A study of these effects based on semiclassical calculations has been 
performed in section 2. In the present context, it implies the use of Coulomb distorted waves, instead of 
plane waves, in the calculation leading to the amplitude (3.4.16). Nevertheless, the relative behaviour 
between the Coulomb and nuclear angular distributions remains qualitatively the same. 

In fig. 3.13 we plot d2tr/dq dQ for the same reaction as above, as a function of qh7 and for Q = 1/R. 
As a general trend, for fixed Q, the Coulomb dissociation is more pronounced for q = 7, decreasing 
very fast for large values of q, while the nuclear dissociation peaks for q = Q and decreases slowly with 
increasing values of q. In both figs. 3.12 and 3.13 we see that the Coulomb plus nuclear interference are 
very small, being some orders of magnitude smaller than the nuclear or the Coulomb contribution. 

3.4.3. Cross sections for the dissociation of weakly bound nuclei 
Inserting eq. (3.4.14) in eq. (3.4.10) and using the orthonormality conditions of the wavefunctions, 

the integration over q can be easily performed in the impulse approximation. One gets 

dtr N 

dO 

which gives 

do N 
dQ 

20.2 {I d3rl  r'121e' °r+e i 2°'l 2- I  3rl  r,12  2} 
a 

40.2,  QR,{1+ arctan/ )2 2 1 ' arctan( )]/ [ arctan( )+  
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Using eq. (3.4.23) we find that for , 0 ~ ,  corresponding to infinite binding energy of the clusters, 
d O-N/d Q ~ 0. For ,0 ~ 0, corresponding to very loosely bound nuclei, 

do N 47rR 2 j21(QR ) 
dQ ' --Q--- 

which means that in this case the total nuclear dissociation cross section will be just the sum of the 
elastic diffraction cross section for each cluster separately. Both limits is what one expects from the 
simple arguments of the diffraction dissociation theory. But, for large values of Q the impulse 
approximation is not more reasonable: the second term of eq. (3.4.14) will increase in importance for 
Q ~> ,0. Therefore, to obtain the contribution of the diffraction dissociation to the total dissociation cross 
section, one has to integrate eq. (3.4.10) numerically by using eqs. (3.4.14) and (3.4.15). 

By using the integral 

fgZQdQ REf , . 2 / w R  ) R E = X l k m l - ' - ~ X  d x = - ~ - [ K m + l ( ~ ) K m _ l ( ~ ) - K ~ ( ~ ) ] ,  
1 

(3.4.24) 

where ~ = wR/yv, we find for the Coulomb dissociation 

dtr  c dO'E1 d~rE2 
- - -  - -  + -  (3.4.25a) 
dq dq dq ' 

with 

2 2_~q4_ 2 4 [ ~KoK1 v2~2 dO'El-128Z~a2(c)(fllZ'-f12Z2)2(,0 + q )  (K21 - K~)] 
2C 2 ' 

(3.4.25b) 

and 

dtrE2 
dq 

4 "0q6(0)/C)2 
51215 Z2Ot2(C~T \ O J (/~21Zl + j~2222)2 (,02 + q2)6 

2 2 ( 2 _  ~)2~Ko K ' ~204 (3.4.25c) 

The total Coulomb dissociation cross section tr c = trE1 + O'E2 can be obtained by a numerical integration 
of eq. (3.4.25). 

In fig. 3.14 we show the Coulomb and nuclear dissociation cross sections for the reaction 
7Be + 2°8pb~ ot + 3He + 2°spb as a function of the laboratory energy per nucleon of the 7Be projectile. 
In the calculation of the Coulomb dissociation cross sections we use R + 7rZiZ2e2/maeo2y, instead of R, 
as the minimum impact parameter, to account for the Rutherford bending corrections (see section 2.7) 
at energies ELa b per nucleon ~<100 MeV. We observe that the E1 contribution is larger than the E2, and 
also than the nuclear dissociation. In such a case the study of the experimental data is simplified, since 
one can disregard the nuclear dissociation and assume all being due to the Coulomb dissociation, which 
is more accurately described. 
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Fig. 3.14. Dissociation cross sections for the reaction 7Be + 2°sPb--+a + 3He + ~°sPb as a function of the laboratory energy per nucleon of the 
7Be-projectile. a N represents the nuclear diffraction dissociation, trc(E2 ) the contribution of the electric quadrupole multipolarity to the Coulomb 
dissociation, and ~rc(E1 + E2) is the sum of the electric dipole and of the electric quadrupole contributions. 

In fig. 3.15 we plot the values for the dissociation cross section in the reaction 6Li + 2°8pb---> a + d + 
2°8pb. In this case, and within the simple cluster model, the E1 component of the Coulomb dissociation 
vanishes and only the next component, E2, will be effective in order to dissociate the nucleus. This 
makes the Coulomb cross section smaller than the nuclear one and the separation between these two 
contributions has to be measured on the basis of the angular distributions, as discussed in the last 
sections. 

One observes in figs. 3.14 and 3.15 that the Coulomb cross sections increase with energy up to a 
maximum around approximately 100 MeV per nucleon, afterwards it decreases a little and then begins 
to increase with energy again, approximately proportional to ln(E, ab/A ), for very high energies. This 
behaviour was also found in the cross sections for the excitation of giant resonances, as for example in 
fig. 3.3. The reason for that lies in the fact that the effects of Rutherford bending and of Lorentz 
contraction compete in the region of some hundreds of MeV per nucleon. With increasing energy, the 
nuclei come closer together, where the fields are stronger, which increases the probability that they will 
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Fig. 3.15. Same as fig. 3.14, but for the dissociation reaction 6Li + 2°sPb~ a + d + 2°sPb. 
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get Coulomb excited. That is the reason why the cross sections increase with energy for Ela b 

100 MeV/nucleon. Above these energies the trajectories are approximately straight lines, and since the 
collision time decreases with energy, the momentum transferred from the electromagnetic field to the 
internal degrees of freedom of the nuclei diminishes. That is the reason for the decreasing of the cross 
sections for Ela b ~ 100 MeV/nucleon. But this effect will not continue for too high energies because the 
electromagnetic field becomes contracted and stronger by a factor equal to the Lorentz parameter, % 
i.e., E~-yZe2/b. Since the momentum transfer is proportional to the product of the strength of the 
electromagnetic field and the collision time, which is approximately Ate--b/yc, it will be constant, 
independent of the beam energy. These simple arguments work ,for impact parameters up to a 
maximum value given by the adiabatic cutoff b = yc/to, where hto is the excitation energy. That is the 
reason for the logarithmic increase of the cross sections for relativistic energies. 

One interesting application of the fragmentation of cluster-like nuclei is the possibility of deducing 
information on the neutron skin of neutron-rich nuclei. For example, the reaction lILi + X-~ 9Li could 
give information about the possible stability of the di-neutron system in the presence of a nuclear core. 
It has been suggested [Ha-87, Mi-72] that the force between two neutrons, itself too weak to form a 
bound system, under the influence of another nucleus can lead to a bound state of two particles: a 
di-neutron system and a nuclear core. The binding energy of the two neutrons in 9Li is about 
190- + ll0keV. Assuming that ltLi possesses the above mentioned cluster-like structure we find the 
values tr c = 2.4-12 b for the Coulomb dissociation cross section in the energy range Eq = 80-300 keV, 
respectively, in the reaction llLi+ 2°8Pb~2n+ 9Li+ 2°8pb at llLi-energies of 0.8 GeV/nucleon. For 
the diffraction dissociation one finds o" N --- 210-662 mb. Recently, the reaction H L i ~  9Li at this energy, 
on lead targets, has been performed at the LBL BEVALAC by Tanihata et al. [Ta-85a, Ta-85b, Ko-87]. 
They found the total cross section of about 9.5 barns. One important contribution to this cross section is 
the stripping of the neutrons from the 11Li.nucleus. It is about the same order of magnitude as the 
Coulomb dissociation and depends much more on the assumptions about the neutron excess on the 
surface of that nucleus. Therefore, the knowledge of the Coulomb dissociation cross sections and of the 
experimental values for the inclusive reactions are of great importance for the study of the tail of the 
nuclear matter distribution. By using several targets and beam energies, one can separate the Coulomb 
and stripping contributions (diffraction dissociation is of little importance in this case) in these reactions 
due to their different dependence on the nuclear parameters. 

Precise coincidence experiments for the dissociation reaction of weakly bound nuclei at high 
bombarding energies are only at a beginning. As discussed above, such exclusive experiments would 
give valuable information on photodisintegration reactions, or indirectly, of radiative capture reactions 
of astrophysical interest, and also about the distribution of the nuclear density in the nuclear surface. At 
high energies both electromagnetic and the nuclear interaction between projectile and target will be 
important. Far from being a drawback, this can be of utility to extract complementary information 
about these different reaction mechanisms in the peripheral collisions. A decomposition of these 
mechanisms from the analysis of the angular distribution of the fragments, or from the dependence of 
the cross sections on the energy, charge, and mass parameters, is possible in accurate measurements. In 
the case of electromagnetic dissociation this decomposition can tell us about the relevance of each 
multipolarity in the dissociation reaction. 

We have done very simple assumptions regarding the structure of the nuclei, and pointed out the 
main theoretical considerations for more complicated calculations. More specific structure effects, like, 
e.g., resonances, are expected to appear on a background parametrized by the above equations. The 
availability of experimental data in the near future will certainly raise interest on the detailed 
investigation of such effects. More details of the above calculations can be found in ref. [Ber-87c]. 
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4. Coulomb production (Primakoff effect) 

In section 4.1 we will show a beautiful example of the application of the theory of relativistic 
Coulomb excitation. It consists in the excitation of composite particles (e.g. baryons, mesons) in the 
Coulomb field of a target nucleus. The original idea was set in by Primakoff [Pr-51] who calculated the 
cross section for photo-production of ":r ° in nuclear electric fields and suggested the measurement of it as 
a way to determine the mean lifetime of the "rr ° particle. As an example of this technique we shall 
specially study the case of the measurement of the lifetime of the E0 particle. A direct measurement of 
it in a bubble chamber is hopeless with the experimental technique available nowadays since the Eo 
decay is electromagnetic, and the lifetime is of order of 10-19 S which produces a too short track to 
measure directly. Besides, the width of the decay is of order of 10 keV, much smaller than the resolution 
presently attainable. An indirect method is nonetheless possible by measuring the cross sections for the 
inverse process: electromagnetic production of E°'s in the field of a heavy nucleus. This process is 
commonly referred to as Coulomb production or as Primakoff effect [see Dr-62 and Po-61]. 

In section 4.2 we study the production of a neutral particle by means of the two-photon mechanism in 
RHI. There we also make a comparison with the similar process in electron-electron or electron- 
positron colliders. 

4.1. Study of particle properties with relativistic Coulomb excitation 

4.1.1. Coulomb excitation of a hadron: an example of application 
In an experiment at CERN by Dydak et al. [Dy-77], a highly relativistic (E~a b = 20 GeV) A beam was 

scattered on a nuclear target, where ~0 hyperons were produced at forward angles in the nuclear 
Coulomb field: 

A + Z---, E ° + Z .  (4.1.1) 

The ~0 were detected through their decay I£ °---> A~, which is by far the dominant decay mode of the ~0 
particle. The cross section for the ~0 Coulomb production can be expressed in terms of the magnetic 
transition moment/ZAX0 or the g0 lifetime. This is especially interesting since it allows for a test of the 
SU(3)navour properties of the strong and electromagnetic interactions. Ignoring the strong violations of 
SU(3), the unitary symmetry scheme introduced by Gell-Mann proposes that the elementary particles 
may be represented as tensors in a generalised isospin space (eightfold way), and that the strong 
interactions are invariant under unitarity transformations in this space. The electromagnetic current will 
also have definite and nontrivial transformation properties under SU(3) and this makes it possible to 
derive a number of useful consequences of the symmetry for electromagnetic interactions of hadrons. In 
fact, Coleman and Glashow [Co-61] deduced in this way values of all the A, ~, and ~ magnetic 
moments, including the A---> ~0 transition magnetic moment which determines the rate of ~0 decay into 
A + ~, from the neutron and proton magnetic moments. They obtained the value 

/ZAX0 = (X/-3/2)/Z n = -- 1.65/ZN, (4.1.2) 

where/z, is the neutron magnetic moment a n d / ~  = eh/2mnC is the nuclear magneton. One can also 
make use of quark models for the baryons to obtain/ZA~0. In the simple model of Lipkin [Li-81], one 
assumes that the baryons are s-wave states of quarks, antisymmetric in colour and symmetric in spin, 
space and flavour. The wave functions for ~0 and A are 
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= 2x/ luq'dl's$> - l x / T 7 6 1 ( u S d $  + u,l,d~)sl'>, 

IA> = lx/TT l(uSd$ - 

(4.1.3) 

where ul', for example, is the wavefunction for a spin-up u quark. The AZ ° transition moment in terms 
of the quark wavefunctions is given by 

i 
(4.1.4a) 

where/2 is the magnetic dipole operator. By using the same quark models for the neutron and proton 
we can express the result above in terms of the magnetic dipole moments of the proton and the 
neutron; 

]./,AZ0 = ( W ~ / 5 ) (  ~n - -  ~ p )  = - -  1 . 6 3 / X  N , (4.1.4b) 

which differs very little from the value (4.1.2). 
The AZ°-conversion cross section in the field of a nucleus was calculated by Dreitlein and Primakoff 

[Dr-62] and by Pomeranchuk and Shmushkevich [Po-61]. In these calculations, nuclear form factor and 
absorption are taken into account in a rather complicated method. We shall show that their final results 
can be obtained with the help of the much simpler Coulomb excitation approach of section 2.4, where 
the nuclear absorption is included from the outset, and no nuclear form factors enter any longer. 

According to eq. (2.4.2), the angular distribution for the process (4.1.1) can be expressed in terms of 
the B(M1) value of the A ~ Z  ° transition as 

do- 16zr 2(Zato~ 2. B(M1) 
d O -  9 qA \ - - -~]  lxl(R)]2 e2 (4.1.5) 

where PA = hqA is the momentum of the incident A beam, and hto is the energy of the virtual photon 
absorbed by the A in its rest frame: 

hto 2 mA)C /2m:~o. : (mv;o - 2 2 (4.1.6) 

The B(M1) value is related to the transition magnetic moment/zA~O and to the lifetime ~'~o by 

2 
9/ZA~0 _ 9h 

B(M1) = a r t  167r(to/c)3,rxo " (4.1.7) 

From this relation and eq. (4.1.4b), we find ~'zo = 7 x 10 -20 s. 
The angular distribution is given by quantal diffraction effects through the function (see eq. 2.3.12) 

f RE x,(R) = x J,(qTx) K,(qeX ) dx - 2 ~:-----'-'-~ [~ J,(7/) K2(~) - 7} J2(*/) KI(~)], (4.1.8) 
7} + 

R 

where 

7} = qT R = qA R sin 0 ,  and ~ = qe R = toR/3,v. (4.1.9) 
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The momenta qr and qe are, respectively, the transversal and the longitudinal momentum transfer in 
the laboratory frame of reference. 

By means of eqs. (4.1.6) and (4.1.8), we can rewrite eq. (4.1.5) as 

do" 327r 2 

dr/ 9 
_ _  ( Z a ~ R )  2 B ( M 1 )  d r 0 / ,  s ¢)  

e 2 d~/ (4.1.10) 

The function 

df(s  ¢, '0)/d'o = rI[x,(R)/R2] 2 (4.1.11) 

is plotted in fig. 4.1 for s ¢ = 0.1, 0.2, 0.5, and 1. The values are normalised so that df/d~7 = 1 for r /= 1. 
To obtain the real values one must multiply df/drl by the corresponding factors for each s ¢. Since for 
relativistic collisions qA R >> 1, the peaks of the angular distribution will occur for ~7 = s ¢, which means a 
maximum scattering angle Oma x = ~/qA R ~ 1, SO that the cross section will be strongly forward peaked. 
Nonetheless, for exact forward scattering (O = 0) the angular distribution vanishes. This is a characteris- 
tic of all magnetic multipole excitations in relativistic Coulomb collisions, as was shown in section 2.4. 
Inserting eq. (4.1.7) in eq. (4.1.10), and approximating eq. (4.1.8) for small scattering angles, we 
obtain 

n,-a,2 r 3  3 0 2  da ~z~ an m~o 1 
d---O = (m2~0 2 \ 3  4 - - ,  (4.1.12) 

- ma)  c [0 2 + (oJ/ycqAf] 2 

which agrees with the result obtained by Dreitlein and Primakoff [Dr-62, eq. (35a)], apart from 
irrelevant additive factors. While those authors obtained this result in a more complicated approach, we 
observe that it can be reached in a very simple and transparent way as shown above. 
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Fig. 4.1. Angular distribution of the inelasti~lly scattered particles after a magnetic dipole exaltation. The values are normalized so that df /d .#  = 1 
for ~ = l. To obtain the absolute values one must multiply df/d~ by the corresponding factors shown in the table for each ~. 
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The total cross section is obtained by integrating (4.1.10) over r~; 

~rAXO=8~r(Za)2[(KoK, ½~2(K2 ~ 2 2 2 - _ K o ) ] # A x o / e  , 

where the K's are functions of ~. For ~: ~ 1 we have 

(4.1.13) 

2 ~,- 2,-72 ~3  3 
OrA£° = 8qT(Zo~)  2 t£A5-0 ~ IOq'/" ,~  a n  m x o  c5 

7 -  In ~ = ,---T----TTT-X-- In - (4.1.14) 
tmxo - m A )  C ¢:£o ~ ' 

where B = 0.681.. .  
The only parameter which enters into this calculation is the nuclear absorption radius, which we 

assume to be R = 1.2 x A ~/3 fro. 

4.1.2.  C o m p a r i s o n  with e x p e r i m e n t  

The first measurements of the lifetime of the E0 particle were done by Dydak et al. [Dy-77], which 
measured the cross sections for the process (4.1.1) with a A-beam with laboratory energy of ---20 GeV. 
They used 238U and 58Ni as targets, and their results are shown in fig. 4.2. The solid line represents the 
use of eq. (4.1.13), together with the value of/ZAX0 given by eq. (4.1.2). From these figures one can see 
that the above theory is in agreement with the analysis of Dydak et al. They obtained the value 
ZA~0 = (5.8 -- 1.3) X 10 -20 S, which agrees with the theoretical predictions. 

The essential reason for overcoming the large excitation energy mx0 - m A = 76.86 M e V / c  2 is the high 
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Fig. 4.2. Total cross section of the Coulomb production a ( A ~ X  °) as a function of the momentum of the A~t-pair from the decay of X °, for (a) a 
uranium target and (b) a nickel target. The full line corresponds to eq. (4.1.13) with ~-x0 = 0.7 x 10 -19 s. 
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value of 3/. For 3' =20, as was the case in this experiment, the distance d where the adiabacity 
parameter ~ = tod/yv becomes equal to 1 is given by d = 50 fm; i.e. the area which contributes to the 
electromagnetic excitation cross section is much larger than the nuclear geometric cross section. 

This experiment has been recently [Pe-85, Pe-86] redone at Fermilab with a A beam of P A -  
200 GeV/A incident on nuclear targets with Z = 4, 50 and 82. These experiments show the expected 
logarithmic increase of the electromagnetic cross section with energy. In table 4.1 we make a 
comparison of their experimental data with the result obtained by using eq. (4.1.14). The agreement is 
quite good, within the experimental errors. This is more clearly seen in fig. 4.3 where we show the ratio 
between the experimental and the theoretical values. 

One could also think in obtaining information on the different contributions of the M1 and of the E2 
excitation of a nucleon to a A-resonance by measuring the total Coulomb cross section for this process 
in the collisions of nucleons and high-Z nuclei at relativistic energies, in the same way as was done in 
the experiment of Dydak et al. The differential cross section for the E2 excitation can be calculated by 
eq. (2.4.2), also analytically, and has a very different behaviour as compared to the M1 case. But the 
experimental detection of this process would be very difficult due to the background of contributions 
from strong interactions. 

There are also other examples, where the Primakoff effect is used to study the interaction of photons 
with unstable particles. Quite recently [Ant-87], the vertex ,/-o 3at has been investigated in the reaction 
of pion pair production by pions in the nuclear Coulomb field 

'rr- + Z--->'rr- +rr° + Z 

in the region of low-invariant-mass of the ~r-'rr ° system. A highly relativistic 40 GeV pion beam has been 
used. This is interesting in the context of the so-called Chiral anomalies. 

In a similar experiment the polarisability of the at- has been measured [Ant-83, Ant-85]. The 
Compton effect on a pion was studied in the reaction 

'rr- + Z--->'rr- + 'y + Z .  

Table 4.1 
Cross sections for Coulomb production of 2 ° on several targets by 
means of A particles with incident energy E,a b = 200 GeV. The ex- 

perimental data are from ref. [Pc-86] 

Experiment no. Target Z trAX ocxp (mb) O'Ax0th (mb) 

1 4 0.068 -+ 0.048 0.0274 
2 4 0.023 -+ 0.025 0.0274 
3 50 2.65 + 0.64 3.51 
4 50 3.48 -+ 0.36 3.51 
5 82 8.17 -+ 6.45 8.99 
6 82 9.22 -+ 0.82 8.99 
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Fig. 4.3. Ratio of the experimental data on X ° production in the 
reaction A + Z ~ X ° +  Z and the theoretical calculation based on eq. 
(4.1.14) (see table 4.1). 
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From this the cross section for the elastic 7r- photon scattering was deduced; this in turn, could be 
related to the pion polarisability, and it was found that a n = (6.8 -+ 1.4) × 10 -43 c m  3. This quantity is of 
great interest in the study of hadron properties. 

As another possibility we mention the study of the production of resonances in the interaction of real 
photons with the equivalent photons of the Coulomb field. At KEK (N. Sasao et al., Tsukuba, as 
mentioned in ref. [Ya-87]) the production of axion-like particle is investigated in this manner. On the 
original suggestion of Primakoff [Pr-51] the ~r°-lifetime was measured in the process 3' + Z ~  0 +  Z 
[Br-74]. 

4.2. Two-photon collisions 

An extensive program of 3'-3' physics is going on at high-energy e +e- colliders. The dominant graph 
is shown in fig. 4.4. The charged particles e + and e-  emit virtual (or equivalent) photons which collide 
to form a neutral system X with charge parity C = + 1. There exists a vast literature on this subject, the 
properties of the virtual 3'% are calculated in great detail and the cross sections in e + e- collisions are 
directly related to the corresponding 3'-3' cross sections (see [Bu-75, Fi-80, and Br-71], where many 
further references are contained). An early result is due to F.E. Low [Lo-60] where the measurement of 
the ~r°-lifetime by 0 production in e+e - or e e collisions is proposed. Using a variant of the 
equivalent photon method, the cross section for the process e - e + ~  e -e+X is found to be related to the 
cross section for 3' + 3 '~  X by (we use the notation of ref. [AB-86]) 

= n f dto f(to) d%_,x(tos), (4.2.1) 

with 

s = (Pl + P2) 2 , "O = ~ In = -- In y ,  (4.2.2a) 
~r 

and 

f(to) = (1/to)I(2 + 0) 2 In(1/to) - 2(1 - (o)(3 + to)]. (4.2.2b) 

e + e + 

e -  e -  

Fig. 4.4. Production of neutral C = +1 states X in the collision of two charges particles (e.g., e+e -) via the two-photon mechanism. 
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For a collider, s is given by s = 4E 2 where E is the e ÷ (e-)-energy in the laboratory system, m is the 
electron mass and 3' = E/m. In addition to the situation pertaining to eq. (4.2.1), where the final 
momenta of e ÷ and e-  are not measured (untagged luminosities) one can study cases where these 
momenta are measured (tagged or double-tagged luminosities, see, e.g., ref. [Fi-80]). 

We shall point out the possible usefulness of RHI collisions for the study of ~-~/collisions (see 
[Ba-87b]). It is the additional factor (Z1Z2)% where Z 1 and Z 2 are the charge of the colliding heavy 
ions, which increases strongly the RHI cross section as compared to the e+e - case. 

We study the collisions of two equivalent photons in the system where the two heavy ions move with 
opposite velocities v and - v  towards each other (see fig. 4.5). This is equivalent to the collision of two 
photons with frequency distributions nt(to:) and nz(w2) moving in opposite directions. For 3' >> 1 we can 
use the expression (see (eq. 1.11a)) 

n i ( t o i ) :  2 Z~ot In( 3,c l 
77" \ toiR i / ' 

(4.2.3) 

where the radius R i of the ion i determines the minimum impact parameter. The adiabatic cutoff sets in 
at 

m a x  
( I )  i : 3,c /R i (4.2.4a) 

and we put, for simplicity, 

ni(toi) : 0 for to, > to max (4.2.4b) 

The Lorentz factor 3' is related to the corresponding Lorentz factor yp of the projectile (for a fixed 
target machine) by 

yp = 272 - 1. (4.2.5) 

The total cross section o- c for the two-photon process Z 1 + Z 2---> Z t + Z z + X is given by 

. . . . . . .  l l l l l  . . . . . . . .  . . . . . .  - -  . . . . . . . .  

-V i z2 

Fig. 4.5. Two relativistic heavy ions collide in a system where they move with opposite velocities v and - v  towards each other. This corresponds to 
the collision of two photons with opposite momenta with photon energy distribution given by n~(~o 1) and n~(to 2), according to the equivalent photon 
method. 
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f d0), f d0) 2 n,(0),) n2(0)2) O-v~--,x(0)~0)2) 0)--;- (4.2.6) 

Introducing the variable x = 0)1°)2 (4x corresponds to the square of the invariant mass of the 23'-system) 
one obtains 

( Z'Z2et)2 f dx o-w,x(X) I(x) 
O'C : ', 77" / (4.2.7) 

where 

l(x) = ~xx In (4.2.8) 

There are important differences of this equation as compared with the one used for the e+e - 
collisions [Lo-60, AB-86]. In the derivation of eqs. (4.2.1) and (4.2.2), it was assumed that 7 >> 1 (as is 
appropriate for the e+e - colliders). This means that the adiabatic cutoff, eq. (4.2.4), which is relevant 
for the RHI collisions, is not important for the e+e - case. The maximum energies of the equivalent 
photons are determined there by the kinematics of the process (total energy loss for e + or e-, see, e.g., 
eq. (15) of [Lo-60]). This means that the higher energies will not be easily obtained in RHI collisions. 

An important process in 3'-3' collisions is the e+e - pair production 

+ 

3' + 3 '~  e + e (4.2.9) 

The corresponding e +e- pair production in RHI collisions, being of large importance, will be studied in 
more detail in section 7. Another purely quantum electrodynamical process is 3' + 3'---> 3' + 3', the elastic 
scattering of light on light (see, e.g. [La-86]). Its cross section involves an additional factor aZ as 
compared to the pair production; it is, therefore, rather small and it has never been possible to study it 
directly. On the other hand, the elastic scattering of 3"s in the Coulomb field of nuclei has been 
experimentally investigated (Delbriick scattering). In RHI collisions the same processes can also be 
studied. 

It is also possible to form strongly interacting neutral C =  +1, particles in 23'-collisions, like 
0 'frO ~r, "q, ~qc, • • • • The production was originally suggested by Low [Lo-60], the r/c-particle was recently 

produced at PETRA [Berg-86]. The resonances are usually sufficiently narrow, so that their Breit- 
Wigner form can well be approximated by a 6-function in the integral, eq. (4.2.7a, b). For example, the 

0 production cross section is given by [Lo-60] 

O-~ = (8 ~-2//z~-) 6( /2 _ 4x), (4.2.10) 

where ~- = 0.83 x 10 -16 S and/z = 134.9 MeV are the lifetime and mass of the 7r°; respectively lAB-86]. 
One obtains 

128 ( )3 (4.2.11) O-c = (ZlZ2 ) in 2 r  
/x r / * ~  

A similar formula can also be used for the production of other particles, where one has to replace 1/z 
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by the ~/-~ width F of the particular resonance to be studied, and include an appropriate factor for the 
spin of the particle. One obtains values of the order of some p~b for the 0 production by the 
two-photon mechanism for the conditions of the present RHI experiments at CERN (60 and 
200 GeV/nucleon oxygen beams on Pb targets). 

Let us compare the characteristics of the RHI collisions with the e÷e - collisions. Even in the highest 
energy RHI experiments, the ~-values achieved are rather low: for ~p = 60 or 200, appropriate for the 
CERN experiments, the corresponding 3'-values are rather modest. For a 1 GeV electron, e.g. one has 
already 3' =2000. The ~/-factor enters, however, only logarithmically in the cross section, whereas the 
(ZlZ2) 2 factor enters directly in the cross section formula, giving a distinct advantage for the RHI 
collisions. The comparatively low value of 3' for RHI collisions leads to a limitation of the invariant 
mass of the 23'-system. 

Finally, let us mention some speculations. Due to the large flux of equivalent photons in the MeV 
range, RHI collisions would be of interest to look for resonances in the ~/-~/system. This could be of 
special interest at present in the search for an unknown particle which decays into e ÷ and e- (for a 
recent review on the GSI experiments on positron emission in low energy heavy ion collisions, see 
[Ki-86]). Various proposals using ~-~/collisions [see, e.g., Za-87, Br-86, and Ts-86] or the Primakoff 
effect (as mentioned in ref. [Ya-87]) exist in order to look for such an unknown particle. If it is heavier 
than 2mec 2 then it could decay into e÷e - pairs and one could look for peaks in the invariant e÷e - mass 
spectrum as produced in RHI collisions. This would also complement the search for resonances in the 
e+e - collisions in the MeV region [see, e.g., Wi-87 and Ma-87]. 

5. Bremsstrahlung 

The emission of ~-rays in RHI collisions is an important diagnostic tool for the time development of 
the nuclear collision (see e.g. [Ka-77] and [Bj-85]). We will first investigate the bremsstrahlung process 
for Coulomb collisions (b > R 1 + R2). This could be a potential source of background to be considered 
in experiments. A unique feature of this bremsstrahlung effect is the interference of the radiation from 
the target and projectile. This will be specially important at low values of 7; it leads particularly to the 
well-known vanishing of the E1 bremsstrahlung for systems with equal charge to mass ratio Z~/M 1 = 
Z2/M 2. In contrast to the low energy case, the emission of Coulomb bremsstrahlung at relativistic 
energies will be predominantly of E1 origin, even for systems with equal charge-to-mass ratio. 

In section 5.1 we calculate the spectrum of bremsstrahlung in RHI electromagnetic collisions, and in 
section 5.2 we compare it to the bremsstrahlung occurring in the violent central collisions. 

5.1. Bremsstrahlung in Coulomb collisions 

According to eq. (14.67) of the textbook of Jackson [Ja-75], the energy radiated per unit solid angle 
per unit frequency interval is given classically by 

dZi  e2to 2 _ eZto z 
d toda  - 47rac [A1 + A2I 2 4~.2c [IAll 2 +IA21 + 2ReAIA~],  (5.1.1) 

where E~ = hto is now the energy of a real photon and 
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oo 

A,=z,f x x d , ,  
- -¢¢  

(5.1.2) 

where i = 1 (2) refers to the projectile (target) labels, r(oi) are their respective positions (velocities), 
and h is the direction of emission of the photon. By expanding eq. (5.1.1), the first (second) term 
corresponds to the radiation emitted by the projectile (target) and the third term to the interference 
between the two previous ones. Let us first discuss the radiation emitted by the target, assumed to be 
the laboratory system of reference. 

The electric fields at the position of the target and at time t, when the projectile passes by with an 
impact parameter b, are given by eqs. (1.1a, b) of the introduction. In the laboratory system the target 
has a non-relativistic motion and we can use the dipole approximation [see Ja-75] 

oe 

( (t21 ~ Z::e: f t ix(hx~)z)ei,,,,: 
\doJ d O / ( : ) -  4,ff2C 3 

Z~e 4 
- 47r2M~c3 [h x h x [Ez(~ ) + (5.1.3) 

where M 2 denotes the target rest mass, 0 is its acceleration, and Ez(oJ ), ET(o~ ) are the Fourier 
transforms of the electric fields of eqs. (1.1). Expanding the triple vector product in eq. (5.1.3) we 
obtain 

[ 12 ] ( (t21 I = L1L2ex 
\&odO/(2) : . . :  3.2 2 ( 1 - c ° s 2 o ) -  K~(x)+(1-sin:Osin2ch)K21(x) , 

7T M2C 0 V T 
(5.1.4) 

where x = oJb/Tv, and (O, ~b) are the angular coordinates of h. 
The relation between eq. (5.1.4) and the differential cross section for emission of bremsstrahlung 

radiation is 

b = ~  

1 f R ( d 2 I t  
\ dE.~ ] ( 2 )  = \dE.~ dO/ 

dZb dO.  (5.1.5) 

Both integrations can be done analytically and the final result can be written as 

do'br _ 8"n" (Z~e2] 2 1 (2) 
dE~,/(2) 3 \~2cZ/ ~ rib' (Ev)' (5.1.6a) 

where (2) nbr (E~) is equal to the equivalent photon number nEx as given by eq. (1.9) with Z = Z 1. The 
result (5.1.6a) has a very nice interpretation: the emission of bremsstrahlung by the target (or by the 
projectile) can be viewed as the rescattering of the equivalent photons generated by the projectile 
(target). The bremsstrahlung cross section is then given by the product of the equivalent photon 
number per unit energy, given by nEI(E~)/E ~ and the classical Thomson cross section 
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O" T = ( 8 7 r / 3 ) ( Z 2 e 2 / M c 2 )  2 . (5.1.6b) 

To calculate the radiation emitted by the projectile we can use eq. (5.1.4) for the radiation emitted in 
the frame of reference of the projectile by exchanging the indices 1 and 2. Then we make a Lorentz 
transformation of d2I/dto dO, to and 0 to the corresponding variables in the laboratory system (see eqs. 
(11.30 and 15.5) of Ja-75). We obtain 

d21 ~ - 
dto dO/(1) 

Z4,.-,2 6 2 
1/-,2 e X 

2. ,2 3,2 2 {[(1 -- /3 COS 0) 2 -- (COS 0 - - / 3 )2 ] r~ (y )  
q'g M l C  O U 

+ [cos25(1 - / 3  cos 0) 2 + (cos 0 -/3)ZlK2,(y)}, (5.1.7) 

where/3 = v/c and y = yx(1 -/3 cos 0). Integrating eq. (5.1.7) in the same way as in eq. (5.1.5) one 
finds 

'br / ( Z~e2] 2 1 
dE ,  I ( 1 ) -  877" \ ~ 1  c2j  ~ n~lr,(E~), (5.1.8) 

where 

()2 
(1) 3 z c z 

nbr (E0  = ~ Z2~ v ~: 

1 

- -  1 [1+  ( lU_~u)2](KoK 2 KzI)} × f d u { [ 1 - ( u - ~ ] 2 1  1 z(K21 _K2o) + 2  
\ l - f l u /  d y 

- I  
(5.1.9) 

with the K s as functions of X = y~:(1- flu), and u = cos 0. This last integration has to be solved 
numerically. 

The radiation emitted by the projectile interferes with that from the target. To calculate it we have to 
expand the expression 

d21 ~ - eZto 2 
d--~-d~/(3) 47r2c (A*I"Az+A1"A~)" (5.1.10) 

To that aim, we rewrite A 1 in the form 

cc  

A1-- --iZlw l 
- o e  

h × [(h - v / c )  × O/c] ei,O,(l_t~ cos0) d t .  
(1 - v .  a / c )  2 (5.1.11) 

We then use v = v£ in the laboratory system. We also calculate the acceleration 0 in the projectile frame 
of reference by the action of the fields (1.1). Transforming 6 to the laboratory system, the integration in 
eq. (5.1.11) can be solved analytically. The amplitude A 2 is simpler to calculate as was already shown in 
eqs. (5.1.3) and (5.1.4). Inserting A~ and A 2 obtained in this way in eq. (5.1.10) we find 
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d21 ] = -  

doJ d O / o )  

, 7 3 , 7 3  6 2 
Z, 1z,2e to 1 

2 2 . . . .  3 4 ( 1 -  O) rr 7 mlm2c v /3 cos 
x {1 - cos20)7 -3 Ko(x ) Ko(Y ) 

+ ½(1 + cos20 -2 /3  cos 0) KI(X ) K , (y )} .  (5.1.12) 

Integrating eq. (5.1.12) in the same way as in eq. (5.1.5) one finds 

Z l Z 2 e 2  ~ 2  I / , / (3 ) [b .  , 

\ dE~/(3) 3 ~ br ~'~'1 (5.1.13) 

where 

n~3~)(E~) 

1 

'(C)21 dU = _  3_ ZlZ a 
7r 7 v [(1 - / 3 u )  2 - 1/y2](1 - flu) 

- 1  

X / 1 - u e  1 K0(x)]  , 7 [(1- flu) Ko( ~) KI(X)- ~ Ka(s ¢) 

1 KI(X)]}. + 1(1 + u 2 - 2/3u1[(1 - flu) g l ( ~ )  go(x) - -  -~ ro(~) (5.1.14) 

For Z 1 = Z 2 and y---> 1, we obtain %,-(3) = nbr-(1) + %r-(2), which expresses the well-known result of absence 
of bremsstrahlung dipole radiation for non-relativistic Coulomb collisions of particles with equal 
charge-to-mass ratio. 

In fig. 5.1 we show n~i~ ) (for i = 1 solid line, for i = 2 dashed line, and for i = 3 dash-dot ted line) as a 
function of the ratio between the nuclear dimension R and the photon wavelength, and for several 

..(1l and values of 7. We used Z 1 = Z 2 = 10. One observes that nbr-(3) becomes smaller in comparison to nb~ 
n(2) br as y increases. In the limit y ~  ~, %r-(3)~ 0. This means that the radiations emitted by the projectile 

3 

C 

101 • , . , . , . , . . , . , . , . , . 

1 0  -1  
0 1 2 3 4 0 I 2 3 4 5 

~R/c 
() Fig. 5.1. The dimensionless bremsstrahlung strength functions n~ ~, (see text) plotted as a function of the ratio between the nuclear dimension R and 

the photon wavelength for several values of 7. 
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and by the target do not interfere with each other as 7---> ~. It occurs because the recoil of the projectile 
is not instantaneously preceded by the recoil of the target as in the non-relativistic case. For relativistic 
energies the recoil of the nuclei is displaced in time by the retardation, which leads to the incoherent 
emission of radiation. Also, in that limit, the radiation emitted by the projectile is more intense than 
the one emitted by the target. This is because photons of energy E'v in the projectile system of 
reference, emitted approximately isotropically, appear in the laboratory within a forward cone 
0ma x = 1/3, and with energies of the order of Ev = yE'~, i.e. energetic photons in the laboratory system 
come from soft photons in the frame of reference of the projectile [see e.g. Ja-75, p. 708]. 

5.2. Comparison with nuclear bremsstrahlung 

A more violent source of bremsstrahlung radiation has its origin in the collisions with b < R 1 + R 2 

where part of the charges carried by the projectile almost comes into stop. To compare the relevance of 
these two different mechanisms of producing bremsstrahlung, i.e. the Coulomb and the nuclear one, we 
use the results of the work of Kapusta [Ka-77], where the nuclear bremsstrahlung in RHI collisions was 
calculated on the basis of a nuclear fireball model which accounts for the possible formation of two 
fireballs. Integrating eq. (5) of that reference with respect to the solid angle we obtain (for the special 
case of symmetrical systems, i.e. Z 1 = Z 2 = Z) 

do") = 0.12 Z2°tR2 
Nbr ~ [F(/3) + F(/3pF) + F(flTF ) 

,y .y 

- 2 { G ( / 3 , / 3 P F )  3¢ G ( / 3 ,  & F )  - -  G ( / 3 P F '  & F ) } ]  ' (5.2.1a) 

where 

1 ,  { 1 + / 3 \  
F(/3) = ~ ,n~ -i--S--~) - 2, 

/3/3  
G(/3, /iF)- 2(/~:'flF ) I_ /3v F(/3F) 

(5.2.1b) 

1-/32 ] 
/3 F ( /3 )  2(/3 - /3F) , (5.2.1C) 

and 

/311 + (1 -/32)1/2](1 + */) 
flPF ---- [1 + (1 -/32)1/212 + ,//32 , fl'rv = flPF(*/-'-> --7), (5.2.2) 

are, respectively, equal to the projectile and target-fireball velocity. For one-fireball production, 7/= 0, 
so that flPF = /3TF, and for two-fireball production, 0 < 7/< 1. We use the transparency factor */equal to 
75%, and define the dimensionless quantity 

(do./dE~)Nbr 
r(y, E~) -  (do./dE~)cbr , (5.2.3) 

where the Coulomb bremsstrahlung cross section (do./dEv)cb r is given by the sum of eqs. (5.1.6), 
(5.1.8) and (5.1.13). In table 5.1 we show r(y, Ev) for the reaction 4°Ca + 4°Ca and Ev = 10 MeV. One 



368 C.A. Bertulani and G. Baur, Electromagnetic processes in relativistic heavy ion collisions 

Table 5.1 
Ratio of nuclear and Coulomb bremsstrahlung cross sections 
for the reaction 4°Ca + 4°Ca and E = 10 MeV; the value of 

Ev(dtr/dEv)Nb ' is also given 

y r(y, Ev = 10 MeV) E~(dt~/dEv)Nb , (mb) 

1.1 2.6 × 102 5.1 × 10 2 
1.5 5.3 × 105 0.69 

10 1.0 × 106 18.5 
100 1.5 × 106 27.7 

observes that only for low values of y (in which case Coulomb repulsion corrections to the trajectory 
must be taken into consideration) the Coulomb bremsstrahlung is relevant. Also, for greater values of 
E the ratio r increases. 

Coulomb bremsstrahlung seems to be of little relevance in RHI collisions. Its role increases for 
collisions of less massive particles like electron or muon-nucleus scattering, as can be seen directly from 
eq. (5.1.6a) and, e.g., could be useful for obtaining information on the elastic scattering of photons on 
unstable particles, like pions. For example, in the process Z + ~r~ Z + ~r + ~/the scattering of photons 
on pions has been studied by Antipov et al. [Ant-83, Ant-85], as was already mentioned in section 4. 
With this method a value of the pion polarisability via the Rayleigh scattering amplitude could be 
obtained. This Rayleigh contribution increases in importance as compared to the Thomson scattering 
term (see eq. 5.1.6b) with increasing ~/-energy. 

6. K-shell ionization 

Ionization of K-shell atomic electrons by means of relativistic particles is a subject of increasing 
theoretical and experimental interest [see e.g. An-87, Me-83, Mo-85]. Opposite to heavy ion scattering 
at nonrelativistic energies, in the relativistic case K-shell  ionization is favoured as compared to L, M, 
etc. ionization of the atoms of a dense target as the ions penetrate it. Among the huge amount of 
theoretical calculations in this field, we cite Jamnik and Zupancic [Ja-57], Merzbacher and Lewis 
[Me-58], Davidovic et al. [Da-78], based on PWBA, Bang and Hansteen [Ba-59], Amundsen and 
Aashamar [Am-81], Becker et al. [Be-85, Va-84, Be-86b], based on semiclassical approaches, and 
Kolbenstvedt [Ko-67], Komarov [Ko-80], based on the equivalent photon method. Due to its simplicity 
and the possibility of having an easier insight into the subject we shall here use the same method as the 
last authors. We compare the final results with the ones obtained in the other approaches. 

The method consists in separating the ionization processes into those arising from close, b <~ a K, and 
from distant, b > a K, collisions, where the K-shell radius is given by a K = h2/(mZe2) .  

6.1. Close collisions 

The period, T, for an electron in the K-shell is given by 

T -  21r____hh _ 4¢rha._..__.__K _ 47rh (6.1.1) 
I Z e  2 m c 2 ( Z a )  2 ' 
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where I =  (Za)2mc2/2 is the ionization energy of the K-shell electron. The ratio of the collision time 
too I ~- b/'yv in a RHI collision and the period of an electron in the K-shell is 

tco___3~ ~ 1 Za b (6.1.2) 
T 4Ir ~,/3 a K " 

When the impact parameter b is smaller than the K-shell radius aK, we see that the collision time is 
always smaller than the period of the atomic electron for/3 = 1, and that their ratio goes to zero in RHI 
collisions for which y >> 1. For such collisions the ionizing process can be considered as a collision 
between the projectile and a free electron, with an energy exchange larger than the ionization energy. 
In a semiclassical sense, we can say that the probability for the ionization of the atom in a collision with 
impact parameter b ~< a K is given by 

o o  

P(b <~aK) = f dz/A(z) ,  
- -  o o  

(6.1.3) 

where 

A(z) = [2p(b, z) O'sc(V, b, z)] -1 (6.1.4) 

is the mean free path for the collision between the projectile and the electron in a K-shell. In eq. (6.1.4) 
the quantity p(b, z) is the electronic density in the K-shell at the point with coordinate r = (b, z) with 
respect to the atomic nucleus, and trac(V, b, z) is the cross section for the (free) binary collision of the 
projectile and the electron. The factor two accounts for the presence of two electrons in the K-shell: if 
the atom contains only one electron in the K-shell, all following results must be divided by a factor two. 
In the case y -> 1, we can take O'ac outside the integral in eq. (6.1.3), and for the electronic density in 
the K-shell we use the simplified, non-relativistic, hydrogenic ls wavefunction, i.e., 

o(b, z) = 1¢(012 = (1 ~Ira 3) e . (6.1.5) 

By means of these assumptions, we obtain 

/ / P(b ~ aK) = - - 3 -  exp dz = 2x K~(x) %c 
zra r aK zra 2 , 

where x = 2b/a K. 
Since 

(6.1.6) 

1, for x <  1 
x Kl(x ) -  X/(1rx/2) e -x , for x > 1, (6.1.7) 

the ionization probability, as a function of b, will be approximately constant up to b - at~2, after which 
it diminishes exponentially. This behaviour has indeed been found in the more elaborate calculations of 
Amundsen and Aashamar [Am-81], and later on confirmed by Becker et al. [Be-85], which used first 
order time-dependent perturbation theory and exact Dirac-Coulomb wave functions for the electrons. 
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The total cross section due to close collisions is obtained from the integration of eq. (6.1.6) over b. 
One finds 

O'b<a K = OrBC , (6.1.8) 

i.e., the total cross section for atom ionization in close RHI collisions is about the same as the binary 
collision cross section O'BC. TO calculate O'BC, we observe that, due to Coulomb repulsion, the 
momentum and energy transferred to the electron, are given by 

Ap = 27my sin(0/2),  and AE = 2m,y2v 2 s i n 2 ( 0 / 2 ) .  (6.1.9) 

Now we use the Mott differential cross section for the free binary collision between projectile and 
electron, i.e., 

do" _ Z2~r~ 1 - 32 sin2(O/2) (6.1.10) 
dO 4 723 4 sin4(0/2) ' 

where r e = e2/mc 2 is the classical electron radius. Using eq. (6.1.9) we can transform &r /dO into an 
expression for & r / d ( i E ) ,  which after integration from AEmi . = I to  AEma x = 2m72v 2 results in 

1 

7 r Z l r  e 1 - 32~ 
Osc = C 3472 (2 d~', (6.1.11) 

where x = I/(2m'y2v2), and C is a factor which accounts for the uncertainties in the integration limits: 
for example, the energy transferred to the atom can be of order I and be shared by the two electrons, 
which will not lead to ionization. For 7 >> 1 this integral gives 

2 2 mc2 4rrZ~r~ (6.1.12) 
OrBC = 21rCZlr ~ ~ -  - C ZZ2a---- T 

Inserting this in eq. (6.1.6) we find that the probability for ionizing an atom in a RHI collision with 
b <~ a K is approximately given by 

P(b <~ aK) -- 8C (ZlO0 2 x gl(x  ) . (6.1.13) 

Due to eq. (6.1.7), this result means that probability to ionize the atom in a RHI collision with impact 
parameter smaller than the K-shell radius is approximately constant, independent of the charge of the 
atom, and proportional to the square of the charge of the projectile. The calculations of Komarov 
[Ko-80] suggest the value C = 1, whereas the most exact calculations of Amundsen and Aashamar 
[Am-81] and of Becker et al. [Be-85] give C - 0 . 4 5 ,  that is, 

P(b <- aK/2 ) = 3.6(Z 1 a) 2 . (6.1.14) 

We observe that the simple description above shows remarkably good agreement with the main 
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features of more precise calculations. Nonetheless, the ionization probability as given by eq. (6.1.14) 
becomes greater than unity for Z 1 >72 (!). This means that first order perturbation calculations, as 
those performed by Amundsen and Aashamar and by Becker et al., are not adequate to describe the 
impact parameter dependence of the ionization probabilities, even for projectiles with intermediate 
charge values. This can be easily explained by observing that for projectiles with large charges the 
Coulomb repulsion suffered by electrons in the K-shell will always be large enough to kick them off the 
orbit, i.e., the ionization probability will be one. Therefore, any perturbation theory will run into 
trouble in this limit. 

For very high energies the contribution of impact parameters larger than the K-shell radius will 
become larger and larger, as we shall see. Also, for these impact parameters the ionization probability 
will always be much smaller than one, even for projectiles with very large charges. This means that the 
violation of the unitarity condition will not have a big influence in the calculation of the total ionization 
cross section. 

6.2. Distant collisions 

The probability to ionize the atom in a RHI collision with impact parameter larger than the K-sheU 
radius can be calculated in the equivalent photon method by 

P(b>aK) i N ( t ° ' b )  K do* = (o,) 
I/h 

(6.2.1) 

where N(to, b) is the number of equivalent photons incident on the atom per unit area (see section 1), 
and 

1287r ( I ) 4 e  -4aarcc°ta 
~r~(to)- Z~a3 ~ l_e_2~a tr0, (6.2.2a) 

is the photo-electric cross section (see e.g. ref. [He-54] p. 208). In the above equality 

8"7"/" 2 8'/7" e 2 f I 
= and a =  ~/ (6.2.2b) tr° " i f - re-  3 mc 2'  h to-  l " 

The integration in the eq. (6.2.1) can be solved analytically by using the approximation (6.1.7) and by 
expanding the exponentials in eq. (6.2.2a) around hto = I, i.e. by putting 

( ) -4 try(to) = 128Ir I 4 
e (6.2.3) Z2a ~ ~r° 

in the integrand. We find 

P(b > aK) = 0 . 3 9 ( Z x Z E a E ) 2 " y  -2  K 2 1 ( l b / . y h c )  , (6.2.4) 

i.e. P(b > aK) will decay proportionally to 1/b 2 until a cutoff impact parameter b = yhc/I, after which it 
decays exponentially. For b = a K we find 
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P(b = aK) -= 1 . 5 6 ( Z ,  a) 2 , 

which will always be appreciably smaller than one. This means that for these impact parameters one can 
perform calculations in the first order perturbation theory without problems. The behaviour of the 
ionization probabilities should not be much different than that given by eq. (6.2.4), what is indeed 
shown in refs. [Am-81 and Be-85]. 

Integrating eq. (6.2.4) from b = a K to b = 0% we find 

Orb>aK = 4.9r2 e (Z2 °~) 2z21  , 2  [g20 - g,2 +~2 gogl]~9.8r~ Z 1 2  (~2a )  (Z2a)2 In , (6.2.5) 

where ~: = IaK/'yhc. 
In fig. 6.1 we show the cross sections for K-shell ionization of lead atoms by means of relativistic 

argon projectiles as a function of 7. One notes that for great values of 3' the contribution of distant 
collisions trb>aK is much larger than that from close collisions O'b<~a K which tends to a constant value for 
7>>1. 

There exist detailed experimental investigation of inner-shell ionization in electron impact at very 
high energies. [See, e.g., Ge-82.] 

Since the ionization cross sections are large, the relativistic heavy ion ionization could perhaps be 
used as a variant of the well-known PIXE [see, e.g., Ca-80] technique for the analysis of materials. 
PIXE means Particle Induced X-ray Emission: one irradiates a target with light particles (mostly 
protons) and analyses the spectrum of the emitted R6ntgen radiation, which originates when the 
electronic orbital holes of the ionized atoms are filled by electrons of the exterior orbits. This method 
has already many applications in physics, as well as in chemistry [see, e.g., Jo-76 and Kh-81]. 

In ref. [An-84] it is mentioned that the K-shell ionization contributes significantly to the stopping 
power of heavy ions. Therefore, the knowledge of these ionization processes is of interest for possible 
application of heavy ion bombardment to trigger the deuteron-tritium fusion reaction. 

t - - 1  

..(3 
t,,_.J 

V 

b 2 

FIr'+Pb 

~tot / ' / ' /  
~ Y  / ' /  b'a K 

~ -  b,,<a K 

i . , . , . , I  , . . i i , A J l  

10 10:' 

Fig. 6.1. Cross sections for atomic K-shell ionization of lead atoms by means of relativistic argon projectiles, as a function of the Lorentz factor ~,. 
The dashed curve (dash-dotted) corresponds to the contribution of impact parameters smaller (larger) than the K-shell radius. The solid curve is the 
s u m  of the two contributions. 
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7. Lepton pair production in Rill collisions 

Soon after the discovery of the positron in 1932, many theoretical works were performed which 
aimed to evaluate the cross sections for the production of electron-positron pairs in collisions of light 
(or a fast charged particle) with a nucleus. This was expected to be present in collisions originated by 
cosmic rays reaching the earth surface and this process would be an experimental check of the validity 
of the positron theory of Dirac which had just been born. Most of the earlier theoretical works on that 
subject have been done at about the same time, and in the special case of pair production in the 
collisions of relativistic charged particles, there were works by Furry and Carlson [Fu-33], Landau and 
Lifshitz [La-34], Bhabha [Bh-35], Racah [Ra-37], and Nishina, Tomonaga, and Kobayashi [Ni-35]. 
Except in the work by Furry and Carlson where the final result was shown to be wrong by a missing 
logarithmic factor, all other works reproduced the same results as that of Landau and Lifshitz [La-34] 
who studied e+e - production in a collision of two fast nuclei in the Born approximation and treated the 
projectile motion semiclassically. 

It was only recently, with the construction of relativistic heavy ion accelerators, that a new interest in 
this field appeared JAn-87]. The cross sections for pair-production in a collision between two charged 

2 2 particles is roughly proportional to Z~Z 2 and for heavy systems like 238U + Z38U they will be very large, 
up to many kilobarns. This can be a cause of many difficulties in the study of experiments with 
relativistic heavy ions (RHI). For example, in RHI colliders they can lead to a beam loss due to the 
capture of slow electrons in an inner orbit of one of the ions [see, e.g., Be-87]; or it could even be useful 
in order to keep control of the beam luminosity, as was pointed out by Anholt and Gould JAn-87]. 

Among the newest works on this subject [So-80, Ni-82, Be-86a, Ber-86b, Ber-87a, Ba-87a, Be-87], 
the most exact approach is the one followed by Becker, Grfin and Scheid [Be-86a, Be-87] in the 
semiclassical approximation. They expanded the interaction potential in multipoles and used Coulomb- 
Dirac wavefunctions for the electron and the positron. In this way, they obtained the impact parameter 
dependence, as well as the cross sections, for e+e - production for any energy of the pair and for RHI 
beams up to 100 GeV/nucleon. One of the difficulties of the calculation is the evaluation of the 
multipole sums for beam energies around 100 GeV/nucleons and greater, because it relies strongly on 
long numerical computing. Another very useful approach is the equivalent photon method, which was 
used in refs. [So-80, Ber-86b and Ba-87a]. Besides being very simple to calculate, this method provides 
good quantitative derivation of the total cross sections, although it lacks of a more complete description 
of the process. 

Bertulani and Baur [Ber-87a] have also used the semiclassical approach (which is appropriate for 
RHI collisions) to deduce the lepton pair (also muon and tau pairs) production probabilities and cross 
sections in RHI collisions, but instead of using the Coulomb-Dirac wave functions, they used 
Sommerfeld-Maue wavefunctions for the pair (see e.g. ref. [Be-54] and references therein). These wave 
functions are equal to the Coulomb-Dirac ones for the spatial region around the nuclei which most 
contribute to the cross sections. In this way one can avoid the multipole expansion used by Becker, 
Grfin, and Scheid (actually, this had already been suggested by those authors in that paper). Since this 
process is very similar to the production of pairs by a real photon, we can use many of the integrals that 
were evaluated by Bethe, Maximon, Davies and Nordsiek [Be-54, Da-54, No-54]. We will show that 
analytical expressions can be obtained only in special cases of the pair energy. Denoting these energies 
by e+ and e_, we will show that we can deduce analytically the pair production probabilities and cross 
sections when (we use here natural units, with h = 1, and c = 1) 

e_ , e+ = m,  (slow pairs) (7.Ia) 
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m ~ e_ ,  e+ ~ 7 m ,  (fast pairs) (7.Ib) 

e_,  e+ = y m ,  (ultrafast pairs) (7.Ic) 

where y is the relativistic Lorentz factor associated with the heavy ion beam (see eq. (1.2)). 
The results of Landau and Lifshitz are valid when the condition (7.Ib) is valid. Indeed, that is the 

energy region, which gives the greatest contribution to the total cross section, integrated over the 
energy of the pair. We show that for heavy ions there will be a correction to their results in a similar 
way to that found for pair production by a real photon in the field of a large-Z nucleus [Be-54, Da-54, 
No-54]. Analogous study has also been done by Nikishov and Pichkurov [Ni-82] in the energy region 
(7.Ib), but slightly different final results were obtained. The energy region inferred by the condition 
(7.Ic) is easily studied by means of a Lorentz transformation of the results obtained in the energy region 
(7.Ia), and it is also important since it can originate a cloud of pairs surrounding the projectile in RHI 
colliders. 

In section 7.1 we evaluate the differential probabilities and cross sections for lepton pair production, 
and we apply it in section 7.2 to the case of slow and ultrafast lepton pairs, and in section 7.3 to fast 
lepton pairs, which is the most important case for e+e - pairs. In section 7.4 we extend the calculations 
to include the case for which the target (or the projectile) is not completely naked but still have a part 
(or all) of its atomic electrons. 

Since their masses are much higher, the production of ix+ix - and ~-+~- pairs depends much more on 
the energy of the heavy ion beams, as we show in section 7.5. There we show that, if the heavy ion 
beam energy is not very high (y >> 16 for ix + IX- production, and 3, ~> 270 for "r+'r - production), there is a 
big difference from the results for e+e - production. 

In section 7.6 we obtain the cross sections for the pair-production with capture of the electron in an 
atomic orbit of the projectile, or of the target. 

7.1. Probability amplitudes 

In the following we shall calculate the electromagnetic production amplitude of lepton pairs in the 
field of a target nucleus with mass and charge number A 2 and Z 2, respectively, by means of a relativistic 
projectile with velocity v, impact parameter b, and mass and charge number A 1 and Z 1. The calculation 
is valid for impact parameters such that b > R = R 1 + R 2, where R~ and R 2 are the respective nuclear 
radii. We shall consider the target nucleus as fixed, neglecting its recoil, and we place the origin of our 
coordinate system in its centre of mass. 

In the semiclassical approach the projectile is assumed to move in a straight-line and will generate a 
time-dependent electromagnetic field which will lead to the production of pairs in the field of the target. 
Since the probability amplitude for pair production is, generally, smaller than unity, we can calculate it 
in the first order time-dependent perturbation theory (as soon as we take into account the distortion of 
the wavefunctions of the pair due to the field of the target nucleus). It is given by 

1 f el,,, t ae+e- = T at ( t)l ' / ' ,+ ) , 
- -  o z  

where 

(7.1.1) 

= e+ + e_  ( 7 . 1 . 2 )  
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and Me+ (M e-) is the wavefunction of the positive (negative) lepton. The interaction potential V(r, t) is 
given by eqs. (2.1.3) and (2.1.4). 

According to eq. (B.11) from appendix B, we can rewrite (7.1.1) as 

where 

Zle f H(p ' )  ae+e- - - d2PT 2 171"0 PT q'- (to []t/)) 2 elpT'b 

and 

(7.1.3) 

H(p')  = f d3r (~e-lV~ ]# (r) eip"'l~e+ ) ,  (7.1.5) 

with v~ = (1, v). The index T means an arbitrary direction, perpendicular to the beam. Using the 
continuity equation for the transition current and eq. (7.1.4), we can express the above matrix element 
in terms of the longitudinal and transversal components of the transition current as 

f H ( p ' ) =  d3r(~e-I ~y2 + to jeiP"'lq'e+ ). (7.1.6) 

For 3' >> 1 we can neglect the first term inside brackets in the above equation, as it is done quite 
generally in the equivalent photon approximation. Then eq. (7.1.3) reduces to 

Z1 e2 f f dZPTd3rPT" (  e-laTei""" lqZe+ ) 
ae+e- - izttov p2 + (tolyv)2 e'PT'b , (7.1.7) 

where we usedjT = eaT, and ot r is a Dirac matrix with component perpendicular to the beam direction. 
For Me* we use the Sommerfeld-Maue wave functions which were also used by Davies, Bethe, and 

Maximon [Be-54, Da-54] (see also [Ak-65], p. 143) to calculate pair production by means of a real 
photon (see [Be-54] for a complete discussion about these wavefunctions), namely 

l i f  e -  = N e i k - ' r [ 1  - ( i /2e_)a .V]u F(-ia_,  1, - i k_r  - ik_ . r) , 

and 

Me+ = N+ e-i~+"[1 + (i/2e+)a .V]w F(-ia+, 1, ik+r + ik+. r), (7.1.8b) 

where u and w are the Dirac spinors corresponding to the negative and positive leptons with momenta 
k_ and k+, respectively, F is the confluent hypergeometric function and 

a+_ = ZzeZ/v+_ , N+ =exp[W-Tra+_/2] F(l  + ia._) , (7.1.8 0 

where v± equals the respective velocities of the created pair. 

(7.1.8a) 

P' = (PT, tO~V), (7.1.4) 
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Inserting eq. (7.1.8) in eq. (7.1.7) we find 

Zle 2 
ae+e- - i~rwv N+N_ ~ u*[a"Gl~ + a~(ot .GzA ) + (ot.G3a)aa]w, (7.1.9) 

A=I,2 

where A = 1, 2 represents the two orthogonal components transverse to the beam. The tensors G1~, G2A, 
and G3A are given by 

f p~.[i,,12,13 ] • [Gta, G2a, G3a] = d2pT - - 5 - - - ~  e"Vb (7.1.10) 
PT + (09/70) 

where 

11 = f e iqr F1F 2 d3r, (7.1.11a) 

i f eiq .  r I2 - 2e+ F1 ~7F2 d3 r '  (7.1.lib) 

13= 2e_i feiq.rF2VF1 d3 r , (7.1.11c) 

with 

and 

q = p ' -  k+ - k_ , (7.1.lid) 

F 1-  F(ia , 1, ik_r +ik_.r) ,  F z =- F(-ia+, 1, ik+r +ik+.r).  (7.1.lie) 

The integrals (7.1.11) were calculated analytically by Nordsiek, Bethe, and Maximon [Be-54, No-54]. 
The differential probability for the production of lepton pairs is obtained from eq. (7.1.9) as 

dPe+e-= Z l a e + e - 1 9 f ,  (7.1.12a) 
spins 

where 

k+k_ 
Of = ~ e + e  de+ de_ dO+ dg2_ (7.1.12b) 

is the density of final states of the pair. 
Using the properties of the Dirac matrices we find 
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Z1e 2 
dPe+e pf 2 ([e+e_-k+~k_~+ m2][G1al 2 

+ [e+ e _ + k+zk_ ~ - mZ][IG2~ 12 + IG3AI 2 - 2(G3~)z(Gza)~ ] *  - 2(k _. Gza)(k+.G3a), v r 

+ 2(kT+ • k v_)[(GL)* • G25 ] + 2(k_" G3*~)[k ÷ • G2~ - k+~(G3a)~ ] 

+ 2G ~x[e_ {k+ .Gza - k+z(G3a)z } + e+ {k_" G3~ - k_~(Gza)z}] 

+ 2k_z (G z*~)z [k+" (G3~ - G2~ )] + complex conjugate}. (7.1.13) 

In the approximations we are going to make, the integrals [Gla, G2~, G3a ] will be zero for one of the 
components, say A = 2 if we choose b along the x-axis, and the sum in A reduces to only one term. 

7.2. Slow and ultrafast electron-positron pairs 

7.2.1. Slow pairs 
We now consider the production of low-energetic lepton pairs obeying the condition (7.Ia). We use 

the analytic expressions for the integrals (7.1.11) as given by the equations (6.13) of the work of Bethe 
and Maximon [Be-54] and keep only the terms in lowest order in k+/m and k_/m. Since only values of 
Px up to to/yv ~ m will contribute to the integrals (7.1.11), we also put Pr = 0 in the numerators of 
those expressions. Inserting the obtained results for I 1, 12, and 13 in eq. (7.1.10), we find 

G12, G22 , G32 = 0 ,  (7.2.1a) 

and 

G11 _- C3 l-[2(k_ z -  k+z)-i toZ2 e2 (k+k+z+ k_k_z) jl M(b, to, y)  
to k+k_ ' 

G21 C [ (k+k+z~-P/2)]  - 2 z. + iZ2 ez M(b, to, 3') 
t o  ' 

G31 = --5 [z. - iZ2 ez - M(b, Y) J to, 
to k+k_ ' 

(7.2.1b) 

(7.2.1c) 

(7.2.1d) 

with 

P= k_k+ - k+k_,  (7.2.2) 

and where :~ is a unit vector in the RHI beam direction. The function M(b, to, y)  is given by 

f PT COS 0 e ipTb cos 0 
M(b, to, r ) = t o  d2pT [p2 +(to/yv)2][p2 + to2] 

[1 
1 - 1 / y Z v  z --~ l \  yv / (7.2.3) 
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where K t is the modified Bessel function of first order. Inserting eq. (7.2.1) in eq. (7.1.13) and keeping 
only the lowest order terms in k+/m and k_/m, we find 

dPe+e_(b )_  8 ,-,2.-,2 4 k+k (2~r)8 L1L2e ----C-Tto v IN+N-CI21M(b' to, 3')1  

X {[k2+ sin20+ + k 2 - s i n Z O _ ] [ l - ( Z 2 e 2 ) 2 ] +  2e+e_(ZzeZ)Z}dO+ dO_de+ de_ 
(7.2.4) 

The impact parameter dependence of eq. (7.2.4) is imbedded in the function M(b, to, 3'), which we plot 
in fig. 7.1 as a function of tob and for 3' = 100. We observe that M tends rapidly to its asymptotic value 
for tob ~> 1. This asymptotic value is obtained by neglecting the second term inside brackets in the 
numerator, and the second term in the denominator of eq. (7.2.3), i.e. we can set 

(tob] 1 M = 21ri K for b ~> --  (7.2.5) 
7v ] \  7v / ' m ' 

where we used the approximation to = 2m. 
Since the Compton wavelength of the muon (or tau) is much smaller than the nuclear dimensions, 

this approximation is very good for describing the impact parameter dependence of IX+ IX- and 'r+'r - pair 
production. Nonetheless, in the case of e+e - it will only be appropriate for impact parameters larger 
than the Compton wavelength of the electron, which is much larger than the nuclear dimensions. As we 
will soon see, this will have as a consequence that the total cross section, integrated over all impact 
parameters will depend on the nuclear dimensions in the case of muon and tau pair production, but not 
in the case of electron pair production. This will lead to very different behaviour of the cross sections in 

- -  + 

the two cases. Let us therefore study first the case of e+e production and let the study of Ix Ix- and 
+ - 

"r "r production to the section 7.5. 
In the case of e + e- production one can have impact parameters much smaller than the Compton 

wavelength, for which we see in fig. 7.1 that M---> 0, what seems to be an unrealistic behaviour. In fact, 
the probability to produce an electron-positron pair should go to a constant value as b---> 0, what was 

_o 
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2"rrK 1 ( x ) / T v  
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x = ~ b / ' y v  
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w b  

Fig. 7.1. Impact parameter dependence of the production probability of slow electron-positron pairs in RHI collisions expressed in terms of the 
dimensionesss function M(b) as given by eq. (7.2.3). The dashed line corresponds to its asymptotic limit, as given by eq. (7.2.5). 
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indeed shown in the calculations of Becker, Griin and Scheid [Be-86a]. We would obtain the same in 
our calculations if we had not neglected the first term inside the brackets in eq. (7.1.6), which although 
it does not contribute appreciably to the cross section, has a finite, non-zero contribution for the 
differential probability as b ~ 0 .  But for 0)b~>l the impact parameter dependence is very well 
reproduced by using the approximation (7.2.5). Moreover, the differential probability decreases very 
slowly until impact parameters much larger than the Compton wavelength of the electron and the 
uncertainty about the impact parameter dependence for b ~< 1/m is not very important for the total 
cross section, especially for RHI collisions. 

The modified Bessel function of first order has the following property (see eq. 6.1.7): 

1, for 0)b/yv<l, (7.2.6) 
(0)b/yv) K~(0)b/yv)= O, for 0)b/yv > 1. 

This implies that the pair production probability decays like 1/b 2 for impact parameter b larger than the 
Compton wavelength, i.e., for b > 1/m, until to a cutoff limit given by b = yv/0). Above this cutoff limit 
it will decay exponentially, which will guarantee the convergence of the cross section. Indeed, with 
these simplifications the differential cross section can be easily obtained by using 

2 

\ , / v /  1\ yv / d b =  ~r~r2 K~-K '+-~  K°K~ 
1/m 

=2~rln(6/~') for ~r<~l, (7.2.7a) 

where the Bessel functions K N are functions of the parameter 

= 0)/ymv, (7.2.7b) 

and 6 = 0 .681. . .  is a number related to the Euler's constant. We can write the result as (putting v = 1) 

77" 0)  6 ( e  2~ra+ - -  1)(1 - e - 2 7 r a -  ) 

x {[k2+ sin20+ + k 2_ sin20_][1- (Z2a) 2] + 2e+ e_(Z2a) 2} dO+ dO_ de+ de_ ,  (7.2.8) 

where r e = e2/mc 2 = 2.817. . .  fm is the classical electron radius, a = e2/hc = 1/137 is the fine structure 
constant, and we used 

4(2'n')4aZa+a- (7.2.9) 
IN+N_CI 2= (e2,,,,,+- 1)(1_ e -2=a-) , 

which can be inferred from the definitions (7.1.8c). From eq. (7.2.8) one can calculate the invariant 
mass of the e +e- pairs for a given experimental setup. We observe that the angular distribution of the 
slow pairs is symmetric around 90 ° due to the presence of the sine functions inside brackets of eq. 
(7.2.8); i.e., slow pairs are created preferentially with respective velocities perpendicular to the beam 
direction. 

The angular integrations can be carried out easily and we get 
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d2ore+e _ 

de+ de_ 
1287r (Z lZ2reOt)  2 a+a_ ~/(e+ - m ) ( e  - m )  

3 (e2~a+ - 1 - ~ -  e -2"a ) 0) 4 

2 7 x [(0) - 2m) + (Z2a) ( ~m - 0))] l n ( y 6 m / 0 ) ) .  (7.2.10) 

For heavy ions, and for pair energies such that (e+ - m) '~ m, we have in most cases 

a+_ = Z 2 a V m l 2 ( e +  - - m )  >> 1 .  (7.2.11) 

Then eq. (7.2.10) simplifies to 

dZ°re+e - m2 ( ) 
,~,~ ,~2,76 6 2 ]/~m e_2,a+ (7.2.12) 

de+ de_ = azTrLlZ '2a  re ~ In --~--/ 

In fig. 7.2 we plot the dimensionless function (m/re)2(d2o'lde+ de_) obtained from eq. (7.2.10) as a 
function of (e_ -m)/m for (e+ -m)/m = 0.01, and as a function of (e+ - m ) / m  for (e_ - m ) / m  = 
0.01. The dashed lines correspond to the approximation (7.2.12). We observe that, while it increases 
rapidly as a function of e+, it is approximately constant as a function of e_. This is a consequence of the 
different behaviour of the electron and the positron wavefunctions in the Coulomb field of the target. 
The positrons are very unlikely to be produced with small kinetic energies due to the Coulomb 
repulsion in the field of the target nucleus. For targets with small charge this effect diminishes because 
a+ gets smaller and the energy distribution for positrons and electrons tends to be a symmetric function 
of e+ and e (see eq. 7.2.13). 

In the collisions of nuclei with small charge (like e.g. ct-ct collisions) and for pair energies such that 
a_+ ,~ 1, eq. (7.2.10) becomes 

d2 . 32 2 'nt )  72,3, de. de_  - 3rr ( Z 1 Z 2 r e a )  ~/(e+ - m ) ( e _  - m )  (0) - 2m) 4 
0) 

t o  I 

"1~+ 

t , ~  k a  

10 z 
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10-1 f 
10-2 f 

10 -a [ 
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, ! i I , 

(e_-rn) /m=O.  01 

/ Z l = Z 2  = 9 2  

x 1 0  a 

(~:+-m)/m=L.01 
I i I i 

0 . 1  0 . 2  0 . 3  

(8 --m)/m + 

Fig. 7.2. The double differential cross section d2tr/de+de in units of retm2 2, for Zl=Z2=92, and as a function of (e+-m)lm for 
(e - m) /m  = 0.01 (increasing curve). Also shown is the dependence of this function with respect to (e - m) /m for (e÷ - m) /m  = 0.01 (fiat curve). 
This curve is multiplied by 108 in order to be shown in the same figure. The dashed lines correspond to the approximation (7.2.12). 
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Fig. 7.3. The double differential cross section dZ~r/de+ de_ in units of re/mZ z and as a function of (e+ - m) /m  for (e_ - m) /m  = 0.1 (upper dashed 
curve), and 0.01 (lower dashed curve) for Z 1 = Z  2 =2. Also shown is the dependence of this function with respect to ( e _ -  m)/m for 
(e+ - m ) / m  = 0.01 (upper dotted curve), and 0.01 (lower dotted curve). The solid curves correspond to the approximation (7.2.15). 

which is symmetric in e+ and e_. In fig. 7.3 we plot the same function as in fig. 7.2, but for Z 1 = Z 2 = 2. 
The solid curves correspond to the approximation (7.2.13) for (e_. -  m)/m =0.1 (upper curve), and 
0.01 (lower curve). The other curves are obtained from eq. (7.1.10) for e+ = constant (dotted curves), 
and for e_ = constant (dashed curves), and show the deviations from the approximation (7.2.13). 

As a last remark, we observe that when the relative velocity o r of the created pair is very small, i.e., 
when 

v, ~< a = 1/137, (7.2.14) 

then one must take into account the Coulomb interaction between these particles. This was considered 
by Sacharov [Sa-48] in connection with the formation of a bound state of the electron-positron system 
(positronium). Since the main effect of considering the distortion of the Coulomb field is the presence 
of the terms containing a_. in eq. (7.2.8), we can also make a correction to include the case (7.2.14) by 
multiplying (7.2.8) by the factor 

2 7rot / v  r 

1 - e -2~ra/°r " (7.2.15) 

This correction will have as a consequence that the momentum of the electron and of the positron will 
be strongly correlated and that the cross section (7.2.8) will have a sharp maximum when they are 
approximately equal in magnitude and in direction, i.e., for k+ = k_ (see also [La-86], p. 387). 

7.2.2. Ultrafast pairs 
The calculations of the last section can also be used to determine the probabilities and cross sections 

to produce slow pairs in the frame of reference of the projectile, as soon as we make the exchange 
Z 1 ~ Z 2 and evaluate the pair momenta and energies in that frame. However, in the laboratory frame 
of reference (target frame) these pairs will be very fast, with energies in the region given by eq. (7.Ic). 
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Since the pairs are seen in the projectile frame moving approximately perpendicular to the beam 
direction, they will be observed in the laboratory frame moving very forwardly up to a maximum 
spreading angle of about m/e+ = 1/y ,~ 1 (here use the notation e ' ,  etc. in the projectile frame, and e+_, 
etc. in the laboratory frame). 

We can deduce the cross section for the production of ultrafast pairs by making a Lorentz 
transformation of the expression (7.2.8) to the laboratory system. We use that k+k_ dO+ dO_ de+ d e  
is a Lorentz invariant quantity, and that for y -> 1, and O ,~ 1, we have e" = (e+/2y)(1 + ~/202). We also 
use k+ = e_+, and since the average value of y202 is of order of unity, we set e" = e+/y where possible. 
Then the angular integration can be performed easily and we obtain 

T T a+a_ e+ e_ 
de+dZ°re+e~-de - 64rr5 (Z1Z2Fe°~)2 (e2~raX+ _ 1)(1 - e -2"rraT-) to 6 

× {(e2+ + e2_)[1 - (Z1a) 2] + 2e+e_(Z,a) 2} ln(y28m/to), (7.2.16) 

where 

T T a.  = Zla/v+_ , (7.2.17) 

with v T equal to the transverse velocity of the pair. When a T ,~ 1 eq. (7.2.16) simplifies to 

d2tre+e - = 16 (Z, Z2reot) 2 ----if- (e2+ + e2 _ ) I n  
de+ de_ 57r to 

(7.2.18) 

Although this formula is only valid for pair energies e~ = ym, it shows a close resemblance to the 
results for fast-pairs which we calculate in the next section. Nonetheless, since the energy region where 
the above equation can be applied is very restricted, most of the pairs will be created with energies 
obeying the condition (7.Ib), as we shall see in the next section. 

7.3. Fast electron-positron pairs 

We now consider the production of energetic lepton pairs obeying the condition (7.Ib). We use again 
the expressions (6.13) given in the work of Bethe and Maximon [Be-54] and disregard terms of order 
(m/e+_): and higher. We also put PT = 0 in the numerators of those expressions. We find 

11 = 2C e+ e_ 
to 

(k~+):_ (k~) ~ 
× V~(x) - - , - 7 - ~  [PT - (k+ + kT_)] 2 

1 
[ mz + (PT  -- kT)2][ mz + (PT  -- kT-) 2] 

Z2a )~ } + i - - ~ -  W±(x)[m 2+(kT+ +(k~+)z I , 

e_ 1 
/2=C-- to [m 2 + (PT -- kT-) z] 

(k~+ + i, ~_ ) 
x V~(x) [PT - ( kT "]- kT-)] 2 } [ + ( - )  m2kT_] + i ~ W _ ~ ( x )  k k T z _  

(7.3. la) 

(7.3.1b) 
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13 = C 6--2-+ 1 
kX z o~ [m 2 + (PT -- +) ] 

(k T + t, T) 
× -v._(x)It ,T- (t,~ + t'T_)] ~ 

Zza k k T 2 } + i - - T  W+(x)[ _ ( + )  -mEk T] , 
m 

(7.3.1c) 

where 

V+(x) = F(- ia+,  ia_; 1; x) ,  (7.3.2a) 

W+(x) = F ( 1 - i a + ,  1 + i a _ ; 2 ; x ) ,  (7.3.2b) 

and 

(k T + kTy[ , , ,~  - (/,+ - k _ )  =1 

x = 1 - 4 0 2 ( e +  _ k + z ) ( e  - _ k _ z )  
(7.3.2c) 

Substituting these equations in the integrals (7.1.10) we will find that they are much more 
complicated than the ones in the section 7.2 due to the fact that the denominators contain the quantities 
kr+ and k r _ which are not negligible in comparison with m. Indeed, for fast pairs the angular distribution 
is very forward peaked and their transverse momenta will be of order 

k~,kr=m._ (7.3.3) 

But this implies that, again for b ~> 1/m we can take those denominators outside of the integrals over Pv 
by putting Pv = 0 in them. This simplifies the calculation enormously, since now we can calculate the 
integral in Pv analytically as in the case of slow pairs, and we obtain 

e+e_K(OOb ] 1 
GI~ = 47rC yv ~\ yv / [m E + (k T+)2][m 2 + (kr)2] 

k a- 2 k r 2 } ( + )  - ( _ )  Z2,~ x v_+(x) ~ +iT_- ~ +i--~- W+_(x)[m2+(ks)2+(kT) 2] , (7.3.4a) 

6~, =2~-c ~,~ ,~ ~,vJ [m ~ +(iT) ~] 

{ (kV++kV--) Z2a mZkT}, x V+_(x) (k T +kT)2 +i  --~-- W+_(x)[k+(kT_) 2-  _] 

l 
G31 = 2~rC ,,/---~ K 1 [m 2 + (kr+)2] 

{ (t,~++ k~_) z~,~ [ i, _( t, "~+) - } × -V~(x) (k~+ + k~)= + i - ~  w+_(x) m~k~+] 

(7.3.4b) 

(7.3.4c) 
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Inserting this result in eq. (7.1.13) we will find a complicated angular structure for the differential 
probability. But, this angular distribution is of the same form as that found by Bethe and Maximon 
[Be-54] for e+e -production by a real photon. Therefore, using the same steps as they used for the 
evaluation of the angular integration, it is straightforward to show that the differential probability for 
the production of fast pairs is given by 

d2pe+e - 4 (ZlZ2are)2 12 K2((.ob  12 2 
de+ 7r 2 7 ' \  Y ] Ie+ + e2_ + 2e+e_][ln(~w- ) -  ½ -f(Z2) ] , 

(7.3.5) 

where 

Z2o~ 2 ~ ,  1 (7.3.6) flz) UI= n(n: + ZZa 2) " 

Here we find already a crucial physical difficulty within this approach. Since the pairs with energies in 
the range given by eq. (7.Ib) obey the same conditions in the projectile frame of reference, this 
expression should have the same structure if it was calculated in that frame of reference. But it is not 
so, because if we had calculated it in the frame of reference of the projectile, it would mean a simple 
exchange Z 2 ~ Z~ in eq. (7.3.5), which would lead to a different result due to the presence of the 
function f(Z 1) in eq. (7.3.5). This difficulty arises because our approach is not symmetric in the nuclear 
charges from the very beginning. For example, the wave functions for the electron and positron are 
determined in the frame of reference of the nucleus at rest, neglecting the influence of the other nucleus 
on them. A solution to this problem by using a Lorentz covariant theory with Lorentz transformed 
wave functions for the electron-positron pair is, by no way, simple, and to restore the required 
symmetry in the nuclear charges we postulate an average of the expressions obtained in the projectile 
and in the target system of reference as a reasonable result. This amounts in the substitution of the 
function f(Z2) by the averaged one 

J~(Zl, Z2) = [1 / (Z ,  q- Z2)][Z 1 f ( Z l )  -]- Z 2 f (Z2)  ] • (7.3.7) 

When Z~ ¢ Z z (or Z 2 "~ Z~), this modification is not relevant, since in eq. (7.3.5) it will appear f(ZG) 
where Z6 is the greater from (Z~, Z2). But, when Z 1 = Z 2 the approximation (7.3.7) is rather 
speculative, because we do not know how the influence of both nuclear charges on the electron- 
positron wave functions will be. This point may be a source for future investigations. 

Integrating eq. (7.3.5) over e we find 

d Pe+e- 
de+ 

_ _ 1 112 (ZIZ2aG)2 1K2(2e÷b]e+[ln(e._~)_ ~ _f(Z1, Zz)] 
97r z Y 1\ 7 / 

(7.3.8) 

dG*o- 
de+ 

56 (Z, Z2are)21[ln(ff,~) 1 ] ln( ~'Sm ~ 
- 9 7 r  e---~- - 2  -f(Zm' Z2) \ 2e+ ] " 

(7.3.9) 

The same result can be obtained for dPe+e-/de by exchanging the indices - and + in eq. (7.3.8). The 
respective expressions for the differential cross sections can be deduced from eqs. (7.3.5) and (7.3.8) by 
using the integral (7.2.7). For example, the differential cross section &r/de+ is equal to 
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Fig. 7.4. The differential cross section d%+=-/de+ for production of e+e - pairs in uranium-uranium collisions (upper curves) and calcium-calcium 
collisions (lower curves) as a function of the positron energy e+, and for 7 = 100 and 1000. 

In fig. 7.4 we plot the differential cross section dtr~%-/de+ for production of e÷e - pairs in 
uranium-uranium collisions and calcium-calcium collisions as a function of the positron energy e÷, and 
for 3' = 100 and 1000. Already here we see that the creation of positrons (and electrons) with small 
energies is strongly suppressed in comparison with the ones with higher energies and, when 3' increases, 
more and more positrons (and electrons) with higher energies are produced. Indeed, in this figure we 
see that the dashed curve (7 = 100) decreases faster with increasing energy of the positrons than the full 
curve (3' = 1000). 

Now we integrate (7.3.8) over e+ and use the approximation (7.2.6), in order to obtain the 
probability to create a e÷e - pair in a RHI collision as a function of the impact parameter: 

142 1 
Pe*e-(b) = ~ 2  (Z1ZEare)2-~ [ln2(2-~b ) - [ 1 +  2f(Z1, Z2)] ln(2-~b)]  , (7.3.10) 

valid for yS/m >~ b >~ 1/m. 
In fig. 7.5 we plot the probability to create a e+e - pair in uranium-uranium and calcium-calcium 

collisions as a function of the Lorentz factor Y, and for impact parameter equal to the Compton 
wavelength b = l/re. We note that for calcium-calcium collisions, Pc+e- ,~ 1, even for very large values 
of 7, which justifies the use of first order perturbation theory. Nonetheless, for uranium-uranium 
collision, Po+e- > 1, for 3' ~> 500, which violates the unitarity condition. This means that for extremely 
high energies, greater than several hundreds of GeV/nucleon, and for very heavy ions, it will be 
necessary to account for higher order terms in the perturbation theory. In other words, one must 
consider the probability of creating two or more pairs in a single collision above those energies. 

As we mentioned before, P~.~-(b) goes to a constant, finite value for b ~< 1/m, and diminishes very 
slowly (like 1/b E) as a function of b, up to a limit 3"/m after which it decays exponentially, and this is 
the reason why the cross sections for pair production will be very large. In fact, integrating eq. (7.3.10) 
from b = 1/m to b = 3"/m we find 

ire+e- _2827vr (Z1Zzare)2[lna(~)-3(l+2f)ln2(7~)] (7.3.11) 
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relativistic Lorentz factor 7, and for impact parameter b = 1/m. Observe that for uranium-uranium collisions it becomes greater than one for 
7 ~>500. 

Since the integration of eq. (7.3.5) over b can be done analytically by using eq. (7.2.7), a better 
result can be also found by integrating numerically d2tr/de+ de_ over e+ and e_. But, for 3, >~ 100 eq. 
(7.3.11) agrees very well with the numerical calculations. Except for the second term inside brackets 
and an irrelevant factor in the logarithm which is not important for 3' >> 1, the above expression agrees 
with the result found by Landau and Lifshitz [La-34] in the Born approximation. The second term 
inside brackets is a correction due to the distortion of the electron-positron wavefunctions in the field 
of the nuclei. 

In fig. 7.6 we plot the cross section for production of e+e - pairs in relativistic uranium-uranium 
collisions and calcium-calcium collisions as a function of the Lorentz factor 3', based on eq. (7.3.11). 
These cross sections are about one to two orders of magnitude smaller than the ones calculated by 
Bertulani and Baur [Ber-86b], where the equivalent photon method was used. This occurs because 
there the equivalent photon numbers were integrated from a minimum impact parameter equal to R 
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Fig. 7.6. The cross section ~ro+ e- for production of e÷e - pairs in uranium-uranium collisions and calcium-calcium collisions as a function of the 
relativistic Lorentz factor 7. The ordinate is given in kilobarns. 
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(sum of the nuclear radii). As we saw, the minimum impact parameter that should be used is equal to 
the Compton wavelength, below which the contribution to the total cross section for pair production is 
negligible. That error makes the cross section in ref. [Ber-86b] much bigger than it should be. But the 
results agree quite well with the ones obtained here if we make the substitution R---> 1/m in that 
calculation. In view of our previous discussion about the pair production probability, there must exist 
some corrections to eq. (7.3.11) for uranium-uranium collisions with y ~> 500. There one must take also 
into account the probability of creating two or more pairs in a single RHI collision. This may change the 
dependence of the cross section on y. 

From the previous results one observes that the probability for the production of fast e +e- pairs in 
the collision of two fast nuclei in comparison with slow (or ultrafast) ones scales like 

pfast /oslow = l n 2 ( y / m b )  
e+e l i e +  e (7.3.12a) 

and the ratio between the cross sections scales like 

fa s t  t s l o w  
O'e+e_/O'e+ e_ ~ In 2 y ,  (7.3.12b) 

which means that for y >> 1, most of the e+e - pairs will be fast ones, i.e., will have energies in the range 
given by eq. (7.Ib). Therefore, we can say that the total probability or cross section for producing e+e - 
pairs in RHI collisions are given accurately enough by eqs. (7.3.10) and (7.3.11), or by the respective 
numerical integration of (7.3.5). 

7.4. Effects of screening 

The above cross sections were evaluated under the assumption that the RHI were naked, without 
their electron cloud. Let us, for simplicity, assume that only one of the ions is screened by the atomic 
electrons, say the target. Then, the correction to the previous results can be performed in a completely 
analogous way as in the case of pair production by a real photon [Be-54]. Therefore, we only present 
the final results, which for partial screening are 

d°'e+e- - 2 (Z1Z2olFe) 2 L [ 6 ~ l ( X ) +  ~D2(X) _ 28 lnZ2_28f]ln(Y6m] (7 .4 .1)  
de+ 9rr e+ \ 2e+ / ' 

where qJ1 and q~z are the Bethe functions for atomic screening [Be-34] as functions of the parameter (see 
also [Ak-65], p. 395) 

X = (2mto/e+ a ) Z 2 1 / 3  . 

In case of complete screening, i.e., when e+_/m>> Z12/3a, then we can use q~(0)=4In  183 and 
• 2(0) = 41n 183 - 2/3, and eq. (7.4.1) reduces to 

do'¢+e- 56 (Z1Z2are)2 1 [1n(183 ) 1 f] (~+ ) 
de+' = 9---~ e-~ ~731/3 - - In . (7.4.2) 

The total cross sections for e +e--pair production in RHI when one of the ions is completely screened 
,71/3 is obtained by integrating eq. (7.4.2) from e+ = "2 am to ym, i.e., 
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28 2 183 o'~+~= ~ (Z]Z2ar~)[1n(~/32/3) - 1 _  f][ln2(78Z12,3 ) - 1n2(8/2)]. (7.4.3) 

In the case of partial screening a numerical integration of eq. (7.4.1) will be necessary. 
In fig. 7.7 we show the cross section for pair production in oxygen-calcium and oxygen-uranium 

collisions as a function of the Lorentz factor 7. The solid lines correspond to the case of no-screening of 
the target and of the projectile, as it could be the situation in a RHI collider. The dashed lines 
correspond to the case of complete screening of the target. The effect of screening is very important for 
low energies of the beam and diminishes in importance for very high energies. However, when 
screening is present the cross sections will always be smaller by at least a factor 2-4, also for very high 
beam energies. 

7.5. Production of heavy leptons 

The same previous calculations can be applied for ~÷tx- and T÷T--pair production in RHI, but care 
must be taken on the following facts. First, since the Compton wavelength of these leptons satisfy the 
condition 

h / m c ~ R  = R 1 + R 2 , (7.5.1a) 

where 

R1 2 1 9A 1/3 fm (7.5.1b) 

are the nuclear radii of the ions, the impact parameter dependence of the pair production probabilities 
are accurately enough described by expressions given in section 7.2, but in the cross sections one must 
substitute the variable ~" as given in eq. (7.2.7b) by another one given by 



C.A. Bertulani and G. Baur, Electromagnetic processes in relativistic heavy ion collisions 389 

= toR/yo. (7.5.2) 

This means that, for 

y >> 16, for Ix+Ix- pair production, (7.5.3a) 

and 

y >> 270, for "r÷'r - pair production, (7.5.3b) 

we can replace the mass of the electron by the mass of the respective lepton and 

ln(ySm/to) by ln(yS/toR) (7.5.4) 

in the equations for the cross sections given in the previous sections to obtain the respective cross 
sections for Ix+Ix- and 'r+'r - production. 

The conditions (7.5.3) are quite severe and only for RHI accelerators working at extremely large 
energies it will be useful, especially for "r+'r - production. Therefore, we consider the opposite case, i.e., 
when y <16 for ix*ix - and y <270 for "r+'r - production. Then the function in eq. (7.2.7a) becomes 

g(~:) = 1r 2 e -2~ . (7.5.5) 

The expressions (7.2.8) and (7.2.10) will be correct if we replace 

ln(ySm/to) by (zr/2)e -:'°R/v . (7.5.6) 

This means that the double differential cross section for IX+ Ix- and "r+T - production with beam energies 
satisfying the above condition is 

_ _  _ _  a+a_  ~/(e+ - m ) ( e _ -  m)  
de+d2°'e+e-de_ - 64Ir23 (Z1Z2rea)2 (e 2~a+ - 1)(1 _ e-2~._) w4 

x [(to - 2rn) + (Z2a)2(7m - to)] e -2°'m~ , (7.5.7) 

where the subscript ~:+f- is used in this section for muon or tau pairs. 
When the charges of the ions are small, such that the approximation a_+ ~ 1 can be used, we can 

integrate eq. (7.5.7) from e_+ = m to 2m and obtain 

d°'e+e--~(ZIZ2otre)21de+ m \2~/( y ]3/2(e÷\m- - 1)\3/2[[/(3)- F(~ "2mRI]e-2(~++m)R/v' y /a 

(Z, Z2are): 1 ( 3/ ]3/2(e+ )3/1 
= 6 m \ ~ - - R /  \ ~ -  - 1  e -2t'++m)m', (7.5.8) 

where F( A; y) is the incomplete gamma function (see [Gr-65], p. 940), and the last equality corresponds 
to the asymptotic limit mR/y >> 1. 
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We integrate, eq. (7.5.8) over e+ in order to find the total cross section for muon (or tau) production 
under the condition that mR~7 ~> 1, namely 

4 2mR)] 2mRll °re+e-=l(Z, Zmare)2(m-~) [F(3)-I'(~; ~ /j[F(+)-F(~; 7 / J 
+ 

"IT 2 e - 4 m R ~ 7  

= 128 (Z1Z2are) 

e - 4 m R ~ 7  

(7.5.9) 

This result is in good agreement with that of ref. [Ba-87a], where the cross section was calculated by 
using the equivalent photon method. There the cross section was given in terms of the exponential 
integral function Ei(x) (see [Gr-65], p. 312) and the asymptotic limit for mR~7 >> 1 is exactly the same 
as the one obtained above (see eq. (10) of that reference). In RHI collisions, for which the above 
approximations are not valid, a numerical integration of eq. (7.5.7) has to be performed. 

Numerical values are plotted in fig. 7.8 for Ore+ e in the collision ~60 + 160 as a function of the 
Lorentz factor 7- The cross sections are much smaller than that for e+e - production in the same energy 
regime. This is due to the severe limitation imposed by the adiabatic cutoff in the cross section for 
projectile energies such that mR~7 ~> 1, which strongly inhibits the creation of very massive particles 
when this condition is attained. When the projectile energy is very high, such that the conditions (7.5.3) 
are valid, then we can use eq. (7.3.11) also for IX÷IX- and "r÷'r - production. But even in that case the 
cross sections will be smaller by a factor (me~me) 2 (i.e., approximately 10 -4 for tx ÷ Ix- production, and 
approximately 10 -7 for "r+'r - production) in comparison with that for e+e - production. 
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Lepton-pair production is suggested [see e.g. Do-83] as being a potentially efficient probe of quark 
matter formed in RHI collisions. As we saw in this section, the electromagnetic production of leptons is 
by no means negligible, and although the multiplicity (i.e. the number of pairs) in a single collision is 
smaller or about one, the cross sections for it are very high and can be a source of experimental 
difficulties in the signature of that aspect of the quark-gluon plasma formation. 

As a final remark, let us compare the electromagnetic production of leptons in RHI collisions with 
the corresponding process in relativistic electron colliders. For a detailed theoretical study of that, see 
[Bu-75]. In such machines, the 3,-values achieved are much higher than in the heavy ion case, therefore 
the cross sections are accurately enough given by eq. (7.3.11). We have astonishingly large e+e - 

2 2 production cross sections in RHI collisions, due to the large charge factor Z~Z 2, however, heavy 
leptons pairs (ix+ix-,'r+'r - pairs) are practically not produced unless the beam energy is very high 
(3, >> 16 for IX+ IX-, and 3' >> 270 for "r+~ - pairs). Also the electromagnetic production, in the two-photon 
mechanism, of quark-antiquark states (like the 7/c, which was recently studied with the PLUTO 
detector at PETRA in high energy e+e - collisions [Berg-86]), will be negligible unless the beam energy 
is extremely large (1, >> 600 in case of r/c production). 

7.6. Pair production with atomic shell capture 

With the obtained large values of the cross sections for production of free electron-positron pairs, it 
is also of interest to study those pair production processes where the electron is captured in a bound 
atomic orbit in the projectile, or in the target. The first theoretical work on this subject was carried out 
by Becker, Gr/Jn and Scheid [Be-87]. There they used a partial wave expansion of the electron and the 
positron in terms of exact Dirac-Coulomb wave functions, and calculated numerically the probabilities 
and cross sections for the process in the first order semiclassical theory. Bertulani and Baur [Ber-87b] 
have performed a different calculation to the same process by trying to avoid the partial wave expansion 
and to obtain analytical formulas for the important cases. This can be accomplished by using 
approximate wave functions for the final bound state of the electron and for the free positron. We use 
the same approach as in section 7 on the production of free pairs in the collisions of fast nuclei. 

In fig. 7.9 (taken from [Be-86c]) a scheme of the Dirac spectrum, describes the two distinct 
pair-production situations: (a) pair-production with K-shell capture and (b) production of free pairs. 

mc 2 

Is 112 

0 

- m e  2 

E 

o) I b) 

Fig. 7.9. A perturbation of the vacuum leading to (a) pair creation with the capture of the electron in the K-sheU and (b) production of free 
electron-positron pairs. 
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We show that explicit analytical results can be found for the capture of the created electron in a 
K-shell of the projectile, or in the target. The cross sections for the capture in higher atomic orbits, 
being of much less importance, are easily guessed. We also show how the limiting cases can be obtained 
by using the equivalent photon method. 

7.6.1. Pair  produc t ion  with K-shel l  capture 

In the previous sections we have shown that the probability amplitude to create an electron-positron 
pair, with respective energies equal to e+, e_, in a RHI collision with 3' "> 1 is given by eq. (7.1.7). If 
the electron is created in a K-shell orbit (see fig. 7.9) then, instead of eq. (7.1.2), we must use 

oJ = e+ + m -  IK, (7.6.1) 

with I K equal to the ionization energy of the K-shell electron (in the following we shall use I K -- 0, which 
is appropriate only for small-Z nuclei). 

For the positron wave function, q'e+, we use the Sommerfeld-Maue function (7.1.8b), and for the 
captured electron we use the bound K-shell wavefunction, valid for gze2~ 1, 

~e = N_[1 + liZze2Ot • r/r] e -nr u o , (7.6.2a) 

where 

(i) 1/2= Uo1/2 , _ = ~/(Z2me2)S/Tr (7.6.2b) u o , = , ~ 7 = m Z z e  2 and N 

0 0 

The components UO I/2 and UO 1/2 Of the spinor u 0 correspond to the electron with spin up and down, 
respectively (see [Ak-65], eq. 31.11). 

Although, due to the use of these approximate wavefunctions, the following results may be 
appropriate for RHI collisions for which one (or both) nuclei satisfy the condition Z e  2 ,~ 1, we expect 
that even for very heavy nuclei they will be useful, since the main ingredients are contained in the 
calculations. 

Inserting eqs. (7.1.8b) and (7.6.2) in eq. (7.1.7) we find 

K Z1 e2 
ae+ e - : N+N_ ~ * ~ Uo[a GI~ + (oz" G2~)a ~ + a ~ ( a  • G3a)]w (7.6.3) 

17/'to U h=l,2 

where A = 1, 2 represents the two orthogonal components transverse to the beam. As in eq. (7.1.10), 
the tensors GI~, G2~, and G3a are given by 

f p ~ [ j 1 , j z ,  j3] • [GIA, G2A, ~]~3A] = d2pT p2  q.. ((.o/,~U)2 e'PT'b , (7.6.4) 

where 
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J1 = f eiq"-nrF2 d3r , 

iZ2 e2 f r 
Jz - 2 e i q ' r - * l r  - r F2 d3r '  

,f J3 = 2e+ eiq'r-'lrtTF2 d3r' 

(7.6.5a) 

(7.6.5b) 

(7.6.50 

q = p' - k+,  (7.6.5d) 

and 

F 2 = F ( - i a + ,  1 , i k + r + i k + . r ) .  (7.6.5e) 

The integrals (7.6.5) are very similar to the ones involved in the photoelectric effect and can be carried 
out analytically (see e.g. [Ak-65], pp. 435 and 436). 

Since only values of PT up to to/yV "~ m will contribute to the integrals (7.6.4), we put Pa- = 0 in eq. 
(7.6.5), which amounts to use q = (to/v)£ - k+ in them, where £ is equal to a unit vector in the beam 
direction. In this way, the integral in Pr of eq. (7.6.4) can be done exactly in terms of the modified 
Bessel function of first order. As we have shown in the preceding section, this approximation is good 
for RHI collisions with impact parameters larger than the Compton wavelength of the electron, i.e., for 
b > 1/m,  which are the impact parameters which most contribute to the total cross sections. Indeed, for 
b < 1/m the probability amplitude for pair production tends to a constant value (see the exact numerical 
calculations of Becker, Griin and Scheid [Be-87]), while for b > 1/m it decays proportionally to 1/b a, up 
to a cutoff limit given by b -~ y/to. This has as a consequence that the contribution of impact parameters 
b > 1/m to the total cross sections increases logarithmically with the RHI-beam energy, while the 
contribution from smaller impact parameters gives a constant and small quantity. 

With these approximations the integrals (7.6.4) can be solved analytically and we obtain (we choose 
b along the x-axis) 

GIE, Gz2,632 = 0 ,  (7.6.6a) 

and 

. 4zr2Z2 e2 k+(k+ - e+ cos 0+) K (tob~ (7.6.6b) 
a l l  = -1  ~t--~ E + ( ~ ~ ~ m ) ( ~ + ~ - - ~  cos 0+) 2 lk ~/j ] ,  

2 rr2Zze 2 to~ - ok+ K ( tob '~ 
t121 = i (7.6.6c) yv 2 (e+ +m)~+-[5~+cos0+) 2 ' \ y v / '  

2 7r2Zz ez toi - ok+ K ( tob 
6;31 = i (7.6.6d) yv 2 m(e+ + ~-(~f+-~-k+ cos 0+) 1\ yu ,] '  

where K 1 represents the modified Bessel function of first order, and ~+ and 0÷ are, respectively, the 
azimuthal and the polar angles of emission of the created positron with respect to the beam direction. 
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The differential probability for pair production with K-shell capture is obtained from eq. (7.6.3) as 

K dPe+e_ ~ K 2 k+e+ =sp,,~lae+e I ~ de+ dO+,  (7.6.7) 

where the summation is taken over different spin orientations of the electron and the positron, Using 
the properties of the Dirac matrices we find 

( Z, eZ)zIN+N_[ z k+ 12 dP~+~-=\-~wv / (--~)3 {(e+ +m)lG1] +2Gl*l[k+'(G21-G31)-ZkT++'G2 T] 

+ (e+ - m)[IG2~[ 2 + IG3112 + 2(2GT1 "G3Ta-G21 "631)]} de+ d a + ,  (7.6.8) 

T T where k+(G,~) denotes the transverse component of k+ (G~A). 
Now we insert the expressions (7.6.6) in (7.6.8), putting v = c = 1 overall, and we find 

dpK+ 2 ,72,-76 8 1 m 3 sin20+ 
= _ _ ), 

7r - 1 )  e+(e+ +m) 3 (1 (k+/e+)cosO+ 

× [X(X 3 + X 2 - X - 1) + (4 - 6X + 2X 3) cos2~b+ - (1 + X + 2 COS2~b+ ) 

×(Xz-1)3/2cos0+]  12K2(°jb~ ~\ 7 / de+ d/2+ , (7.6.9) 

where X = e+/m, and a = eZ/hc = 1/137 is the fine structure constant. 
The angular distribution for the direction of emission of the created positron may be expressed in 

terms of the dimensionless function 

= 27r sin20+ [2 - 4 y - ,t "2 + 2)( 3 + g4 (2 + g)(X 2 1) 3/2 
We+~- (1 - (k+/e+) cos 0+) 4 - - cos 0+], (7.6.10a) 

which is obtained by integration of the angular part of eq. (7.6.9) over the azimuthal angle 4)+. 
When (e+ - m) "~ m, then 

WK+ _ =4rc(k2+/mZ) sin20+ , (7.6.10b) 

which means that low-energetic positrons will be emitted preferentially in the direction perpendicular to 
the RHI-beam. For e+ >> m, the angular distribution is approximately 

(_.~) 4 sin20+ ( ~ ) 4  2 
K -~ 64rr 0+ 

W~+o- -41 r  (1-(k+/e+)cosO+)" [(m/e+)2+02+] 4 ' (7.6.10(:) 

which implies that highly energetic positrons will be created with their momenta directed very 
forwardly, up to a maximum angle 0~ aX--- m/e+, 

Integrating eq. (7.6.9) over the angular distribution of the positrons we find 
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K 
dPe+ e- . , - , 2 , . 6  8 1 k+m 1 K2(tob~ 
de---"--~--- = ~z ' lLza (e 2""+ - 1) (e+ + m) 3 32 a\ 3' / 

×[43+-3--mm + 2 e +  (_~)2 e++2mk+ ln(e++k+)]m " (7.6.11) 

The modified Bessel function of first order has the property given by eq. (7.2.6), which implies that 
the pair production probability decays like 1/b 2 for impact parameter b larger than the Compton 
wavelength, i.e. for b > 1/m, until to a cutoff limit given by b = 3"~to. Above this cutoff limit it will 
decay exponentially, which will guarantee the convergence of the cross section. Indeed, with these 
simplifications the differential cross section can be easily obtained by using eq. (7.2.7). We can write the 
result as 

K do'~+e- ,,,2,-,6 6 2 1 k+m 3 
de+ - ~ z ' l z ' 2 a  re (e 2'~"÷ - 1) (e+ + m) 5 g(~) 

× 3 + ~ m  + k+ In m ' (7.6.12) 

where r e = e2/mc 2= 2.817. . .  fm is the classical electron radius. 
For e+ - m, 

do'e+ e- 2zr ,72,76 6 2 k3+ e-2~a+ (7.6.13) 
de+ = Y LIL20I re -~ In . 

For e+ >> m, 

(3'8m I d°'e+e- 2 6 6 2 m 1 In . (7.6.14) 
de+ --16~rZ1Z2a re 2 eX~rZ2a 1 \ e+ / 

e+ 

In fig. 7.10 we plot eq. (7.6.12), in units of r2e/m, as a function of e+/m, and for Z 1 = Z 2 = 8 and 
3' = 100. Also shown are the low (dashed line) and high (dotted line) positron energy approximation. 
We observe that the spectrum is strongly suppressed for e+/m = 1, which is due to the Coulomb 
repulsion in the field of the nucleus, which prevents creation of low energy positrons. It has a maximum 
around e+ ~-2m, and decays like eq. (7.6.14) after that. Since, as a function of e+, the differential cross 
section for production of free pairs decays proportionally to l / t+ ,  the total cross section (integrated 
over e+ ) for pair production with capture, besides of an extra factor (Z2ot) 3, will increase more slowly as 
a function of 3' than that for production of free pairs. 

If we integrate numerically eq. (7.6.12) over the positron energy we obtain the solid curve as shown 
in fig. 7.11, for Z 1 = Z 2 = 8 and as a function of 3'. Also shown (dashed line) in that figure is the 
approximate expression 

K 33o 2 6 62 1  7615, 
O'e+e- ~ 10 L1L20~ re e 2~rZ2a - 1 
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which can be obtained by setting k+ = e+ overall in eq. (7.6.12) and integrating it from e+ = 2m to co. It 
will be a good approximation for the numerical integration of eq. (7.6.12) with 3' ~> 50. 

The ratio of the total cross section for the production of free pairs (see eq. (7.3.11)) and that for 
which the electron is captured in a K-shell atomic orbit (which give the biggest contribution, as we shall 
see in the next section) is approximately given by 

o-e+ e-  3 3 z r  ( 7 . 6 . 1 6 )  
fre-----T - -  - -  (Z2°t) 3 In 

o'e+~- 20 

This means that, compared with the production of free pairs, pair production with capture will be more 
important for ions with larger charges and for lower energies. For Z 2 = 8 and y = 100, we find 
O-capt/or free = 10 -4. 
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7.6.2. Contribution from higher orbits 
In principle, it is possible to calculate the cross sections for capture of the electron to higher atomic 

orbits in a way similar to the K-shell capture. However, since the calculations become more 
cumbersome and the contributions are much smaller than that for capture in the K-shell, we prefer to 
use another method which is based on the previous works for the one-photon annihilation of positrons 
with atomically bound electrons [Fe-33, Ni-34, Ak-65]. 

First we mention how some of the results of the previous section can be obtained with the equivalent 
photon method. In this approach one needs the cross section for the photoproduction process 

~/+ Z2---> e + + (Z 2 + e-)K,L . . . .  • (7.6.17) 

By time reversal, this process is related to the one-photon annihilation process 

+ 
e + (Z 2 +e-)K.L . . . .  ---~/+Z2, (7.6.18) 

the theoretical cross sections for which are known since the thirties, like e.g. in the calculations of 
Fermi and Uhlenbeck [Fe-33], Nishina, Tomonaga and Tamaki [Ni-34], and others (see e.g. [Ak-65], p. 
463, and references therein). In the extreme relativistic (E.R.), e+ >> m, and non-relativistic (N.R.), 
e+ - m ,  cases we have [Ni-34] 

k+ 1 (N.R.) 
ann  o 2 , 7 6  5 2 3m e 2~ra+ - 1 

O r ----871" / - , 2  °`  r e 

m 1 (E.R.) .  
e+ e 2~rz2~ - 1 

(7.6.19) 

By means of the detailed balance theorem, these cross sections are related to the photoproduction cross 
sections by 

k~ 1 
/ -~ ~ " "  3 27r a'~" 

_ p r o d  ,-, 2 , 7 6  5 2 / l z m  e - 1 
= ~TT L 2 a  r e ~ (7.6.20) 

o~  | m 1 

( 

(N.R.) ,  

(E.R.) .  

In the equivalent photon method it is assumed that the processes originated by the time-varying 
electromagnetic field generated by a relativistic charge are the same as those caused by a plane wave 
pulse of light containing n(to)/to photons per unit energy. In this way, the cross sections for any 
electromagnetic process in RHI collisions can be related to that for the same process originated by a 
real photon orv by means of the expression (see section 1) 

do- an I  _ n(to) prod ( 7 . 6 . 2 1 )  
dto ~o or~ " 

In the case of pair production dto= de+ and (see eq. (1.11a)) 
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(7.6.22) 

Now it is a simple matter to show that by inserting eq. (7.6.20) in eq. (7.6.21) and using eq. (7.6.22) we 
reproduce the eqs. (7.6.13) and (7.6.14). 

In ref. [Ni-34] the one-photon annihilation of L-shell electrons and positrons was also considered. It 
was found that the dominant contribution comes from the L~-subshell and that the cross section is given 
by 1/8 of the K-shell cross section. This is related to a general scaling law, which also appears in the 
photo-electric effect (see e.g. [Be-77], p. 303), given by 

trns = Orls/n 3 , (7.6.23) 

where the index ns denotes the spherically symmetric atomic subshells of order n. This relation reflects 
the behaviour of the bound state wave functions in momentum space at large momenta. Assuming that 
this behaviour is valid for contribution of all atomic shells, one would obtain an increase of the total 
capture cross section (into s-orbits, which are the most important), as compared to that for capture in 
the K-shell, by a factor 

oo 

1 / n  3 = ~(3)= 1.202, (7.6.24) 
n = l  

where s c is the Riemann ~:-function. This means that eqs. (7.6.12) and (7.6.15) should be multiplied by 
eq. (7.6.24) if we want to have the contribution of all atomic orbits, which implies in a correction of 
about 20% for the total cross section. 

The capture process in RHI collisions could well be crucial for future relativistic colliders: the 
electron capture process changes the charge state of the circulating ions and leads to a beam-loss in 
further turns [An-87]. In a 100 GeV/nucleon uranium collider with a luminosity of 10 27 c m  -2 S -l one 
can easily estimate the number of electron captures per second: this energy corresponds to an 
equivalent laboratory energy of 20 400 GeV/nucleon, i.e., a value of 7 = 2 × 10 4. From eq. (7.3.11) we 
find that the total cross section for the production of free pairs is approximately o- = 60 kb. This means 
that approximately 108 pairs are produced per second. From eq. (7.6.15) we find that approximately 105 
electrons per second will be captured in atomic orbits of the ions in the interaction region of the same 
beam. As pointed out by Anholt and Gould [An-87] this may limit to an upper value the beam energy 
to be obtained in a RHI collider, or may even be used to control the beam luminosity by measuring the 
total amount of positrons created per unit time. The capture cross section should also be put into 
relation with other characteristic cross sections. For example, the nuclear geometric cross section is of 
order of one barn, i.e. they are a small fraction of the atomic capture cross section. 

In principle, it is also possible to produce heavy lepton pairs [see Mo-87], like lx+l~ - and 'r+'r - with 
the capture of a negative lepton. But, due to the much higher masses of these leptons, the 
corresponding cross sections are much smaller and expected to be of minor importance. 

Also interesting in this context is the possibility of formation of at--atoms by means of the strong 
interactions in RHI. For an experimental proposal in this direction see ref. [HK-87]. 
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8. Conclusions 

Electromagnetic effects in relativistic nuclear collisions are very important and interesting. Since the 
electromagnetic interaction is well known, reliable theoretical predictions are possible. This makes, 
e.g., the electron an ideal probe to investigate nuclear structure. Since there is only the electromagnetic 
interaction between the electron and the target nucleus, a detailed study of electromagnetic form- 
factors is possible, which allows an extensive determination of nuclear transition densities. With nuclear 
scattering below the Coulomb barrier, it is possible to avoid the strong nuclear interaction between 
them and obtain very interesting and useful information about nuclear electromagnetic matrix-elements 
(transition matrix-elements, as well as static moments, like quadrupole moments of excited states). 
Especially with heavy ions, it becomes possible to achieve multiple excitation of nuclear levels (e.g., 
rotational bands). 

We have presented a study of the electromagnetic effects (Coulomb excitation, particle production, 
etc.) in relativistic heavy ion collisions. The method of equivalent photons has proven to be a very 
powerful and transparent tool to study these effects. It allows a clear separation into a purely 
kinematical aspect (equivalent photon numbers) and the cross sections for a process induced by real 
photons. Since with an increasing value of the relativistic parameter 3' the hardness of the equivalent 
photons is increased, many new possibilities open up. We have studied these new possibilities in a way 
as simple as possible. 

In the case of relativistic Coulomb excitation, a comparison between detailed calculations in the 
semiclassical and in the plane wave Born approximation was useful in obtaining a new insight into this 
subject. In both approaches it is possible to develop the interaction potential in terms of different 
multipolarities, which enables the study of the contribution of each multipolarity to a particular nuclear 
reaction. The PWBA cross section integrated over angles is shown to be equal to the semiclassical one 
integrated over impact parameters. By factorizing the cross section integrated over the excitation 
energy, we reach an expression for the number of equivalent photons for different multipolarities and 
frequencies of the electromagnetic interaction. A comparison with the results derived by other methods 
was useful to clarify some points in this matter. 

Rather simple classical and quantal considerations show the importance of giant resonance excita- 
tions in peripheral RHI collisions. The present experimental status can be compared to theoretical 
calculations using a sum rule approach to the nuclear states, and a completely satisfactory agreement is 
found. Fragmentation can also be of practical importance, like, e.g., the production of new and 
interesting isotopes (like 19Ne). In view of recently proposed detailed experimental studies of extreme 
peripheral collisions, the possibility of multiphonon giant dipole oscillations is discussed. Such a 
possibility does not seem to exist in electron scattering due to the much smaller charge as compared to a 
heavy ion. Using a harmonic oscillator model, absolute values for total cross sections can be obtained 
with simple formulas. The cross sections are found to be quite appreciable. Whereas the cross sections 
for heavy projectile excitation are larger than those for light projectile excitation, such as 160 or 32S, the 
separation amplitude of neutrons and protons will be larger for lighter projectiles. This could prove to 
be a means of producing new and exotic nuclei, perhaps, e.g., polyneutrons. We can also include - in a 
phenomenological way - the effects of damping of the giant dipole collective motion in the theory. A 
theoretical study indicates quite safely the possibility of excitation of such states with appreciable values 
for the cross sections. A beautiful application of the theory of relativistic Coulomb excitation was 
illustrated by the experiment for the AE ° conversion in the field of a nucleus with large charge. Besides 
allowing a test to the theory, it showed that the theory can be a basis for powerful studies of 
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electromagnetic properties of hadrons. In the special case of that experiment it was used to extract the 
lifetime of the ~0 particle, which agreed with the theoretical values predicted by the SU(3) theory for 
the hadrons. 

With increasing collision energy, pion production due to electromagnetic processes will become 
important: it can be quantitatively calculated based on our knowledge of pion production in photonu- 
clear interactions. Bremsstrahlung, the elastic scattering of the equivalent photons on charged particles, 
is relatively unimportant for the heavy ions, although interesting effects are also to be observed in this 
field. Atomic ionization by means of relativistic projectiles is of large importance, due to the enormous 
values for the ionization cross sections. Lepton pair production, especially e+e - pairs, is also of great 
interest due to its large cross sections. We found tractable analytical results for the relevant kinematical 
situations in this process: there are slow pairs produced around the target and the projectile (what we 
called ultrafast pairs) charges, respectively, and dominantly, an intermediate energy region. In addition, 
we saw that an analysis of the impact parameter dependence of this process points directly to the 
limitation of first order perturbation theory for extremely relativistic heavy ion collisions. The capture 
of the created electrons in an orbit of the projectile will tend to reduce the beam luminosity due to the 
charge change. 

The central and peripheral collisions of relativistic heavy ions may be compared to the case of two 
potential lovers walking on the same side of the street, but in opposite directions. If they do not care, 
they can collide frontally, which could not be bad at all. It may be a good opportunity for the beginning 
of strong interactions between them. A third observer will easily notice this situation, or the 
consequences of it. On the other hand, if they pass far from each other, they can still exchange glances 
(just electromagnetic interaction!), which can even lead to their excitation. But for the observer this will 
not be so easily noticed. He must be very interested in this situation to be able to detect something. He 
can surprisingly discover that the effects of these peripheral collisions are sometimes more interesting 
than the violent frontal ones. 
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9. Appendices 

A. The relativistic Winther-Alder functions 

In this appendix we make a resum6 of the relativistic kinematic functions G ~ t  m , introduced in section 
2, eq. (2.1.15), and first calculated by Winther and Alder [Wi-79]. 
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The functions G~rlm(X), where x = c/v, are given in terms of the Legendre polynomials PT'(x), 
calculated for x > 1. For m t> 0 they are 

• l+m 1 ~  /(l-m)!/1/2 
GElm(X)=I 1(21+ 1)!! ( - ~ . V 3  ( x 2 -  1)-1/2 

( / + l ) ( / + m )  P'~_,(x) l ( l - m + l )  m } 
X 21 + 1 217-1 Pt+~(X) (A.la)  

GMlm(X ) = it+m+ 1 1 ~  [ ( l -  m)! ],,2 l(2l+ 1)!! ( /+~ . lJ  (xE-1)-l/Emp'~(x)' (A.lb) 

while for m < 0 one can use 

GEl , -m(x )  = (--  1) m GEIm(X ) , 

GMI,- m (X) = ( - -  1)" +1 GMIm (X) .  

In the non-relativistic limit, x = c/v >> 1, we find from the above definitions 

GEIm(C/V) = i ̀ +m ~ (C/V) l 
21 + 1 [ ( / +  m ) ! ( l  - m)[] 1/2 ' 

and 

(A.lc) 

(A. ld)  

(A.2a) 

G 
. . . .  I+m+l m ~ (clv) t-1 

(A.2b) Mlrn~C/V) = l l 2I + 1 [(/+ m)t(l- m)!] 1/2 
m 

while 

In the extreme relativistic limit, 3' >> 1, we obtain 

_ _  -]1/2 
GEIm(C/V ) = iGutm(C/V)  = il+m m + m)! j  | (23, )1_ m 

(t 
l m!(21+l)!!  (1 m)! 

(A.3a) 

Ge,o(C/V ) = it (l + 1)X/-~ 1 and GM,o(C/V) = 0.  (A.3b) 
(2l + 1)!! 3' 

From the general expressions (A.1) we find the values of Gra m for l ~< 3: 

GEII(X ) = 1Wr'8~X, GEIO(X ) = --i ]V r ¢r(x 2 - 1) ; 

GM,I(X ) = -i-~V 8¢r, GMm(X ) = 0;  

GE22(x ) = -2x~/~(x  2 - 1) /6 ,  Ge21(x) = i~ 'v ' - -~(2x 2 - 1) ,  

(A.4a) 

(A.4b) 

GE20(x) = ~x~/~r(x 2 -  1);  
(A.4c) 
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GM22(X ) = i ~  / ~r(x 2 -- 1)/6,  GM21(X ) = 2XX/--~~, GM2o(X ) = 0 ; (A.4d) 

GE33(x  ) = ~ x ( x  2 - 1 ) ,  Ge32(x) = - i 1 ~ / 2 7 r ( x  2 - 1 ) / 1 5 ( 3 x  2 - 1 ) ,  

GE31(x)=-l~XV'-~-~(15X2--11), G E 3 o ( X ) = i ~ ( x 2 - 1 ) ( 5 x 2 - 1 ) .  
(A.4e) 

To obtain the other components one can use eqs. (A.lc) and (A.ld). 

B. The total cross sections in the PWBA and in the semiclassical approximation 

We shall prove that the PWBA and semiclassical total cross sections are the same for the inelastic 
electromagnetic collision of relativistic spin-zero particles with an atomic or a nuclear system. The proof 
was given by Bertulani and Baur [Ber-85] and is similar to the one for the nonrelativistic case found in 
the textbook of Bethe and Jackiw [Be-68]. 

Using the integral representation 

e iklr-r'l l f e ip'(r-r') 

I r - r ' l  - 2~r ---~ p2_  k 2 d3p (B.1) 

we can write eq. (2.3.1) as 

Tf i Z'e f f d3p d3r, ei('-P)'*' 
- 2zr2 p2 _ k 2 F ( p ) ,  

(B.2) 

where 

q = (qx, qy, qz)= (qT, OJ/O), (B.3) 

f 
F(p) = J d3r (f l(G/c 2) l~, (r) e IO . 

D ip.r . 
(B.4) 

Integrating over r' we obtain 

Tfi = 4~rZ, e F( q) /( q 2 - k2). (B.5) 

According to the relations (2.4.1) and (2.4.7) the total cross section is 

q~aX 

[ Z~e\ 2 I F ( q ) l  2 
[q2 T + (oJ/Tv)2] 2 qTdqT ' (B.6) 

where we used 

q2 _ k 2 = q~ _ (oj/~/o)2. (B.7) 
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In the semiclassical calculations the excitation amplitude is given by 

1 
f dtei~"(fl(v~/c 2) j~(r) ~(r, t)li ) (B.8) afi = ~'~ 

where ~(r, t) is the Lienard-Wiechart potential given by eq. (2.1.4). We can also write it in the integral 
representation 

alp(r, t) = lIe" f d3p eit"lR-a'~t)l/p 2 , (B.9) 
2~. 2 

where 

R = (x, y, 3'z), R' = (b x, by, 3"vt). (B.10) 

Inserting this in eq. (B.8), the integral in t yields 

8(p  - 0 ) / r v )  , 

and therefore, 

Z l e  f F(p') eiPT./, (B.l l)  
a f i -  ilrhv d2pT p2 + (0)/3'/3)2 , 

where 

P'= (PT' 0)/U) . (B.12) 

The total cross section is obtained by integrating the above squared expression over all possible impact 
parameters: 

oo 

O's c ~ f]afi[ 2 d2b (Zle~2 ~ ! ]F(pt)[2 
" = s  s =8¢r\ hv / ~ ~ [p2 T + (--~v)2l 2 pT dp" " (B.13) 

Comparing eqs. (B.6) and (B.13), we observe that the equality between the semiclassical and the 
PWBA cross section is guaranteed if we are allowed to replace qT ax by infinity in eq. (B.6), which is 
generally the case, as soon as the form factor F(q) is a rapidly decreasing function of qT" 

C. Useful handy formulas 

In the following we give some approximate formulas, useful for the fast calculation of a given 
electromagnetic process in ultrarelativistic heavy ion collisions (i.e., for 3' >> 1). For more details see the 
corresponding sections of this review. 
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Equivalent photon method 
For one-photon processes: 

or= n(w) crN(w ) to ' 

where 

C.A. Bertulani and G. Baur, Electromagnetic processes in relativistic heavy ion collisions 

(C.1) 

n o,  C2, 

%r~ is the photo-nuclear cross section for photon energy hw, R = 1.2(A 1/3 + A~/3) is the sum of the 
nuclear radii, and a is the fine-structure constant. The indices P and T denote the projectile and the 
target parameters, respectively. 

For two-photon processes: 

or = f I(x) or(x) dXx ' (C.3) 

where 

I (x)= 1---~ (ZPZTa]Zln3( ,he ) (C.4) 
\ "71" / ~ ' 

o -  is the photon-photon cross section, and 4x is the square of the invariant mass of the 2~t-system. 

Excitation of giant dipole resonances in RHI collisions 
Direct electromagnetic excitation of GDR's on a nuclear target by means of RHI's: 

1/3 
/ 2yA T \ 

cr = 2zrS In ~-7--71/3 ] ,  (C.5) 
~ m p  -1- .ill- T / 

where 

Z ZTNT 
S = 5 . 4 5 x  10 -4 a2/3 mb.  (C.6) 

" *T 

Multiple electromagnetic excitation of GDR's on a nuclear target by means of RHI's: 

or(N>l ) _ ff'gS ( S ~ N - I  
NI(N- 1) \R-~] " (C.7) 

Ionization of K-shell atomic electrons 

(ZTa)2 In , (C.8) 

where re --- e2/mc 2 is the classical electron radius. 
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Production of  lepton pairs 
Production of e+e--pairs: 

o" = ~ (ZpZT~re) 2 In 3 . (C.9) 

Production of ix + ix-- and of "r+'r--pairs. Here we have to distinguish between two cases: (a) if y -> 16 
for muon-pair production, or y ~> 200 for tau-pair production, then we can use the previous formula 
with r e (~ = ~ or ,r) in place of r e, (b) if the Lorentz factor does not satisfy the above conditions, then 
we have the following formula 

( 4 
or = ~ (ZpZTare) 2 e -4mecR/'h . (C.lO) 

\ m ¢ c l l  / 

Electron-pair production with capture of the electron in an atomic K-shell orbit: 

33,.2,.5 5 2  ( 2 )  or = ~-~ Z, pZ, TO~ r e In . (C.11) 

Production of  a neutral resonance particle with mass m and positive charge conjugation parity 

-~128 (ZaZra)2 ~h3F~v (2J + 1)" 3{ 2yh '~ 
or= In k m c ~ ] "  (C.12) 

where F~v is the branching ratio for yy-decay, and J the spin of the resonance. 
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