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1. Introduction

In recent years the total reaction cross section of heavy ions has become the focus of extensive
theoretical [1-6, 64-68] and experimental [7-10, 69, 70] attention. The reaction cross sections also find
application in diverse research areas such as radiobiology and space science [71]. On the theoretical
side, microscopic calculations have been performed within both the fp, p, [2] Lax approximation and the
more exact G-matrix formulation [4]. A major emphasis has been allocated to the discussion of the
degree of transparency in the heavy-ion system, and how this is traced to the nucleon-nucleon
scattering. A basic input in this calculation is the nucleon—nucleon elastic #-matrix appropriately
modified to take into account nuclear medium effects in both projectile and target.

Since at intermediate energies these medium effects can be taken into account as corrections added a
posteriori to the free nucleon—nucleon s-matrix, one may use this exhaustively studied object in the
calculation of g,. Owing to the linear relation involving the total nucleon-nucleon cross section and
Im ¢, through the optical theorem, the energy variation of o} is accordingly quite relevant for the
purpose. In particular the discussion of the reactive content of O'R, whether for nucleon-nucleus or
nucleus—nucleus systems, becomes intimately related to that of o'}

To set the stage for action we shown in fig. 1 the already extenswely exhibited " versus
center-of-mass energy, for the pp and pn systems [11]. We note that o%" is about twice as large as o}° or
or at small energies. At intermediate energies they become comparable. Ignoring the very small
bremsstrahlung emission, the cross section o} at E, . <280 MeV is practically 100% elastic scattering.
The first reaction channel, namely one-pion production, opens at E, ,, ~280 MeV, followed at E, ,, =
530 MeV by the two-pion production cross section, etc. Thus in the energy range 280 MeV < E, , <
530 MeV the nucleon—nucleon total reaction cross section is just the one-pion production cross section
integrated over angle. This is shown in fig. 2.

In fact, what is plotted are the production cross sections for the isospin 7=1 and T =0 states. The
identifications oR(T=1)= o} and ox(T=0)=20F — o} then give the relevant nucleon-nucleon
cross section. As a result, one ﬁnds, at least in the energy regime E, ,, <530 MeV (i.e., before reaching
the two-pion production threshold), that ¢ is about 62% of ¢}¥. For the purpose of completeness, we
also show, in fig. 3, the two-pion production cross section o(np— npm'w~ ) and o(pp— ppm 7 ).
These cross sections are orders of magnitude smaller than the one-pion production cross section.

Clearly, the threshold energies for one- and two-pion production processes in the free nucleon—
nucleon system are significantly reduced in magnitude in the nucleon-nucleus and more so in the
nucleus—nucleus systems, owing to nuclear medium effects, as experimental findings have shown [12].
This fact, however does not necessarily indicate that qualitative considerations concerning the reactive
context of nucleon—nucleus (#p), and nucleus—nucleus (tp, p,) interactions, respectively, cannot be made
using as a guideline the nucleon—nucleon reaction cross sections discussed so far.

Accordingly we can afirm that the reactive content of the fp and #p, p, interaction is predominantly
single-nucleon knockout [13] at low energies, and/or one- or two-pion production at intermediate
energies. Clearly the excitation of collective degrees of freedom is not accounted for in either of the
interactions mentioned above. Thus it becomes quite important to investigate the energy range in which
the tp, p, interaction is the dominant component of the ion-ion potential.

The vehicle through which the above can be accomplished is the multiple-scattering description. This
theory, not only supplies a convenient framework through which the simple Lax potential can be
derived and discussed, but it also makes possible the construction of higher-order corrections which
may contribute significantly to o at lower energies.
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Fig. 1. The total cross section of the NN system versus laboratory energy (from ref. [11]).
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Fig. 3. The angle-integrated two-pion production cross section for the NN system (from ref. [11]).

llllll

It is the purpose of this report to investigate the significance of the tp, p, interaction for the total
reaction cross section of heavy ions. Both nuclear medium effects and higher-order, multiple-scattering
contributions, are discussed. The principal aim is to delineate the energy range in which this interaction
(at least its reactive content) approximates well the interaction beftween two nuclei. Recent studies [2],
have suggested that even at low energies (E < 15 MeV/N) the p, p, interaction reproduces well the total
reaction cross section. As we shall see later in this report this is not so on account of the fact that
several important reaction channels, not accounted for by the fp, p, potential, whose major reactive
channel is single-nucleon knockout in both projectile and target nuclei, become increasingly important
as the energy is lowered.

The organization of this report is as follows: in chapter 2 we present a detailed account of the theory
of oy. In particular we discuss several approximations used for its evaluation. We also generalize the
one-channel theory of o to multichannels. In chapter 3 we present a summary of the multiple-
scattering theory appropriate to heavy-ion collisions. The first-order tp, p, interaction as well as the
second-order double-scattering contributions are then derived and analyzed. The imaginary part of the
tp, p, interaction is then fully discussed in chapter 4. A very careful analysis of the Pauli blocking in the
context of heavy ions is also presented in this chapter. Further, we assess the importance of using a
relativistic Dirac formalism in the calculation of oy. Calculations of o for several HI systems is then
presented in chapter 5, with a comparison with the data made for '*C + ?C. The effect of the identity
of the particles on oy is also discussed.

The role of peripheral processes, with the collective participation of several nucleons on the mutual
excitation of the nuclei, is discussed in chapter 6. Of great interest in this context is the excitation of
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giant resonances in intermediate and high energy collisions, which reveal new aspects of the nuclear
structure not accessible by means of other nuclear probes. As we show later, the peripheral processes
imply a very peculiar mode of absorption of energy by the nuclei. The absorption of energy in
peripheral collisions at high energies will go preferentially to the excitation of collective motions or to
emission of a pair of nucleons, or clusters. As a brief account of this subject, we shall particularly direct
our attention to the reactions with radioactive secondary beams, which is a subject of increasing
interest. Finally, in chapter 7, our concluding remarks are presented.

A number of appendices relevant for the discussion presented in the different chapters of the report
are collected at the end.

2. Theory of the total reaction cross section

In this section we present the full details of the theoretical structure of the total reaction cross
section. The basic relation between oy, and the imaginary part of the optical potential is most generally
and easily obtained using the generalized optical theorem. This we do first. We then turn to the
discussion of o, within several limiting cases and approximations, in particular we investigate the
eikonal expression for oy,.

Let us first consider the Lippmann-Schwinger equation for the optical T-matrix which describes
elastic scattering

T=V+VG{(E)T, (2.1)
where G!'’ is the free propagator or Green function, (E— H,+ig) ', with H, being the free
Hamiltonian. In eq. (2.1), V denotes the complex optical potential.

We multiply eq. (2.1) from the right by T~ and from left by V' to obtain

V=T '+ G{(E). (2.2)
Applying the same procedure for the complex conjugate version of (2.1) gives

Ve =70 GIE). (2.3)
Subtracting (2.3) from (2.2) results in

T ' -7 =y 'y "Y1 27i8(E-H,). (2.4)
The last term in eq. (2.4) is just the difference G "(E)- G.(E). We now multiply eq. (2.4) from the
left by T* and from the right by T to get, after using the relations T = VR and T" = 0V where
0 is the Moller wave operator,

T-T =0"WV-vHQ™ - 24iT'8(E — H)T . (2.5)

We are now in a position to derive the optical theorem which relates the imaginary part of the
forward scattering amplitude to the total cross section. Indeed, taking the on-shell matrix element (in
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plane waves) of (2.5) leads, immediately to (k' = k)

Im Ton-shell(k’ Oo) — _1_ <k|0(+)T(V_ VT)Q(+)|k/)

1 gm#k on-she
21 (2 )ﬁ fd() |T(k k}fﬁ}fz/zdz- (2'6)
Using now the relation between T°"*"" and the elastic scattering amplitude f,
flk, 0) = —(u/27h>) T "k, 6) , (2.7)
we obtain
417'
T I 10, 0)= & (4P m VIv(”) + [ a0 |k, o) 28)
k

which is the generalized optical theorem we are seeking. Since on the right-hand side, we have the total
cross section, and [ d€2 |f(k, 8)|® is the angle-integrated elastic cross section, we can immediately
identify the first term on the right-hand side to be just the total reaction cross section

o = (KIE) (0" Im V]y{") . (2.9)

In the above derivation of o through the use of optical theorem, we did not pay attention to the
long-range Coulomb interaction. This, however, poses no fundamental problem as one can generalize
the optical theorem, in such a way as to have Im[ f(0) — f,.,(0)] on the left-hand side of eq. (2.8) and
[dQ)fk, 0)) = | faun(k, 0)[’] as the second term on the right-hand side of the same equation. In the
above expressions, fz..(k, ) is the Rutherford scattering amplitude. The first term, namely o, [see eq.
(2.9)], is unchanged. For full details of the above generalization we refer the reader to Haldeman and
Thaler [14] and Hussein et al. [15]. For completeness, an alternative, more direct, derivation of oy
using the usual Wronskian argument is presented in appendix I.

Equation (2.9) can be straightforwardly expanded in partial waves yielding

5_0‘, 2r+nT1,, (2.10)

?r‘ls‘

with the elastic-channel transmission coefficients T, given by

8uk [
T,= 2‘2 fdr|./,,(k,r)|2|1mV(r)|, (2.11)
¢}

where ¢,(k, r) is the partial wave, radial, wave function, which is a solution of the radial optical
Schrodinger equation (with the full V). Of course, the following relation holds between T, and the
elastic S-matrix

T,=1-1S)*. (2.12)
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In the large-number limit of partial waves, and under semiclassical conditions, one may replace the
partial-wave sum by an integral and / by kb — 1/2, with b being the impact parameter. Thus eq. (2.10)
becomes

Tr :27Tf bdb T(b). (2.13)

0

In the application to heavy-ion reactions, it has been customary to introduce a strong absorption radius
R, which would limit the b-integral above in the sense that T(b) is represented as

T(b)= O(R,, — b). (2.14)

Equation (2.14) implies that the limit of infinite absorption (large ImV) for b<R_, and zero
absorption for b > R, is a case hardly exactly met in physical systems. It does, however, constitute a
reasonable first approximation for 7(b). It is important here to remind the reader that R, is energy
dependent, to account for the Coulomb barrier restriction. Usually R, is taken to be

R, =R,(1-V,/E)", (2.15)

where Ry and V; are the position and height of the Coulomb barrier, and E is the center-of-mass
energy. With (2.15), o, becomes

oy = TRL(1 - V,/E). (2.16)

The above expression for o, does account well for heavy-ion total reaction cross-section data up to
a center-of-mass energy per nucleon about one fourth the Fermi energy (&, =37MeV). At higher
energies, the data start dropping off until an energy per nucleon of about 140 MeV (roughly equal to the
pion rest mass) is reached, after which o rises again. This fact clearly shows that a great amount of
transparency is attained at intermediate energies, and the question arises as to how to relate the
transparency to more fundamental physical quantities, such as the nucleon—-nucleon total cross section.
The vehicle through which this is accomplished is the explicit connection between T(b) of eq. (2.13)
and the elastic-channel optical potential, as eq. (2.11) implicitly dictates. The optical potential itself is
constructed from multiple-scattering theory as will be discussed in section 3.

In terms of the complex phase shift which specifies S, namely S = exp(2i§), we may write

T(b) = 1 — exp[—46,(b)] , (2.17)

where 6,(b) =Im &(b). Within the JWKB approximation, we have for the phase shift

6, = lim Ud kK — l(l+ D} 2/: V(r’))l/2 —jdr’ (k2 - 1_(%-!-2_1))”2] , (2.18)

r—x

where 7, is the turning point, and r, = (! + 3)/k = b. The imaginary part of §, is obtained immediately,
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A= J (e -0 2 e yn) s (Emveen) ]

x sin[6(r") /2], (2.19)

where

2 (+1) 2 A\
tan 8(r') = —ﬁ—’j Im V(r') (18 - % - h—’j Re V(r )) . (2.20)

At sufficiently high energies, in the sense of V/E <1, one may expand (2.19) to first order in Im V, to
obtain

__1 2_# ( Im V(r')
S Jd (K — 1+ 1)ir” - Qu/t") Re V(r)]"* (2.21)

which may be considered as a precursor of Glauber (or the eikonal) formula, since with the use of
cylindrical coordinates ' = (z’, b) and ignoring Re V(r’) in the square root, one may write

5,(17):-% %‘E fdz'ImV( Btz (2.22)

The above expression is to be contrasted with that given in eq. (2.21), in that the former involves a free
trajectory for the incident particle (using classical language) whereas the latter moves on a trajectory
determined by the combined Coulomb plus Re V(r) potentials.

We note that §,(b) should behave as a function of impact parameter, similarly to Im V(b). In fact, if
we make the approximation Im V= —-W,®&(R — r’), we obtain

8(b)=(k/I2E)YW,VR* — b’O(R - b) . (2.23)

The difference between expression (2.23) and that obtained with a Wood-Saxon form for Im V is
concentrated at the surface region. The transmission coefficient 7(b) in eq. (2.17) is then given by

T(b) =1 — exp[-(2kW,/E)V R* - b*] . (2.24)

It is clear from the above formula that the dependence of T(b) on E and consequently that of oy, is
determined from the dependence of W, on E. If W,x E'’’, the energy dependence of T(b) is washed
out. On the other hand, if W xE 1/Zo-NN(E), then the energy dependence of T(b) is exclusively
determined by the energy dependence of oy (E), as will be fully discussed later. Obviously, the above

simple rule changes as the energy is lowered, since an extra energy dependence will emerge from the
factor

(K- 10+ 1)/r* - (2u/k*) Re V(r)]™"?
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in eq. (2.21). Further, nuclear medium effects, e.g. Pauli blocking, introduce a further energy
dependence. These questions will be fully addressed in the next section.

Though very schematic, the expression obtained for T(b) in eq. (2.24) using the square well model
for Im V(r), still serves to exhibit several interesting features of o;. Using eq. (2.24) in eq. (2.13), we
obtain for oy (E)

: 1-(1 +2R/A)e2"“)

oo(E) = 7R (1 -2 GRIY (2.25)

where A = E/kW, is the mean free path. The equation was first derived by Bethe [16]. To correct for the
Couloumb barrier effect one merely replaces (2.25) by [17]

1—(1+42R./A) e“”ﬁ“)(l VB>

o (E) = WR§<1 -2 QR -2
E

- (2.26)

where R, =R+ 1/k.
Equation (2.26) may be compared with the purely geometrical formula (2.16), and thus the
transparency factor, T, defined by
op = TRL(1 - T)(1 - V,/E), (2.27)
can be immediately extracted,

T=2[1—(1+2R/A) e e |[(2R /) 2. (2.28)

Figure 4 exhibits the behaviour of T versus 2R/A.

] T
10 k- —]
T
0.5} —
o 1 | |
1.0 2.0 3.0
(2R/\)

Fig. 4. The transparency factor versus 2A/R (eq. 2.28).
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Equation (2.28) identifies the physical parameter that determines the value of T, namely 2R/A. For
large 2R;/A, namely A <2R, we obtain for T,

T~ A 2R}, (2.29)
and accordingly, the total reaction cross section becomes proportional to the surface,
oy ~ wREL(1— AY2R%)(1 - V,/E)

y { A3 for nucleon-induced reaction , (2.30)

(A;” + A))*  for ion—ion collisions .

The above result is characteristic of strongly interacting systems characterized by short A such as
hadron—-nucleus. On the other hand, in the other extreme, namely 2R./A <1 (implying long mean free
path A compared to the effective diameter of the interacting system), we obtain

T~1-%(2R./A), (2.31)

thus giving for the total reaction cross section the following form which is proportional to the effective
volume of the system:

A for a nucleon-induced reaction
3 ’
or ~ (37RE)/A { (A" + A}y for ion—ion collisions . (2.32)

The behaviour of o, with respect to A in eq. (2.32) is typical of weakly interacting probes with a
nuclear target. Examples are electron- and photon-induced reactions. The mean free path in these cases
is quite long owing to the weakness of the underlying electromagnetic interaction. Accordingly, the
whole nucleus is “seen’ in the process of the collision, in contrast to hadron-induced reactions, where
only the surface nucleons participate in the collision process.

Clearly, the above picture depends on energy, in the sense that weakly interacting probes behave, at
higher energies, like hadrons (in the photo-nuclear case this is commonly referred to as the vector-
meson dominance phenomenon [18]). It seems obvious now that hadron-like processes, such as the
ion—ion collision discussed here, behave at intermediate energies, like weakly interacting systems owing
to the diminishing value, at these energies, of the total nucleon—nucleon cross section, the basic
microscopic quantity for these systems. In the next section we investigate, within more realistic
calculations, the behaviour of o} and T as a function of the combined radius of the heavy-ion system.

So far we have discussed the total reaction cross section within a one-channel (optical) description of
the elastic scattering process. In many instances, a more general description of nuclear absorption,
based on the coupled-channels theory, is called for. Thus, in the following we present such a description
for the purpose of completeness and in order to develop a theoretical framework through which
improvements upon the multiple scattering calculation, presented in the bulk of this paper, can be
eventually made.

We introduce now the projection operators, P, P’ and Q, which project out, respectively, the elastic
channel, the directly coupled nonelastic channels and the closed channels (fusion). The elimination of
the Q-subspace and the energy average performed subsequently, results in an effective P, + P' = P
coupled channels. The aim now is to evaluate the total reaction cross section in P,.



290 M.S. Hussein et al., Microscopic theory to stable and exotic nuclei
The equation for the elastic element of the T-matrix becomes now, instead of eq. (2.1),
pP,TP,=PVP,+ PVPG " PTP, (2.33)

which may also be written in the following equivalent form:

p,TP,=U, + U, PG\ P,TP,, (2.34)

opt opt

U,y = PVP,+ PVP'GP'VP,

0

(2.35)

where P'G'"'P' is the effective, exact propagator in the P’-subspace.

Of course the discussion presented earlier following eq. (2.1) can be immediately applied to eq.
(2.34), with the only difference that the structure of the effective optical potential operator U, is now
fully exhibited in eq. (2.35). Using eq. (2.35) in (2.5), which we write now as

Po(T — T+)P() = PO“QH”PO(U

opt

- U, )P0'"'P,
- 27iP,T'P,8(E — H,) P, TP, , (2.36)
we have
PAT = T')P, = PO PV V)R, 0P,

+P,0"'PPVP' G P'VP, - (PVP' G P'VP) PN P,
—2@iP,T'P,8(E — H,)P,TP, . (2.37)
Note that V # V' owing to the averaged out closed channels (fusion).
Assuming now that the P,P coupling interaction is Hermitian Vep, = (Vpp(,)+, which is a reasonable
approximation if we consider that the effect of the averaged out Q-space results mostly in an imaginary

contribution to the diagonal terms, U, , and U,, [which appears in (2.34)], we have the following for
the second term on the RHS of eq. (2.37):

P2 PYP(P'G P - PGP PYP P, = P PP

X (—2771 21N+ PGPV - V")G(”P’)P’VPO.Q(”PO . (2.38)
<

The above result is a consequence of an identity satisfied by the Green function P'G‘"’P’. Using the
fact that the Moller operator P’ defining the channels is

PP, =P G P VPO P, (2.39)

we can now write for Po(T — T")P,, eq. (2.36), the following expression:
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P(T-T"P,=P,Q"'P(V-V"P,Q' P+ PP (V-VIPQTP,
~2mi ; PPV Y)Y S(E — Hy ) () |P'VP 0P,

—27iP,T'P,8(E — H,)P,TP, . (2.40)

The derivation of the total reaction cross section can now be accomplished using exactly the same
steps followed in deriving eq. (2.9). Then

k + (+ ' +
o= e (V1) + S G 14 + . @)

where o, represents the direct reaction contribution to o, and it corresponds to the third term on the
ths of eq. (2.40). The first term in the above equation represents absorption in the P, and P’ channels
owing to coupling to the closed-channel subspace, and thus it corresponds to fusion. The above general
expression for the fusion cross section has recently been used in discussing heavy-ion fusion at low
energies where coupled-channels effects seem to be important [19-21].

Clearly eq. (2.41) is, in principle, equivalent to eq. (2.9), as long as the optical potential used in the
latter represents the exact interaction in the elastic channel. The decomposition of oy into the distinct
terms, namely oy and oy, is, however, quite useful in discussing the reactive content of microscopically
derived optical potentials. The tp, p, interaction analysed fully in the following chapters represents but
one term in op,. This may well be the dominant term at intermediate and high energies. However, at
lower energies, we expect that o and the other terms in oy, such as inelastic channels, to be by far the
dominant terms in o. The derivation of the above result using the Wronskian is presented in appendix
A.

To end this chapter, we comment briefly on the possible need of using a relativistic description of
heavy-ion elastic scattering especially at E,,/A > 200 MeV/nucleon, where recent research in proton—
nucleus scattering seems to indicate the starting point in such a description in the optical Dirac equation
with combined scalar and time-component vector potentials employed as an interaction [22].

Our aim is to assess the importance of the relativistic effects on oy. For the purpose we have
evaluated o, for proton scattering on *’Ca and ***Pb [23]. The details of this calculation are presented
fully in section 5. Our results indicate very little difference between the relativistic and nonrelativistic
or. We therefore reach the conclusion that a nonrelativistic calculation of o for heavy ions at energies
up to E,,/A=800MeV/nucleon, should be quite adequate. In section 3 we discuss in detail the
nonrelativistic fp, p, interaction.

3. Multiple-scattering theory
3.1. Proton—-nucleus tp interaction

In this subsection we discuss in detail the microscopic nucleon—nucleus optical potential. We do this
for two reasons. The first one is that this interaction has been the subject of intensive theoretical

investigation for more than 25 years, which resulted in quite a satisfactory status, and the second being
that, in principle, the nucleus—-nucleus optical potential can be defined in terms of the nucleon-nucleus
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interaction through a folding integral (single folding). Of particular interest is the discussion of the
reactive content of the nucleus-nucleus interaction, given the structure of the underlying nucleon—
nucleus optical potential. This is important for a better understanding of the nature of the total HI
reaction cross section at intermediate energies, which has received great attention recently.

A simple, first trial, guess at the form of the nucleon—nucleus potential is the classical relation

U(r) =jdr’ p(r")V(r,r'),

where V(r', r) is a properly antisymmetrized projectile-nucleon—target-nucleon interaction and p(r') is
the single-particle (classical) density of the target nucleus (obtained from, e.g., a Hartree-Fock
calculation). Clearly the above expression is not entirely correct since, firstly, U is real whereas the
optical potential must be complex to account for the nonelastic processes, and secondly, V(r, r') cannot
be used as it contains singular components (the “hard core”) at r <0.4 fm. What is used instead of
V(r, r') is an appropriate effective potential, (or G-matrix) whose hard core is smoothed out, in favor of
density dependence [absent from V(r, r')].

An apparently different method, usually applied at higher energies is to formulate the problem
within a multiple scattering framework. Here one has as an input, the nucleon—nucleon t-matrix
(generally off the energy shell). In this paper, we use this latter approach, both in nucleon—nucleus and
in nucleus—nucleus scattering. For the purpose of completeness and the presentation of a general
frameork, where correction to first-order approximation may be constructed and discussed, we present
below the essential ingredients of this approach [24].

The Hamiltonian for the projectile-nucleon—target-nucleus system is written as,

H=—(82mV + H +V . (3.1)

where Hy is the target nucleus Hamiltonian and V is the interaction between the incident nucleon and
the target nucleus, which can be written as a sum of individual nucleon-nucleon interactions,

V= EA‘,I V.. (3.2)
The solution of the scattering problem is represented by the full nucleon—nucleus 7-matrix
T=V+V[E-(H-V)+ie] 'T, (3.3)
where E is the CM energy. The solution of (3.3) is facilitated by the decomposition
T=2r(Em(E), (3.4)
1, =V, TV IE-(H-V)+ie] ', . (3.5)

Substituting (3.4) into (3.3) gives

WE)=1+ Ty 2 mEm(E). (3.6)
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The set of equations (3.4)-(3.6) constitutes the basis of the multiple-scattering series which results in

T= 2 . {E) + Z

]#t

- (E) EH‘ e W E) (3.7)

At this point it is important to emphasize that the 7,; are not two-body projectile-nucleon transition
matrices; the propagator 1/[E — (H — V) +ie] = G,(E) contains the full nuclear Hamiltonian Hy [see
eq. (3.1)] and consequently 7, is an (A + 1)-body operator.

The usual procedure is to replace 7, by the corresponding nucleon-nucleon T-matrix in free space

_ 22 . -1
1 AE) =V, + V. (E+RV2m +ie) 't (E). (3.8)

The corrections to the replacement 7— ¢ resides in corrections to the free Green function - the
replacement of an (A + 1)-body operator by a two-body operator, and to the use of the CM energy of
the p + 1 system in the p-N system (which is reasonable if A~' <1).

The stage is now set for obtaining the optical potential operator which is formally defined by the
equation

T=9+ V[P(E+#VI2m—-K,)'|T, (3.9)

where P, =|¥,) (¥, is the projection operator onto the target-nucleus ground state, and K , represents
the kinetic energy of the CM of the nucleus. Then

¥ = T(E) - T(E)G,(E)T(E) +- -

1_Po
~Et(E)+,§t(E) E+#12mV’ - K,

LE)+---. (3.10)
The ground state matrix element of ¥ gives us the optical potential for elastic scattering, via
V(E)=(k,n’,0|Y|k,0,0) =(27)’8(k' + n' — k)V(k', k, E) , (3.11)

where n' is the center-of-mass momentum of the target nucleus, and k is the momentum of the
projectile. The first-order potential obtained from eq. (3.10) reads

VO, k; E) = f 3 éo(p, + q; p)i(k}, ks E'), (3.12)
where @, is the target-nucleus density matrix, which is related to the density by
dp,
r(9) =f oo Slpt g py).
(2m)

g=kK—k, k=k-(uimk+p), K=k-(umKk +p,), (3.13)

E'=E~(k+p,)12(m,+m).
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The next step is to set p, =0 in ¢, which results in the fp expression
VK, E) = p( )ik, k3 E) =~ p(q)1(6 = 0% E) . (3.14)

The last form ignores off-shell effects. It has the advantage of supplying a model-independent
procedure for discussing nucleon—nucleus elastic scattering. The reactive content of "), as is known, is
quasifree knock-out [13]. It is to be expected that the impulse-approximation form of ¥V, eq. (3.14)
would be valid at intermediate proton energies (E,~100MeV). At these energies, the nucleon—
nucleon scatterlng 1s practically purely elastic (except for a very small bremsstrahlung emission). At
higher energies, pion production becomes important (Epx ¥~ 140 MeV). This is clearly seen from fig. 1,
showing the total reaction cross section for the free nucleon nucleon system. Clearly medium effects
modify this picture to some extent (e.g., shifting the pion production threshold to lower energies).
Further, these same nuclear medium effects [5] like Pauli blocking and Fermi motion of the target
nucleus, bring about changes in the form of ¥"" (validity of impulse approximation) as well as make
higher-order corrections, related to nucleon-nucleon correlations, more important.

Among the numerous corrections required for a better treatment of the scattering process, the
second-order double-scattering effect seems to be the easiest to estimate. In momentum space (using
the free nucleon—nucleon r-matrix as basic input) [25] this term looks like

d " 2 2 . —
(k', 0|7 |k, 0) = Z Sy |k (k' 0|t|k", a }E - #°k"12m — E, +ig) (K,
i=1j#i « (Z“‘)-g

(3.15)

Several approximations are usually employed to simplify the above equation. We use an average
nuclear excitation energy in the free Green function, E, — E_= E, employ closure to get rid of the
L. .=L_ —10)(0]|, and employ the eikonal (high-energy approximation) in evaluating the Green’s
function. Introducing the two-particle correlation function

P(z)(r', r= ITAl_—l)J"//J(I‘],...,"A);Eﬁ(r,*ri)s(r"rj)%(rn-”’rA)drl"'drA ~(3 o)

one can then write an approximate form for the double scattering contribution. In coordinate space it
looks like

YO = ~(ik12E) VP (N]'R (3.17)

corr

where 7" is the first-order fp potential and R____ is the two-particle correlation length, given by

corr

; POy s
Row=| (Z200 1) a1y, (3.18)
; r r (Ir=r'])

Here a further assumption on the quantity P'*’/pp has been made, namely that it depends only on the
relative separation between the two nucleons and not on their individual positions. In the absence of
two-body correlations, R_ _=0. In general, it is expected that P®(', r) would approach the no-

corr
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correlation form at a separation larger than the hard core radius (~0.4 fm). At smaller separations
P® =0. Thus R_,,, = —0.4 fm.
The estimate given above for R_ _ is very crude. In a more refined treatment of R presented by
Ray [26] it is actually composed of four distinct contributions,
R...=R

corr Pauli

+ RSRD + RPSR + RCM : (319)

Following Boridy and Feshbach [27], Ry,,,; is related to the Pauli exclusion-principle correlations, Ryg,
is related to the short-range dynamical correlations and R,y 1s connected to the combination of a Pauli
and a short-range dynamical term. Finally R, arises from center-of-mass correlations. We give below
the approximate expressions for these four contributions to R, derived by Ray [26]

Rp= 2 (1234 4) 3 1
A A% 10kg(r) 1+ 8BKX(r)’

1 2 1 b’
RSRD——<1_—+ 2)\’77 2 =,
2 A + 8B
A br+8 i , 1 (3.20)
1 5 4\ 3xw Sy _(ki(r) 1\]
Rew=g (1 ) 3o B0+ 3] [ress(552 4 )]

—Reyy =(1-2/A+1/AY)_,

where the parameters A, k.(r), B, b, [, are the target mass number, local Fermi momentum,
finite-range parameter of the nucleon-nucleon elastic t-matrix, short-range dynamical correlation
parameter and the effective “correlation length”, respectively. We should mention that B exhibits a
non-negligible energy dependence: 0.66 at E, ,, =100 MeV and dropping to about 0.1 at E, ,; =
2200 MeV.

We have evaluated R according to egs. (3.19) and (3.20) for the system p + '°C at several proton
laboratory energies. The results are presented in fig. 5. As can be seen in this figure the dominant
contributions to R, arise from the Pauli and center-of-mass correlations. Further, the values of the

calculated R_  over a wide range of proton energies approximates closely the very simple estimate for

R_,.. given earlier, namely —0.411 fm.

We see clearly from our approximate form for ¥ in eq. (3.17) that the multiple-scattering series is
an expansion in terms of the correlation radius. The third- and higher-order terms would depend on
three- and many-body correlations. No simple expressions are found for these terms. In the next
subsection we shall employ the above theoretical developments for the calculation of the ion-ion

interaction at intermediate energies.
3.2. Nucleus—nucleus tp, p, interaction

Once the nucleon—-nucleus potential operator is constructed, the corresponding nucleus—nucleus
potential can in principle, be obtained, with due care for antisymmetrization, by a folding procedure. In
discussing heavy-ion reactions at low energies, it has been customary to employ the double folding
prescription in conjunction with an effective nucleon—nucleon interaction (G-matrix) which contains
most of the nuclear medium effects. A more thorough discussion of this has been given by Satchler and
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Fig. 5. The correlation distance R,,,, versus laboratory energy for the p + >C system. See text for details.

corr

Love [28], who write for the real part of the ion—ion potential

ReV= j dr, fdr2 p(r)p,(r)V(r,=R+r,—r)), (3.21)

where 77 is given by the M3y interaction

—dryy —2.5r;

e4r11 - 1961 _62.57‘,7 +Jo0(r) . Jpo = —81MeV fm® .

V(r,,) = 6315

The last term in the above expression for 7 takes into account the nucleon exchange effects. No energy
dependence is present in the above expression. Of course at higher energies, the procedure above
should be replaced by the more appropriate nucleon-nucleon G- or ¢-matrix, which, when inserted in
the double folding integral above, would determine the energy dependence of the resulting, complex
ion—ion potential. Thus, following the discussion of the previous section we write

e o ! ’ E O ! ’ !
CVS‘)AZ =6 =03 E)Idr pAl(r)pAz(r— r')= -4 i fan(0=10% E)Jdrl PA,(’ )PAz(r —r),
(3.22)

where fy is the nucleon-nucleon scattering amplitude. With the help of the optical theorem we may
now obtain the imaginary part of “V;?Az(r),
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E ! !’
I V00 ()=~ % ou(E) [ 0 () fr=r)ar . (3.23)

which is clearly just the proton—nucleus imaginary interaction folded onto the projectile density.
The real part of ‘Vf:l) «,(r), which would correspond to the intermediate energy version of the double

folding interaction, can be obtained from the systematics of Re fy. One usually writes [26]

Re fyn = aIm fuy, Im fun = (kUIIN/A”T) exp(— aNqu) . (3.24)

The parameter a depends on the nucleon energy, attaining the value of 0.06 at E| ,, = 800 MeV and
becoming negative at £ >1000 MeV. In table 1 we present the values of the physical parameters that
determine fy at several laboratory energies. As a consequence of eq. (3.24) and table 1, the real part
of ‘V;II)AZ at E/N=1000MeV should become attractive. We turn now to the consideration of the
second-order (double-scattering) contribution to the ion-ion potential.

Our recipe for this contribution is to perform a symmetrized single folding with the projectile and
target densities. This then suggests

VO, ()= ~GhAEIR | T = o) a8+ [ [V (r= 0oy () ). (3.25)
where Wﬁ;l(r) is the nucleon—nucleus (A,) tp type optical potential discussed earlier.

We evaluated the second-order (double-scattering) correction to the fp, p, potential, according to eq.
(3.25), with R____ given by egs. (3.19) and (3.20) for the system '>C + '>C at the following laboratory
energy per nucleon: 100, 200, 300 and 500 MeV. In figs. 6 and 7, we show the radial distribution of the
second-order correction to the optical potential for the °C + '>C systems at the above energies. For
comparison, we also show the contribution of the dominant p, p, DF potential at 100 MeV/N. The
range of the second-order potential is appreciably shorter than that of the first one owing to the
high-order density dependence (tp,)’p, versus (tp,)p, [29]. It is interesting to note that the imaginary
part of the optical potential changes at 100 MeV/N namely, w® is regenerative whereas at the other
cited energies it is absorptive. We should stress, though, that the sum of the contributions of W " and
W® is guaranteed to be absorptive. The above behaviour of W is a consequence of the folding
formula (3.25). Using explicitly the form of ¥ in eq. (3.20), we have

Table 1

The parameters of the NN amplitude according to eq. (3.24); from ref. [26]

E ,p (MeV) a:p (mb) «, a,, (fm?) o';n (mb) «a,, a,, (fm?)
100 33.2 1.87 0.66 72.7 1.00 036
150 26.7 153  0.57 50.2 096 0.58
200 23.6 1.15  0.56 42.0 071  0.68
325 24.5 045 0.26 36.1 0.16 0.36
425 274 047 0.21 33.1 025 0.27
550 36.9 032 004 355 -0.24  0.085
650 423 0.16  0.07 379 -0.35  0.09
800 47.3 0.06 0.09 379 -0.20 0.12
1000 47.2 -0.09 0.09 39.2 ~0.46 0.12

2200 4.7 -0.17 012 42.0 -0.50 0.14
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Fig. 6. The real part of the second-order nucleus—nucleus potential at four laboratory energies: 100 MeV/N (dashed curve), 200 MeV/N (dotted
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Re V' = —(E/2K)|R or | a0{p% pa. + %04 )(7) (3.26)
Im ¥ = (E/4K)| R, [(@® = 1)o2(p% p, + p%.p4 (D) |

(Pt 0pad0= [ 2 e =Py ar + [ 2= ey ar (3.27)

Therefore Re %", being linear in Re fxn (and correspondingly in the parameter ), is attractive in the
energy range 100 MeV < E <800 MeV and repulsive at E; ,, > 1000 MeV. In contrast Im ¥ behaves
as @’ — 1 and thus is regenerative at those energies where a > 1, and absorptive at the other energies
where a <1. The sum Im ¥ + Im ¥® is guaranteed to be always negative (absorptive) as unitarity
requires.

In our calculation of the ion—ion optical potential to be described later, we have used Pauli-blocking
corrected nucleon—nucleon total cross sections. The full details of the structure of Im(¥" + ¥),
which is used later for the calculation of o7, are given in the following section. Here we may mention
that owing to the fact that the volume integral of ¥ is 0.3 times that of "', it is expected that the
effect of ¥* on oy is small. We have verified this by evaluating, within the JWKB approximation
discussed in section 2, the total reaction cross section of >C + *C using ¥V + ¥® for an optical
potential and have found that %® has an influence of less than 10% on oy, as compared with the
calculation with only ¥ included. In our calculation, to be described fully in section 4, we have
included the Pauli-blocking effect mentioned above, and performed an appropriate average over the
Fermi motion of the nucleon in the projectile and target.

4. The imaginary part of the fp, p, interaction

In this section we develop further the theory of the imaginary part of the ion—ion potential discussed
in the previous section. In particular we investigate the effect of Pauli blocking on the potential and the
subsequent effect on the mean free path. Other medium effects such as the binding energy, off-shell
effects and the non-locality of the potential will also be briefly discussed.

As we saw in the previous section, the imaginary part of the ¢p, p,, interaction, can be written in the
following form:

W(E )=~ oY (E) | arp,(r= )oy(r), (4.1)

where E and k, are the energy and momentum per nucleon, respectively, and o} is the nucleon-
nucleon total cross section. The Pauli blocking is included in the above expression for W, by modifying
(reducing) o}". According to Kikuchi and Kawai [30] this entails substituting o X" above by an average
cross section given (for the case of proton-nucleus scattering) by

) 1
N”E=—-——fdkfdn' ' .
o (E) kl(%wké) : 2kayn(k, k'), (4.2)

where it is assumed that k, is the momentum of the projectile nucleon, &, is the Fermi momentum of
the target, k, is the momentum of a target nucleon, d{2’ is the element of solid angle that defines the
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direction of the final relative momentum k’; k is the initial relative momentum and oy (k, k') is the
differential NN cross section. The integrals appearing in eq. (4.2) take into account the Pauli blocking
through the restrlctlon imposed on |k,| < k; and on dQ'. Assummg an isotropic angular distribution of
o(k, k') = (1/4m)ay"(k), one is then able to derive for ¢, the following simple expression [31]:

FYNE) = o (E)P(EE) (43)
P(X) = {1:§§+2X(2_X-1)5/2’ i (4.49)

In obtaining eq. (4.3), it is assumed that the free nucleon—nucleon total cross section is independent of
energy, which is a reasonable assumption at energies above 100 MeV. Assuming that the cross section is
inversely proportional to the energy, P(X) attains the form P(X)=1-$X.

For the nucleus—nucleus interaction, eq. (4.1), the Pauli blocking effect is incorporated into "
since both projectile and target nucleons are Pauli blocked. No simple expression for P(X) is obtained
in this case and only through numerical integrations is one able to obtain . Nonetheless, analytical
formulas are obtainable for the allowed scattering solid angle [60]. The pertinent formulae as well as the
details of the calculation are given in appendix C.

The above Pauli blocking is taken into consideration in nuclear matter. In actual finite nuclei we
invoke two straightforward modifications on the results obtained so far: firstly, the local density
approximation, which renders k. dependent on the radial distance, through k.(p(r)),

ke =[37°(n)]'" (4.5)

and secondly, we use an average nucleon—nucleon cross section. For nucleon—nucleus scattering we
have

(7)) =[(A— Z)ay, + Zay, )IA (4.6)

where N refers to n or p according to whether the incident nucleon is proton or neutron, respectively.
In the absence of Pauli blocking, one expects from eq. (4.6) that generally (2" ) is larger than the free
p-p or n-n cross section. Of course for N = Z nuclei,

<‘7T =3 -¥H+UTP)— (UT +0TP)P(E /E). 4.7)
The symmetrized )" relevant for nucleon—nucleus scattering has the form

<6_NN _ szz + (Al - Zl)(AZ - Zz) G ZI(AZ B Zz) + ZZ(AI - Zl) g
B AA, ! AA, T

Since within the local-density approximation ¢ and (&) are r-dependent, the expression for W
in eq. (4.1), becomes

W(ES )=~ | 3 o= 1oy ) (@ NEKE (s kE) (48)

To take better account of the surface, we have also corrected k.(r) [32],



M.S. Hussein et al., Microscopic theory to stable and exotic nuclei 301

(ke (D) = 37, (N]"7 + 3 (Voilp )€ (4.9)

where ¢ is of the order of 0.1. The above form of k. is the one employed in the calculation of W in eq.
(4.8). The Fermi momentum of each nucleus has been determined using eq. (4.9) by dividing the space
occupied by the nucleus into three regions, internal, central and surface.

Using the above as well as the results of appendix D we have calculated the Pauli-blocking modified
NN cross sections. In figs. 8 and 9 we present the behaviour of ¢, and o, versus k. Also shown are the
free-space cross sections. Different values of the Fermi momentum of the target nucleus, kg, kg,, were
used for the purpose of comparison. In figs. 10 and 11 are shown the effective oy, appropriate for
nucleus-nucleus scattering, for different values of the Fermi momenta kg, and k, of the two ions.

From these figures, one can see clearly that the Pauli-blocking reduction in the values of oy is
greater in the nucleus—nucleus systems than in the nucleon—nucleus systems at higher energies. At
lower energies the situation is reversed quite drastically. In fact at k£ <k, the nucleon—nucleon cross
sections in the nucleon-nucleus case approach zero. On the other hand, at these low energies the
nucleus-nucleus o, and o, is non-negligible. This is so due to the increased role of the surface
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Fig. 8. The Pauli blocking-corrected total proton—proton cross section Fig. 9. Same as fig. 8 for the neutron-proton total cross section in the
in the proton-nucleus system, for several values of k., (the target proton-nucleus system.

Fermi momentum). Also shown is the free .
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Fig. 10. Same as fig. 8 in the nucleus—nucleus system. Fig. 11. Same as fig. 9 in the nucleus-nucleus system.

nucleons that still have enough energy owing to Fermi motion which enables them to scatter nucleons
into the Pauli allowed angular region.

It is commonly assumed that the total nucleon—nucleon cross section in free space is a slowly varying
function of energy and is consequently replaced by a constant. Such a procedure is used, e.g., to derive
the Pauli-modified cross section, eq. (4.3). However, in the energy region of interest to us, the energy
dependence of the free cross sections is quite strong and has to be taken into account, as we have done
here.

We are now in a position to calculate W. In figs. 12 and 13 we present our results for two systems.
Also shown is the W evaluated with the free o}, for comparison. Clearly Pauli blocking reduces
greatly the strength of W at lower energies as expected. At intermediate and high energies the
Pauli-blocking effect is reduced in importance, and W approaches the value with free o}". We should
mention that at low energies, other reaction mechanisms besides single-nucleon knockout come into
play rendering our calculated W with Pauli blocking certainly smaller than the W extracted from
adjustment of the total reaction cross section. This we discuss fully in the following sections. To take
into account the effect of these other mechanisms, one has to have a model for W which accounts for
collective surface excitation, as well as for fusion.

Before proceeding with a calculation of o for several systems, it is relevant to assess the importance
of another effect, which is completely alien to the formalism developed so far, namely relativity. By
relativity, we mean the actual relativistic treatment of the particles involved and the use of the Dirac
equation. Therefore, we dedicate the next section to this question and consider specifically p-nucleus
scattering.
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Fig. 13. Same as fig. 12 for the ***Pb + ***Pb system.

5. Relativistic Dirac form of the total reaction cross section

The discussion and calculation of o; presented in this paper was based on nonrelativistic scattering
theory. In recent years, it has become quite clear that proton-nucleus scattering at intermediate
energies is more correctly described by a relativistic Dirac optical equation. In particular, spin
polarization and rotation seem quite clearly to require, for their description, such a relativistic theory
[33,34]. One would also like to check whether such a relativistic theory will influence o. In this
section, we present the relativistic formulation of o, and apply it to proton—nucleus scattering [23].

The Dirac equation that describes the elastic scattering of a nucleon, treated as a Dirac particle, from
a spin-saturated nucleus, is usually formulated using a time-dependent description,

[ p+ Bm+V,)+V,}¢=Ey, (5.1)
where it is assumed that the average, complex, nucleon—nucleus potential is a sum of a scalar
component, V, and the fourth (time) component of a vector potential, V,. The matrices a and S are
Dirac’s, and ¢ is the four-component vector wavefunction.

Let us write V, and V, as

V,=U,-iW,,

Vy=U,—iW,. (5.2)
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Equation (5.2) can be rewritten as

[Y(E-Vy) =iy p—(m+V)ly=0, (5.3)

obtained from the usual relations, iy =y,e, y,=pB. We now perform the usual manipulations of
multiplying eq. (5.3) from the left by ¢ = ¢y, and constructing its conjugate with the subsequent
multiplication from the right by ¢, to obtain finally

Wv(E=Vy)~iy-p—(m+V)]y=0, (5.4)

Yr(E-Vy)—iy-p—(m+V)]y=0. (5.5)
The usual Wronskian argument used in appendix A now supplies us with the continuity equation

—V-j= QIR Wb + ¢y, W) . (5.6)

The hadronic current is

j=igyy . (5.7)

Integrating eq. (5.6) over a large volume and using Gauss’ theorem, gives us

. 2 . N
[ iraa=2 W+ we ). (5.8)

§

where the integral is over a surface surrounding the potential, in a region where the potential has
completely vanished, and describes the net inward flux due to absorption (W, 0, W, #0). Dividing
this flux by the incident current v/[1 — (v/c)*]'’* = vy (assuming that ‘" is normalized to unity), gives
the total reaction cross section

Og = _( f j'dA>(v7’)—l = %y <‘/’(+)|W0 + 74Ws'¢(+>> . (5.9)

s x

We remind the reader again that 4"’ is a scattering vector wavefunction.
Equation (5.9) can be further reduced to a form more convenient for numerical evaluation. We do
this by explicitly writing ¢*? in terms of its upper (large) and lower (small) components,

E+m\'"* 1
(+) _
yo= zm) ((1/A)a-p>”s’ (5.10)

where A=FE +m+V, —V,, and u, satisfies the reduced Dirac equation

(oe-p) A (o-p)-E-m-V —V,]u,=0. (5.11)

With eq. (5.10) oy of eq. (5.9) becomes
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or = g;z {j d’r [(WO + W)ulu — (W, - W, )( o pu, >T<% o pus)]} . (5.12)

Using the fact that (W, — W,)/|A|°=(A™' — A"™")/2i, we can, after performing one integration by
parts and using Gauss’ theorem on the second term on the rhs of eq. (5.12), write for o, the following
surface integral:

- Joa (% o)+ (5 o op)
Op=— S0y dA G o)t o)y, (5.13)

s

which reduces, in the appropriate limit s— o, where A— E +m=(1+ y)m, to the final expression

Og =~ oy J dARe(ulofio- pu). (5.14)

i

Equation (5.14) could have been obtained directly from the first part of eq. (5.9) namely from the
identification o = —(J,_,.. dA - j)/yv. Our derivation above serves as a check of the correctness of eq.
(5.9). In the following, we evaluate eq (5.14) in the eikonal (small-angie) limit.

The eikonal approximation to ‘" or u, of eq. (5.1) or eq. (5.11), has been recently discussed by
Amado et al. [35]. Here we derive an eikonal form from oy, starting with eq. (5.14). We follow the
notation of ref. [36].

Within the eikonal approximation to u , we have, as r— o,

pu,—> muyiu, . (5.15)

Using eq. (5.15) in eq. (5.14), we obtain

—J dAuln-zu, . (5.16)

§—%

Since s is any large surface surrounding the interaction potential, we may take for it two planes
perpendicular to the z-axis at z = %, We then have

=fd2b (u |’ (B, z— —®) — |u (b, z— +)]. (5.17)

Equatlon (5.17) exhibits very nicely the physical meaning of in terms of the probability densities
|u,)*(b, z— —) and |u |*(b, z— +).
Using the usual substitution for the upper component

uz+s> =7 iSOy | (5.18)
Here the y, are Dirac spinors and S(r) satisfies the differential equation

E-VS(ry=m[V.(r)+V_(r)(e-rxk—ir-k)]. (5.19)
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In equation (5.19) the central V_(r) and spin—orbit V,_ interactions are given by [see eq. (5.11)]

201 — 12
vin =+ E v+ B0 (5.20)
V)= 5 + e Vi) = V(o) (s521)

and k= {(k+ k'), the average of the initial and final momenta.
Defining the z-axis to be along the direction of k, the eikonal phase S(r) can be written as

iS(r)= —% f dz' [V.(b,2")+ V (b, 2 )o b X k—ikz")]. (5.22)

Using eq. (5.22) in eq. (5.18), we can write down immediately
lu (b, z) = x! exp[—2 Im S(b, 2)]x, . (5.23)

We remind the reader that § is an operator in spin space.
Let us introduce the quantities

F=E-V,b,2). (5.24)
N=m-V(b,z). (5.25)

Then eqs. (5.17), (5.20) and (5.21) give us

= X;*U d*b (1~ e‘“"))]xs , (5.26)

where
d(b) = ¢.(b) — ¢, (b)a-(bx k), (5.27)
é.(b) = ok ) P f dz Im(N* - F?), (5.28)
é.(b)=b f dz Im(Fi S 2R+ ). (5.29)

At this point it is worth mentioning that the quantities ¢ (b) and ¢, (b) are related to the thickness
functions ¢ (b) and ¢ (b) of Amado et al. [35, 36] defined by

t.(b)= j dz’ (N*-F*+ E*-M?), (5.30)

2(ﬁ )k
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©

L (b)= 12‘3 f 4z % 2. (5.31)
Thus

¢.(b)=2Re1(b), (5.32)

b, (b) =2Ret(b). (5.33)

Going back to eq. (5.26), we note first that we can write it as
o= x([ @b (11~ ¥ exp(-0,.0 B x )],
= X:(f d’b [1 — e*® cosh ¢ (b) + & - (b x k) e*® sinh d)so(b)]))(S
=2my! ( f bdb [1-e*® cosh ¢So(b)]> X, =2m f b db [1-e*® cosh ¢ (b)] . (5.34)
0

The term involving o - b X k does not contribute to the b-integral due to symmetry about the z-axis.
Equation (5.34) can also be written as [see eqs. (5.32) and (5.33)]

og =2m f b db (1—exp[2Ret (b)] cosh[2Re ¢, (D)]) . (5.35)
0
Equation (5.35) is the principal result of this section. It expresses oy in the usual form of an impact
parameter integral involving “relativistic” transmission coefficients given by
T(b) =1-—exp[2Re ¢ (b)] cosh[2Re 1, (b)] . (5.36)

It is clear that the exact form and details of T(b) would be irrelevant if the nucleon—nucleus scattering
was dominated by a black-disk type absorption. In such a case T(b) would be representable as

T(b)= 6(b—R.), (5.37)

where @(x) is the step function, and R_ is a characteristic absorption radius. If eq. (5.37) is used oy
becomes the simple geometrical limit,

o, =mR.. (5.38)

If the above were true, not too much physics would be extracted from o. Luckily total reaction
cross-section data of proton—nucleus systems at intermediate energies exhibit major deviations from the
black-disk result of eq. (5.38). Nuclei become quite transparent to nucleons at intermediate energies
[2], and the quantity that measures this nuclear transparency in detail is given by T(b) of eq. (5.36).
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Therefore a detailed evaluation and discussion of 7(b) and the resulting oy, is clearly called for. This has
been done by Digiacomo, DeVries and Peng [2] using conventional nonrelativistic theory. In the
following we present our result for and discussion of gy, within the Dirac-eikonal treatment presented in
this section.

Before presenting our results, we warn the reader that .(b) is ill-defined for proton scattering
because of the presence of the long-range Coulomb potential which is present in V(7). This difficulty
can be dealt with easily by some appropriate modification of the integral involved. The details are given
in appendix I of ref. [23]. Here we only cite the final Coulomb-modified, but finite, o,

oR = 2#[ b db {1 —exp[2Re t.(b)] cosh[2 Re 1 ()]}, (5.39)
0

. o , 2EZ,7,¢

tb=——Jd<2+ T+ ET - uéz). .

(b) 2% 2 \N+F+E-m . 2) (5.40)

Finally, a word about the optical theorem and its generalized version for charged-particle scattering.
For neutral particles the usual form of the optical theorem,

4
Oy = 7“ Im F(k, k; E) — f |F(k, k'; E)|* d12;. , (5.41)

should yield the correct expression for o. In fact, with the elastic scattering amplitude F(k, k'; E)
derived by Amado et al. [35, 36],

F(k,k'; EY=F, + o - iF,, (5.42)

F =—ik f db bJ,(gb){e"" cosh [t (b)] -1}, (5.43)
0

F,=-k f db bJ,(gb) e“” sinh[t, (b)] , (5.44)
0

where ¢=|k—k’|, and J, and J,, are ordinary Bessel functions, eq. (5.42) results in exactly the
expression for oy given in eq. (5.35).

For charged-particle scattering, eq. (5.41) yields infinite values for both terms on the rhs. However,
a generalized optical theorem can be derived for this purpose and it does provide means of calculating
Ogr>

oy = 47” Im[F(k, k; E) = Fc(k, k; E)] - f (|Fe(k, ks E)* = | F(k, &' E)’] 2 (5.45)

where F. is the point Coulomb scattering amplitude. In a way, the procedure we employ amounts
basically to calculating the difference F — F, in the form of an impact-parameter integral, which yields
completely convergent results.
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5.1. Numerical results

In what follows we present the results of our calculation of oy, eq. (5.39), for p+ *’Ca and

p + “*Pb, in the proton energy range 10 MeV < E, <1000 MeV. We take for the proton—nucleus optical

potential the impulse-approximation Dirac optical interaction for spin-saturated nuclei in the general
form [33, 34]

(K'\Ugolk) = ~(4mik/m)[F(q)p,(9) + ¥F(@o (@] =V (9) + Vo(q) - (5.46)

In eq. (5.46), F, and F, are the scalar and vector pieces of the Lorentz-invariant NN amplitude,
respectively, and p, and p, are the scalar and vector form factors of the target nucleus, given by

p(@)= (0 2 " o), (5.47)
p.(9) = (01 2 ¥, e*0) (5.48)

The above densities can be better visualized when written in configuration space,
occe.

p(@)= (01 2 vid(r=r)l0) = 2 4, (04,07, (5.49)

occ.

P = (012 8(r = r)[0) = 2 v, ()4, (1) (5.50)

where we find a-sums are over occupied single-particle states. In terms of the upper and lower
components,

v, =(i) b= -v), (5.51)
we can express p,(r) and p,(r) as

p ()= 2 [020F - 2 W0 = o)~ ). (552

P = 2 WP + 3 0= ) + 0. (5.53)

Therefore the difference p,(r) — p,(r) measures the strength of the lower component density 2p, (r), and
accordingly the degree to which the optical potential is relativistic.

The potential calculated by McNeil et al. [34] is obtained by setting F,(g) = F,(0) and F,(q) = F,(0)
in eq. (5.46). In this limit, which is quite reasonable in the energy range considered, the Fourier
transform of eq. (5.46) yields a local potential in configuration space, with its y-dependence completely
specified by p.(r) and p,(r). We therefore write

V() =VIE)p,(r) = U (F) —iW(E)],(r), (5.54)
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Vo(r) = Vo(E)p,(r) = [U(E) = iW,(E)]p,(r) , (5.55)

where p, and p, represent the shape of the densities and they are both normalized to unity in the central
region. McNeil et al. [34] presented their results for UX(E), WY(E), Ug(E) and Wo(E) at a radius
where p, and p, are both 0.16fm . These values of the densities correspond to a final momentum,
kp=1.37fm"". It is found that W' is negative, implying, using our convention in eq. (5.2), that the
scalar interaction is regenerative whereas the vector one is absorptive. Their values come out
comparable, with W{(E) a bit larger than W°. All of these results are in accord with phenomenological
findings. The above results were also confirmed by Horowitz [37] in his nuclear-matter calculation of W,
and W,.

Armed with the above facts we evaluated o of eq. (5.39), using the results of McNeil et al. as
presented in their fig. 1. For the density shape of ***Pb we have used Wood-Saxon forms with
parameters fixed in accordance with results obtained from electron scattering, which basically supplies
p, for protons. We have, however set p (r) = p,(r) for all r. The radius R and diffuseness a parameters
for ***Pb, are [2] R =6.624 fm, a = 0.549 fm.

The density shape of *'Ca is usually parametrized as

puoc,(r)=(1+ or/R)[1+exp(r - R)/a] ", (5.56)

with @ =0.1017, R =3.669 fm, a =0.584 fm.

The results are presented in figs. 14 and 15*". It is clear from the figures that the agreement of our o,
in the energy range 100 MeV < E < 1000 MeV with the data [2] is as good as the one obtained with the
nonrelativistic theory. This finding convinces us that our calculation of o for heavy ions presented in
this paper, with the conventional nonrelativistic ¢p, p, potential should be adequate.

100 ]

)
S
+++ﬂ+++ ‘e . *

L

30 —
10 10 10

E(MeV)

Fig. 14. Total reaction cross section for p + *°Ca calculated with the relativistic Dirac description. The data points were taken from the references
cited in ref. [23].

*'The p + *’Ca and p + “**Pb were collected from several references; see ref. [23].
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Fig. 15. Same as fig. 14 for p+*Pb.

6. Calculation of o for several heavy-ion systems

Having obtained the microscopic ion—ion potential in the previous sections, we are now in a position
to test it insofar as its reactive content is concerned. Further, the range of dominance in W of inclusive
single-nucleon knockout at intermediate energies can now be assessed. In this section we present a
detailed account of our calculation of the total reaction cross section, gy, for several heavy-ion systems.
In particular we discuss the degree of transparency in these systems and how this is related to the mean
free path, as discussed qualitatively in section 2. Another related question which is addressed here is the
dependence of o, on the effective radius of the system and how this dependence changes with energy.
In our calculation, we also include the second-order double NN scattering potential discussed in section
3.

The expression we use for oy is the WKB one given in eqs. (2.13), (2.17) and (2.21), namely,

oy =27 f bdb {1 - exp[—45,(b)]} , (6.1)

with 8,(b) given by eq. (2.19), and evaluated for the #p, p, potential discussed in the section 3, with the
Pauli blocking effects fully incorporated as done in section 4. The expression we use for o, contains the
effect of refraction arising from the real part of the heavy-ion interaction potential [3]. It also contains
an improvement over the treatment of other authors in that we include, besides the usual nuclear-
medium corrections, the second-order double scattering component discussed in section 3.

We have calculated oy, for several heavy-ion systems, ranging from light, such as the very extensively
studied '>C + '2C, to the very heavy ***Pb + *®*Pb. Our aim in this, is not so much the reproduction of
the existing data, but rather to pin down the energy region in which the fpp interaction approximates
well the complex ion-ion potential, with its reactive content being predominantly single- and double-
nucleon knockout (single knockout and double knockout being, respectively, associated with the
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imaginary parts of the single scattering tp, p, and double scattering (tpl)zp2 interactions). We shall see
that, at low energies where Pauli blocking greatly reduces the strength of the imaginary part, as that
seen in the previous chapter, the total reaction cross section calculated according to eq. (6.1) becomes
much smaller than is obtained from the data; this should be expected since no account is taken of
nuclear surface inelastic excitation, fusion and other processes which dominate o, at these energies.

In fig. 16 we present the result for *C + "*C. The solid curve represents the result obtained with eq.
(4.1), including the Coulomb and the real part of the nuclear potentials. In the energy range
100 MeV/N < E,,/A <800 MeV/N the agreement with the data is reasonable. At lower energies,
however, our calculation underestimates the data by a factor which could be as large as 2 at
E.,~10MeV/A. The dashed curve represents the result without V, and V. and with no Pauli
blocking. The fact that this curve approximates very well the data is clearly fortuituous. The crosses
shown represent the result of nuclear matter calculation reported by Faessler et al. [4]. This calculation
seems to come close to our calculation when Pauli blocking is taken into account, but with neither Vj
nor V. (shown as the dashed-dotted line). It is important to notice that both Pauli blocking and
nuclear + Coulomb refractive effects are quite insignificant at higher energies. Thus it is in the low
energy regime that the theory gets its major check. Of course it is exactly at these energies where other
nuclear processes, not accounted for by the pp interaction, start coming into play, as already discussed.
These processes gradually fill in the gap between the calculated microscopic o, and the data. Of these
incomplete fusion and deep inelastic processes are probably the most important at 5MeV/N <
E/A <15MeV/N, followed by complete fusion. Inelastic and transfer reactions as well as other
quasi-elastic processes always contribute with varying weights, depending on the energy.

We have also calculated oy, for other systems. In figs. 17-24, we show our resuits for '>C + *Ca,
“Ca+*Ca, PC+"Zr, Zr +*Zr, *C +®Pb, **Ca+**Pb, *Zr + **Pb and ***Pb + ***Pb. These

T VITT]IT] ] II]]]”I T T T T i0T7 T T ETTTT T |!TIT”I T T T UETT
170 - 510 |— -
450 Tl
390 |-
— 330
£
X 2nt-
a =
b ool
» 150 [— ‘ ,
¥ / —— W ] - / _-— - ! B
30 b— 4 ——W - 90# ; . — W 7
-+ 7 WV +Y, ] - P — WtV
10— - . 30 ===
Tl Lol Lol AN AT Ll
1 2 5 10 20 50 100 200 500 1 2 5 10 20 50 100 200 500
Ec m_/aMeV/nucleon) E ¢ m/aMeV/nucleon)
Fig. 16. The total reaction cross section for "*C + “*C versus E¢,,/A. Fig. 17. Same as fig. 16 for "°C + ***Pb.

The solid curve includes Pauli blocking plus refractive effects, the
dashed-dotted curve corresponds to o with no refractive effects, and
the dashed curve represents calculation with the free o'y . The data
points were collected from the experimental papers cited in the
reference list (refs. [7-10)).
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Flg 18. Same as ﬁg 16 for 208Pb + zost.
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Fig. 20. Same as fig. 16 for “’Ca + *’Ca.
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Fig. 19. Same as fig. 16 for °C+**Ca (no calculation with & is
shown; see text for details).
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Fig. 21. Same as fig. 16 for ’C + *°Zr.

systems were chosen to represent different mass regions. In some cases few data points exist, in others,
none. In all cases, we see the clear drop in o (solid curves) as the energy is lowered, indicating the
approach to the threshold of the processes described by the #p, p, interaction. Further, the small dip in
oy close to the effective threshold for single pion production in the nucleon—nucleon scattering becomes
less conspicuous as the mass of the heavy-ion system increases.

Having calculated microscopically the total reaction cross section from the tp, p, interaction, it is now
possible to evaluate the degree of transparency in the different HI systems at intermediate energies.
Before doing this, it is useful to establish first the connection between our calculated results for o, and
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Fig. 24. Same as fig. 16 for *Zr+ **Pb.

the geometrical formula given by eq. (2.16),
o = TR (1= Vy/Eqy) - (6.2)

We considered the systems “°C + ***Pb, *’Ca + ***Pb, **Zr + **Pb and ***Pb + ***Pb at E_,/A = 10,
200, 400 and 600 MeV/N. To reproduce the theoretical values of o with eq. (5.2), we were forced to
use the following small values of the radius parameter r, [R=r,(A\"” + A')]: 1.22, 1.26, 1.26, and
1.26 fm, respectively, for the four systems mentioned above.

These values for r,, are considerably smaller than what one might expect if the geometrical limit of oy
had been reached by these systems. Such a limit is usually specified by the strong absorption radius
which gives r,=1.5fm. In fact to reproduce the available C+ *C data, shown in fig. 14 at
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E.q/A=5MeV/N, we need to use r,=1.57 fm. It is therefore clear that these systems do exhibit a
large degree of transparency T (eq. 2.27) as was suggested by several authors. However, one has to be
careful when assessing this transparency since there is a strong dependence on the value of r, used. For
example according to Bohlen et al. [9] there is a 12% transparency in >C + '°C at E,,/A = 12MeV/N
whereas De Vries et al. [2] predict a zero value for 7. Such a discrepancy stems from the fact that these
authors use different values for the strong-absorption radius parameter in eq. (6.12).

We present now our calculation of T, based on our theoretical results, which we compare to the
equation

0n = TRA(1= Vo Eey)(1 - T), (63)

with a radius parameter r,, of about 1.5 fm. For the '>C + *C system this parameter is slightly larger
(r,=1.57). In table 2 we show our results for *C + '>C, '>C + **Pb, *’Ca + *°Ca and ***Pb + ***Pb at
E /A =50, 100, 200 300 and 500 MeV/N. We see clearly that the transparency factor ranges in value
from about 50% for the lightest system to about 27% for the heaviest one.

In our calculation of o presented so far, we did not take into account the effect of statistics in the
identical projectile—target systems. We now discuss this point, and present estimates of the effect. The
elastic scattering amplitude f(#) should be written as

f(0) = f(8) + (=) "f(m - ) (6.4)

where 7= +(—) for boson (fermions), I is the intrinsic spin of the partners and s denotes the channel
spin s =0, 1, 2,...,2I In what follows we take the case of two bosons with I=0 (e.g., "2C). Thus,
through the application of the optical theorem to f(#), and with P,(8) = (—)'P,(w — ), we obtain

O =

> E 1+ D[+ ()T, (6.5)

W‘l:}

which can be written, in the impact parameter representation, as
og(E)=2m f db b[1 + cos(kb — 1)]T(b) (6.6)
0

where we have used (—1) = cos 7l and [ + } = kb.

Table 2
The percentage transparency for >C + C, 2C + ***Pb, “*Ca + *°Ca and “*Pb + ***Pb, at several center-of-mass energies;
see text for details

!ZC + IZC a) lZC + ZOSPb b) 40Ca + AOCa b) 208Pb + ZDBPb b)

h(MeV) h(MeV)T @( McV)T h(MeV)

A \nucleon A \nucleon A \nucleon A \nucleon

50 46.7% 50 34.4% 50 28.9% 50 26.2%
100 50.9% 100 32.2% 100 32.4% 100 29.1%
200 49.0% 200 35.4% 200 31.1% 200 28.2%
300 47.8% 500 32.9% 300 30.0% 300 2711%
500 44.0% 900 25.2% 500 27.2% 500 25.5%

Pr,=157fm. " r,=150fm.
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Table 3
The identical-particle correction of the total reaction cross sections of the systems "*C + °C, *Ca + *’Ca, "Zr + *'Zr
and “®Pb + *"Pb; see text for details

IZC + IZC JUCa + 4(JCa ‘)uzr + 9UZr ZrlﬂPb + ZUXPb
E /A
(MeV/N) b, (fm) Ao, (fm") b,  Ag, (fm’) b, Ao, (fm’) b, Ac, (fm?)
2 5.5 ~8.56 50 ~4.28 50 —0.03 4.0 0.44
4 5.5 12.28 50 -2.24 50  —0.85 40  -0.37
6 5.5 -11.29 6.5 0.14 65 -129 4.0 0.27
8 5.5 7.97 7.0 -3.46 70 —0.61 6.0 0.44
10 5.5 -3.4 7.0 2.71 80  ~0.52 8.5 0.74
12 5.5 ~4.49 70 =275 8.5 0.46 9.0 —0.69
14 5.5 6.72 7.0 2.23 85 145 9.5  -0.46
16 5.5 ~-1.07 7.5 =253 9.0 1.31 100 —0.69
18 5.5 —6.09 7.5 .15 9.0 1.35 11.0  -0.48
20 5.5 2.11 7.5 2.37 0.0 -0.19 12.0 0.2
2 55 4.6 8.0 0.89 10.0 12 15.0 0.54
24 5.5 3.8 8.0 1.45 120 -112 15.0 0.42

Let us now evaluate the above expression in the sharp cut-off model, namely,
T(b) = 6(b, ~ b), (6.7)

where b_is the Coulomb modified sharp cut-off radius. Then

&R(E) = UR(E) + Ao‘stat ’ (68)
o (E)=mh’ (6.9)
Ao, =2w{(b/m)sin(kb, — 1)+ (1/k*)[cos(kb, ~ 1) — cos(1)]} . (6.10)

In the above expression Ao,,,, represents the correction to o arising from the identity of the particles.

In table 3 we present the values of Ao, for several identical heavy-ion systems at several CM
energies per nucleon. We see clearly that Ao, contributes at most about 5% at these energies. At
higher energies the effect is even smaller. Thus, for all practical purposes, we can ignore Ao,,,.. The use
of the more realistic 7(b) in eq. (6.1) does not change appreciably the above conclusions.

In the next section we turn our attention to the case of exotic (neutron- and proton-rich) nuclei. The
study of these nuclei has intensified considerably in the last several years and a summary of some
relevant facts is in order, particularly what concerns the total reaction cross section.

tat’

7. Reactions with radioactive secondary beams

Some nuclear fragments originating from heavy-ion scattering at high energies are formed from a
piece of the projectile nucleus that has not been scraped off by the target. Such fragments tend to keep
various properties that the projectile nucleus had before the collision. For example, they have almost
the same velocity as the beam velocity. As regards the neutron-to-proton ratio N/Z, heavy-mass
projectiles such as >**U contain more neutrons than protons (N/Z = 1.6 for U). On the other hand, the
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stability line of nuclei extends along N/Z =1 for light nuclei. Therefore, light-mass projectile fragments
from U beams tend to fill the unstable neutron-rich region.

Following this idea, several new neutron-rich isotopes lasting a short period of time were discovered
at the BEVALAC accelerator [38—40]. One interesting application of these isotopes is their usage as
secondary beams. Since the velocities of these isotopes are almost equal to the beam velocity,
high-quality secondary beams are expected. Recently, a Japanese group [41] has extensively investi-
gated and measured the inteaction cross sections of secondary beams at the BEVALAC, following this
technique. Such experiments have also been performed at GANIL with intermediate-energy beams
[42,43].

In this chapter we make a brief analysis of the reaction cross sections involving radioactive secondary
beams. An important motivation for these measurements is to determine the size of neutron-rich nuclei.

By comparing the experimental data with the geometrical area o = m(R} + R%), with R, (R;) equal
to the projectile (target) radius, one finds [41] that the radii of "'Li, '’Be and '*Be are much larger than
expected from the standard formula R, =1.24"'"” fm. Sato and Okuhara [44] and Bertsch, Brown and
Sagawa [45] have shown that these reaction cross sections for light nuclei can be calculated quite well
with the approximations of the Glauber model, which is given, e.g., for a zero-range nucleon—nucleon
interaction, by [see eqs. (6.1) and (3.23)]

o =27 [ bab | 1-exp( oy [ Erp® (e, - b))

(7.1)
b1 = | 4z p(VPH ).

The densities are determined from the Hartree-Fock single-particle wavefunctions combined with the
shell-model occupation probabilities [45]. The result of this calculation is shown in figs. 25-27 where the
isotopic dependence of o7, is shown. The energy dependence oy, for the cases shown, namely Li and Be,
is completely determined by that of oy, as already emphasized earlier in the report.

The situation becomes complicated if the target is a nucleus with a large Z. In this case, the Coulomb
interaction between projectile and target plays an important role. In fact, Coulomb excitation of giant
resonances is a relevant part of the reaction cross section already for intermediate-energy nuclear
collisions [46]. Bertulani and Baur [47] have studied extensively the implications of the Coulomb
interaction in high energy collisions. For relativistic energies the cross sections for Coulomb excitation
of giant resonances may even be larger than the geometrical cross sections. Since the giant resonances
decay mainly through particle emission, or by fission, the relevance of such processes to the
computation of total reaction cross sections is obvious.

Not only the coherent action of the Coulomb field becomes important in high energy collisions. Also,
the coherent action of the nuclear field leads to new effects in peripheral collisions at high energies. The
effect of emission of correlated nucleons was studied among others in refs. [48, 49).

We shall not enter into the details of the effects of the coherent action of the nuclear and Coulomb
fields in peripheral collisions at high energies. But, due to their large contribution to the total reaction
cross sections, it is worthwhile to show examples of their applications. Being a rapidly growing field, the
reactions with radioactive secondary beams offer a good opportunity for this (see ref. [50]).

Besides the measurements of the reaction cross sections with radioactive secondary beams, another
intriguing experimental result is related to the momentum distribution of the °Li fragments originating
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Fig. 25. Total reaction cross section for Li isotopes on "“C at Fig. 26. Same as fig. 25 for Be isotopes.
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Fig. 27. Total reaction cross section of ''Li on several targets at E/A = 800 MeV/N. The data points were taken from ref. [41].

from the reaction ''Li+ target— "Li+ X. These fragments result from peripheral reactions and give
information about the nuclear matter distribution near the surface of the ''Li isotope. The perpendicu-
lar momentum distribution of the *Li fragments shows a “two-peak” structure [41], with a narrow peak
on top of a wider one. The widths of gaussian fits to these peaks are given by o, =95 + 12 MeV/c for
the wider peak, and o, =23 + 5 MeV/c for the narrower one. Such structure has also been found in

arrow
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the reaction *Be + target— ’Be + X. In the case of ''Li it is known that the separation energy of the
last two neutrons is S, = 0.19 +0.10 MeV, while the separation energy of only one nucleon is as much
as §;,=0.96 +0.1 MeV.

Hansen and Jonson [51] have argued that it is the strength of the neutron pairing which is responsible
for the differences in the separation energies of ''Li and of other neutron-rich nuclei. This pairing
makes the bond between the two loosely bound neutrons much stronger than the respective bonds
between each of them and the °Li core. That is, the "Li is much like a cluster nucleus with a di-neutron
system bound to the *Li core. It is the aim of this paper to show that both the widths of the momentum
distributions as well as the total cross sections can be explained by assuming a simple cluster-like
structure for ''Li as a di-neutron bound to a “Li core. But we also show that analogous results can be
obtained by considering the excitation of a soft vibration of the protons against the neutrons in "L
The presently available data do not unambiguously distinguish between the two models.

Due to the small energy necessary to remove the neutron pair, the reaction process is of peripheral
nature. The fragmentation is then originated by the nuclear field when the tails of the nucleonic
distributions just touch each other, or by the Coulomb field even when the nuclei pass several tens of
fermis far from each other. The scattering angle 6 is therefore very small, and the momentum transfer
in the reaction Ap is related to energy transfer by

Ap=p;cos —p,=E*/v, (7.2)

where v is the projectile velocity. Since the energy E* transferred in peripheral processes is typically of
the order of a few MeV, it cannot be absorbed by a single nucleon. The nucleon would carry a
momentum ~V2mE*, which is appreciably larger than that of eq. (7.2) for v ~c. However, such
energy could be absorbed by a nucleon pair, or a pair of clusters, which can have high kinetic energy
and small total momentum when the nucleons move in approximately opposite directions. Relation
(7.2) can also be satisfied if collective excitations, like vibrational modes, are excited.

Let us assume that the energy E* deposited in the nucleus with mass number A leads to its
fragmentation into two pieces which fly apart with opposite momenta having the same magnitude p. If
one of the fragments have mass number a, the following relations holds:

E*—e=pY2(A— a)my + p*2am, , (7.3)

where my is the nucleon mass and ¢ is the binding energy between the two clusters. The momentum
widths of the fragments are obtained, after averaging (7.3), by

(p*) =2m(K)a(A-a)lA, (7.4)

where (K) = (E*) — (&) is the average kinetic energy of the fragments.

This formula is very much like the one obtained by Goldhaber [52] for the momentum width of a
fragment having mass number a resulting from the fragmentation of a nucleus of mass number A. No
wonder, because both approaches rely on momentum and energy conservation. Goldhaber assumes that
the momentum width results from an average of the net momentum obtained by adding the individual
momenta of the nucleons inside the fragment at the exact moment it flies off the nucleus. This
procedure realates { p°) to the Fermi momentum P of nucleus A. The final result (which assumes
(E*)~0) is eq. (7.4) with 2m(K) replaced by P2/5.
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Since the transferred energy depends on the specification of the target, as well as on the beam
energy, then by means of a variation of these parameters the measurement of { p°) yields precious
information about (¢). In the case of 'Li—°’Li+2n, the narrow peak with width

pPy'"?=23+5MeV/c, gives (K)=0.17+0.08MeV, while for the wide peak with width
{p*)'"* =95+ 12MeV/c one obtains (K) =2.9+0.8 MeV. Since the binding energy ¢ of any pair of
neutrons in ''Li cannot be larger than several MeV (one could imagine that at least one of the neutrons
comes from the inner part of ''Li, where it is more tightly bound), the above results show that the
energy E* transferred in the process cannot be larger than several MeV, too. This means that the
dissociation is very soft and occurs at very large impact parameters, probing the tail of the nuclear
matter distribution in "'Li. The average kinetic energy (K ) associated with the narrow peak is of the
same magnitude as the binding energy of the loosely bound neutrons. Then, it may give information
about the correlation distance between the di-neutron system and the °Li core, within the cluster-like
hypothesis. On the other hand, the wider peak reveals that a more tightly bound neutron is taken out of
"Li. An analysis of the dissociation cross section as a function of the relative final momentum of the
fragments confirms the above hypothesis, as we show next.

Assuming that the ''Li possesses a binary cluster structure (di-neutron + °Li), one can make simple
estimates of the cross sections for its dissociation. Using a deuteron-like wavefunction for the pair of
clusters and a strong absorption model, simple expressions were obtained in ref. [53]. The nuclear
contribution to the differential cross section, in the limit ¢— 0, is obtained as

doy/dg =R, ¢'l(n* + ¢*)’, (75)

where ¢ is the relative momentum of the clusters after the dissociation, R is the target radius, and
n=V2ue/h, with p equal to the reduced mass of the clusters.

The Coulomb contribution to the differential cross section (taking only the El-multipole contribu-
tion) in the same limit, is given by

dUC__ 128 72 (C)2<ZlAz_AlZz)2 77‘]4 [ ( YU )* Uz}
dq =57Za v A (n2'=F"qz)4 In SWR 22l (7.6)

where y = (1 - v’/¢?)"""* is the relativistic Lorentz factor, 6 =0.891 and Aw =#’(n" + ¢°)12u. A, (Z))
refers to the mass (charge) number of cluster i (A=A, + A,) and R= R+ R,.

The above expressions reveal that the spread in q° is of order of {g’)=n". This means that the
relative kinetic energy of the clusters after the dissociation has on the average the same value as their
binding energies. This is indeed what we obtained above for (K) associated with the narrow
momentum component. Therefore, the narrow momentum component can be interpreted as originating
from the removal of two neutrons weakly bound in ''Li. The root mean square radius for "L,
supposed to be a deuteron-like system, is {°)'"* = 1/V2n~ 5.8 fm. Th experimental value [41] for the
rms radius of the °Li core is about 2.5 fm. Therefore, the di-neutron system forms a neutron halo
around the °Li core.

As has been pointed out by Tanihata [55] the amount of kinetic energy associated with the broad
momentum width (~3 MeV) is related to the binding energy of neutrons in the °Li core. As in the case
of °Li + 2n described above, a pair of neutrons in the °Li core can also absorb the transferred energy in
the reaction with the final relative momentum and energy obeying eq. (7.2). In this case the decay
constant 7 in egs. (7.5) and (7.6) can be related to the average binding energy of neutrons in the °Li
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core as n = /7y é&./h. Taking £, ~3 MeV, this yields a rms radius of about 2.65 fm, which agrees very
well with the rms radius of "Li.

Neutrons coming out of the "Li core can also have their origin in its collective excitation. The most
effective way of creating such excitations is by means of the Coulomb interaction. It gives the same
“kick” to all Z protons inside ’Li, leading to their collective motion. For collisions with impact
parameter b, this kick leads to an energy transfer which can easily be calculated as [55]

AE, =2Z(Z.€")Imb™v’*,

where Z_ is the target charge. But the protons are not free and they pull the neutrons together. This
leads to a movement of the whole nucleus, and the Coulomb recoil that one obtains by assuming that
the nucleus with mass number A is a rigid body is

AE, =2ZZ.e*)'|Amb*v* .

The difference between these energies goes to the vibration of the Z protons against the N neutrons,
and is

E*=AE,— AE,=2(NZIA)(Z.e*)’Imbv’ . (7.7)

If we assume that only the protons and neutrons in ’Li participate in these vibrations (N =6, Z = 3),
one finds E* =0.26 MeV in a collision with b = 15 fm for ''Li beams (0.8 GeV/nucleon) incident on Pb.
This energy is far below the excitation energy of giant dipole resonances (GDR) in normal nuclei,
which means that the excitation cross section of a giant dipole mode in the °Li core is small.

Indeed, assuming that this dipole resonance excited on the “Li core can be accounted for in the same
way as a normal giant dipole resonance positioned at E, and using the TRK sum rule, one finds for
the total Coulomb cross section

P =%Z2a(£>2—s_l—l—(§KK —v—zf—z(Kz—Kz))mb (7.8a)
GR T T v EGR(MCV) 0°*1 2c2 1 0 ’ .
SR=60NZ/A (7.8b)

where all modified Bessel functions, K, , are functions of £ = E;;R/yfiv, and N, Z and A refer to the
neutron, charge and mass number of the ’Li core (6, 3 and 9, respectively). Assuming that the
resonance lies in the energy range E;, = 10-20 MeV, and for beams with 0.8 GeV/nucleon incident on
Pb, one finds o5 =50-400 mb.

One could think about other vibrational modes in 'Li, like all protons vibrating against all neutrons,
or a ’Li core vibrating against the di-neutron system. (Such type of motion has been recently studied by
Suzuki et al. {56], which is called by the authors a pygmy resonance.) For the former case (N =8, Z=3
and A=11) we find E*=0.29 MeV, while for the latter case one makes the substitution of Z by
Z*(A —2) in the equation for AE, and obtains E* = (.02 MeV. From these values one sees that it is
very improbable that the latter vibrational mode could be excited. It is much more reasonable to think
that another possible way for the ''Li to absorb energy is by the excitation of vibrations of all protons
against all neutrons in it. Due to the existence of the neutron halo, one might think that the protons



322 M.S. Hussein et al., Microscopic theory to stable and exotic nuclei

move almost freely inside ''Li and that the excitation of such dipole vibrations will occur at very small
energies (soft dipole mode).

Recently, Kobayashi et al. [57] have measured the total cross section for the dissociation of ''Li (into
’Li + 2n) incident on several targets (Pb, Cu and C) with beams of 0.8 GeV/nucleon. We shall refer to
their particular result for Pb targets which has the advantage of having a large Z, and induces a large
Coulomb cross section. They obtained the value 0. =1.31 £0.13b. In the "Li + 2n cluster model, the
total cross section for direct Coulomb dissociation is obtained by an integration of (6.6) which results in

o= tnzie () (B2 L nl 37 5] 9

For the reaction cited above it gives o, = 1.44" . b, where the uncertainties are due to the error in the
binding energy.

The nuclear contribution to the direct break-up cannot be obtained by an integration of (7.5)
because it was based on the impulse approximation, neglecting the interference with an eclipse term.
Including such an effect the cross section is well described by the Glauber formula [58]

Tup = 5m(2In 2= DR /n. (7.10)

In addition to this (diffractional) dissociation one has to account for the absorption of the 2n system by
the target (stripping). The cross section for this process was obtained for the deuteron by Serber [59].
For other cluster-like [a + (A — a)] nuclei one has

ays = 1m(alA)R /. (7.11)
For the reaction ''Li + target— “Li + X one obtains oy, = 270" ;" mb and o = 165”3 mb, respective-
ly. One then sees that the Coulomb dissociation accounts for the main part of the measured cross
section, although the nuclear contribution is not negligible. At this point we observe that the
Coulomb-nuclear interference in these reactions may be neglected for the following reason. The
nuclear contribution to the total cross section can at most come from those impact parameters (from
b,. to b_.) for which the neutron halo of ''Li touches the nuclear matter distribution of Pb. The

contribution of the Coulomb field to the total cross section from this interval of impact parameters is,
percentually, given by

_ ln(bmdx mm)
A= n(yholaeh, ) ° (7.12)

Using typical values of b_,, =10fm and b__, =13 fm, one finds A=5%. This means that only about
5% of the Coulomb contribution should interfere with the nuclear contribution. The reason is that,
although the fragmentation induced by the Coulomb interaction may be small in a single collision, the
interval of impact parameters contributing to the total cross section is very large, up to some hundreds
of fermis. Therefore, we can write o, ,, = gy + 0.. Adding the Coulomb dissociation, the nuclear
diffraction dissociation, and the stripping cross sections one can reproduce quite well the experimental
value of Kobayashi et al. [57] for the total cross sections for two-neutron removal from secondary

beams of ''Li incident on Pb.
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If we now restrict our study to the Coulomb contribution to the dissociation, which is the dominant
part of the cross sections, we find that the excitation of giant resonances as described above can also
lead to large values of the cross sections. In fact, if we assume that the energy of excitation, E, of a
soft vibration mode in ''Li is of the order of 1 MeV, and that the contribution of this soft mode to the
sum rule SR is of about 10%, we find (using N=8, Z=3 and A =11) o5, =1.3b. Due to its low
binding energy, one of the main channels for the decay of this resonance must be the emission of the
two neutrons. This indicates that the excitation of this soft dipole mode is another possible mechanism
to explain the narrow momentum component in the data for ''Li— "Li + X, as well as the total cross
section for the fragmentation.

From the present available data it does not seem possible to find out whether the fragmentation
"Li—°Li+ X in secondary beam reactions proceeds via the direct break-up of a two-cluster system or
by the excitation of a soft dipole mode. But note that the two mechanisms assume very distinct
structures for "'Li. The direct break-up supposes that the protons are tightly bound to the neutrons in
the *Li core, while the excitation of the soft mode assumes that the protons move almost freely against
a neutronic background. Since the Coulomb kick to the protons does not enter in either hypothesis,
only one of the two mechanisms could be responsible for the measured cross sections. Due to the large
errors in the knowledge of the binding energy of two neutrons in ''Li, and also due to lack of
information about the energy location and about the strength of the photonuclear cross section for ''Li
at the energies involved, precise theoretical calculations based on either of these models are not
conclusive, and the agreement with the experimental data is not unique. Certainly, more experimental
results and theoretical discussions are needed in order to determine which of the nuclear models is
adequate.

In contrast to the simple models described above, conventional shell-model calculations performed
by Bertsch and collaborators [61, 62] have been unable to reproduce the amount of electric dipole
strength in ''Li necessary to explain the electromagnetic dissociation cross sections. As concluded by
Bertsch and Foxwell [61] it may be essential to take cluster aspects into account. Nonetheless, the
failure of the shell-model calculations to determine the enhancement of the electric dipole strength of
"Li at low energies — which is needed to reproduce the experimental data —has led those authors to
wonder whether the experimental values of the electromagnetic dissociation cross sections [57] have
been correctly extracted from the total cross sections.

Their point is that in ref. [S7] one assumes that the nuclear cross section scales as oy =
2@(Rp + Ry )A, which is characteristic of a peripheral process concentrated in a small ring width A at
the surface of the projectile (Serber model). By adjusting the parameters of this scaling law the
“experimental” values of oy, were obtained for other targets, and the Coulomb contribution o to the
cross section was inferred by subtraction. But, since "Li has a long tail in its matter distribution, such a
procedure is doubltful. Assuming that the target is a “black disk”, the nuclear stripping of the outer
nucleons in ''Li should be

on =2m(R, + R;)AP(R;) , (7.13)

where P(R,) is the probability that the outer neutrons will be removed from ''Li. Due to the long
matter tail, this probability depends on R;. Actually it should be approximately proportional to the
area A of overlap between the target and the neutron halo in ''Li. From simple geometrical
considerations it is possible to show that A « R.. That is, o should increase like R%, which would result

exp

in larger values of o” than what was determined in ref. [57]. This has as a consequence that oo”
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should be smaller than the values determined by Kobayashi et al. [57]. Indeed, in ref. [63] an eikonal
approach to the nuclear dissociation of ''Li using the nucleon—nucleon amplitudes as input has shown
that a more appropriate parametrization of gy, and A is

oy =(aAy  + bAZ  + c)mb , (7.13a)

a=98.7, b=2284, ¢c=-2589. (7.13b)

For large values of A, the above equation results in an appreciable deviation from the A} scaling

law [57]. This is in fact a very relevant point since the electromagnetic dissociation of neutron-rich
nuclei reveals important aspects of their intrinsic structure.

8. Conclusions

It is quite obvious from our results presented in the previous chapters, that the #p, p, interaction,
corrected for by Pauli blocking and higher-order muitiple-scattering effects, is only adequate for
accounting for the absorptive content of the HI interaction, in a limited energy domain, contrary to
several claims [2]. This energy region is dominated by single- and/or double-nucleon knockout
processes. At lower energies the Pauli blocking, though slightly weakened by the attractive nuclear
interaction, reduces significantly the contribution of these processes to the total reaction cross section.
This is also the conclusion reached when a nuclear-matter G-matrix calculation is performed [4].

To account for oy at E/A < g, several channels, related principally to mean field effects, such as
fusion, incomplete fusion, deep inelastic, nuclear quasi-elastic and particle transfer channels, have to be
added to the knockout channel. This has been partially carried out by Faessler [4]. At relativistic
energies, peripheral processes play a relevant role, and Coulomb excitation of giant resonances (or
direct Coulomb fragmentation) dominates the reaction cross section, especially for loosely bound
nuclei.

Appendix A. Derivation of o from the Wronskian
In this appendix, we supply a derivation of o using explicitly the optical Schrodinger equation

—B 2wV + (V=-iW)y' ) = By (A.1)

where we take W > 0 to describe absorption. From (A.1) one can immediately derive the equation for
flux conservation,

ﬁj"-jd3r=2<w‘*’lW|w‘”> : (A2)
where j is the probability current

J=®12m)[*Vg — (V) y] . (A.3)
Applying Gauss’ theorem to the lhs (A.2), we have then
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~[i-aa=@myuwlee). (A4)

where the integral is over any surface surrounding the interaction, in a region where the potential has
vanished. Equation (A.4) simply says that the net radial flux is not zero because of absorption. The
total reaction cross section is defined as the net inward radial flux given by the lhs of (A.4) divided by
the incident flux |y‘*’|*v, where v is the asymptotic relative velocity

——f—m 2 (pOwlp)

If we choose the normalization of ‘" to be |¢(+)|2 =1 we obtain our expression for oy, eq. (2.9),
= @) (W IWIY ) = (KIE) (6 IW] ) (A.6)

We leave it to the reader to convince himself that eq. (A.4) can be written in the more familiar optical
theorem form,

T im 510) - [ 1) 42 =& (wOwie), (A7)

where the first term is the total cross section and the second the total elastic cross section. Clearly (A.6)
is consistent with (A.7).

The extention of the above considerations to coupled channels is straightforward. Instead of eq.
(A.1) we now have to consider the following:

ﬁ + + + +
V(/;E, Y+ (Vo= iW,)yT = Byl - Evojlp( ) (A.8)

where W, represents the absorptive potential in |¢{"), in the limit Vi, =0.
Gauss’ theorem then gives

. 2 + (+ +
—J joda= = (o Wiy + 2 Im<¢ VoG Vol (A9)
The second term on the left-hand side represents the contribution to [ j- dA arising from the channels j,
coupled to the entrance channel. This term can be further decomposed, as was shown in chapter 2, into

a genuine open-channels contribution and closed-channels contributions (fusion). In fact, taking V,; to
be Hermitian, we have [19]

Im (5" VoG Violwa™) = (907 IVy, Im GV, [957)
=2 (‘/’f)+)IV0j(_W|¢§_)><¢§_))|‘/jo|wé+)>
]
U VoGS TG Vol ™)

= [ Wlws )P a— S (Ot ”) (A10)
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Accordingly, (A.6) becomes now
k + + +
= (w2 ) ) + o (A1)
!

where o, describes the direct-channels contribution.

Appendix B. Comparison between 6 "*® and & **"*"

In this short appendix we present a comparison between the imaginary part of the nuclear elastic
phase shift calculated within the eikonal approximation, eq. (2.22),

&sz—%—%fd‘wWT??) (B.1)

with the more precise one obtained within the WKB approximation, eq. (2.19),

_ M fd [(E - = - U(r ))2 + W:Z(r’)]“4 sin[36(r")] ,

(B.2)
tan 6(r') = —W(r')[E — Eb’Ir'* = U(r')] " .

for several cases, involving the '>C + ">C system, using U(r") = 0 for simplicity. A Woods—Saxon form
was employed for W(r’),

W(r) = —W,[1 + exp(r — R,/a)] " (B.3)

with a = 0.6 fm and R, = 8.0 fm. W, was varied.

The results are presented in fig. 28. Clearly, the higher the energy, the better the agreement one
obtains between the two expressions. In the application described in this paper, we have always
employed the WKB expression with the real part of the potential taken into account.

Appendix C. Pauli blocking effects on the nucleus—nucleus total cross section
C.1. Calculation of ayy for nucleon—nucleus scattering

In the first part of this appendix, we review the calculation of o, in nucleon—nucleus scattering.
Although this has been discussed extensively by several authors, we feel that a review is necessary as a
preparation for the calculation of o, in the nucleus—nucleus case, presented in the second part of this
appendix.

The average cross section of two nuclei, one of which is found with momentum k, is given by
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Fig. 28. The imaginary phase shift calculated according to the WKB approximation (solid curve) and the eikonal approximation (dashed curve): (a)
E.\, = 10MeV, W, =5MeV; (b) E,, = 10MeV, W, =50MeV; (¢) E,, = 100 MeV, W, =5MeV, (d) E, =100 MeV, W, = 50 MeV.
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= fdk g q), (C.1)

where V,, = 47k}, is the volume of the Fermi sphere representing the target nucleus (labeled here by
2), and o}~ (q, ') is the free nucleon—nucleon cross section, which depends on the relative momenta
g=k,—k, and ¢’ =k; — k;, before and after the collision, respectively, where k, is the incident
nucleon momentum. When using eq. (4.1) one normally employs for o}~ an empirical form, which is
valid for fixed target nucleons. To correct for this, namely for the fact that k+#0, one inserts a
transformation factor, |k, — k,|/k,, thus giving

- 1 f 'kl B kz’ NN
o=—|dk, —= 0o, . C.2
VFZ 2 kl T ( )

Clearly, Pauli blocking enters through the restriction, |k]| > k., |k,| > k,. Therefore, when expressed

in terms of the differential cross section, eq. (C.2) takes the following form in the energy region, where
T

o =[d2do/dQ:

o= ! fdk
Ve2

Using now energy and momentum conservation, we can recast the above equation into the following
form:

jdn for ki* + ki’ > 2k, . (C.3)

k{2 +ks2=k?+ k3

_ 1 |k, — k| f o, , do
()'I—V—szdk2 —— dNé(q—-q')dgq a0 (C4)

k24 ky2>2kE,

After integrating over ¢', we obtain, assuming do/d = o'} (g) /47, the following

g = —-= f |k§+kf_2ki‘zl O_NN(q)
kIVF2 ? ,kl + kzl T ,

(C.5)

where the lower limit of integration, obeys, ki + k3 > 2ky,.
It is usual practice to assume that o} (g) is a constant, g;, which results in the following simple
expression for oyy:

0'0[1 - %(kéz/ki)] ) k? sziz ’
o= 2,2 2 2 2,12 \5/2 2 2 (C.6)
0’0[ - %(sz/k1)+ %(kFZ/kl)(z_kl/sz) 1, ki=2kg,,

which are nothing but egs. (4.3), (4.4), mentioned in section 4.

In the application we envisage in this paper, we shall use the empmcal energy-dependent o} (g).
For this purpose, a more convenient form for the evaluation of oy is the following, equivalent,
relation:
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_ 1 I oy (q) j
= v dky e, — k| 2 an, (C.7)

Pauli
where the restrictions imposed by the conservation laws and Pauli’s principle are contained implicitly in
the solid-angle integral. The above form of gy, is the one which is most easily adaptable to the ion—ion
case.

In the calculation of the integral [p,,; d2, one resorts to geometrical arguments. Pauli blocking,
within the Fermi gas model used here, implies a restriction on the lengths of the vectors k; and k;, as
visualized in fig. 29a. The momenta k, and k, define the total momentum 2p = k, + k, and the relative
momentum 2q =k, — k,, with p specifying the center of the scattering sphere and q it radius, as
indicated in fig. 29b; the conservation of linear momentum implies fixed p. From energy conservation,

we also have k, -k, =k,-k; and ¢ =¢q’, which implies a constant radius for the scattering sphere.
Imposing now Pauli blocking, gives

kl=p+q'|>key, |ksl=|p—q'|>ke,. (C.8)

which implies that the amount of solid angle not allowed is as indicated in fig. 29c by the dashed area.

a)

b)

Fig. 29. The geometrical realization of Pauli blocking in the nucleon—nucleus system: (a) restrictions on the momentum vectors; (b) the allowed
scattering sphere and (c) the Pauli forbidden region (dashed area).
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Thus [p,. d.() 477 — (2,, which when inserted in eq. (C.7), yields the closed expression, eq. (C.6), if a
constant oy (gq) is used. The solid angle portion (2, is given by [obtained directly from eq. (C.8)]

0 =47 =27k} + k5 —2k3,)/2q - 2p . (C.9)
C.2. Calculation of o\ (E) for nucleus—nucleus scattering

In the nucleus—nucleus case, the calculation of oy (E) involves the considerations of three spheres;
the two Fermi spheres representing the projectile and target nuclei and the scattering sphere,
determined by the momentum and energy conservation laws and the Pauli principle, in close analogy
with the considerations presented in the first part of this appendix.

The starting expression of oy (E) in the nucleus—nucleus case is

fdk dk, 2;’ o1 (9) (q) f a0, (C.10)

o, k

NN(k’ kF] ’ FZ) VF1VF2 .
where V., =7k}, and V., = %nk;, are the Fermi volumes of the projectile and target nuclei,
respectively, and 2q = |k, — k, + k| with k denoting the relative-momentum spheres alluded to above.
Using similar arguments as those discussed in the first part of this appendix, leads us to conclude that
the region not allowed by the Pauli exclusion principle in the nucleus—nucleus case is the one shown as
the shaded region in fig. 30b.

The restricted solid-angle integral is

f dQ=10,,,(6,.6,,0)=47-20,-20,+0, (C.11)

Pauli

where (2 and (), are the solid angles specifying the excluded cones and ( represents the intersection
area of the two conical sections. The solid angles (2, and (2, are easily determined.

e————————— K ——————————

a)

Fig. 30. Same as fig. 29 for the nucleus-nucleus system: (a) the three “spheres” describing the scattering region in momentum space, and (b) the
Pauli forbidden region (dashed area).



M.S. Hussein et al., Microscopic theory to stable and exotic nuclei 331

0, =2m(1-cosf,), ,=2m(1-cosb,), (C.12)
cos 6, =(p*+q° —ki,)2pq, cos8,=(p°+q kg )/2bq, (C.13)
2=k, +k+k , 2q=k,—k—k,, b=k-p. (C.14)

The evaluation of (2 is tedious but straightforward [60]. We give below the pertinent expressions. Two
possibilities arise:

(1) 2=20(0,6,,0,)+20(m—6,0,,6,) for0+6,+6,>m, (C.15)
(2) 02=20,6,9,,6,) for6+6,+6,<m, (C.16)
where the angle 6 is given by
cos § = (k> —p°> — b*)/2pb . (C.17)
The solid angle {2, has the following values:

(@) £,=0 for0=6,+9,, (C.18)

- cos 6, — cos 6 cos 6,
(b) Qizz[cos 1( ; 1/2)

sin 6, (cos” 6, + cos” 6, — 2 cos 6 cos 6, cos 6,)

. cos 8, — cos 8 cos 6,
+ cos . 2-p-= 2. 142
sin 6, (cos™8,"FCo§ 6, = 2TOS 9 ¢08 §, T35, )

_if cos 8, —cos 6 cos 8, _1{ cos 6, — cos 6 cos 6,
— cos 6, cos : - — €08 9§, cos : ; ,
sin 6 sin 8, A

for |, —8|<60=<6,+86,, (C.19)
 02.=0, forg,=<6,0<|6,-6,, (C.20)
(d) 2,=0, for§,=<6,,6=<6,-6,. (C.21)

The first case above represents the situation where no intersection of the two conic sections, a and b,
occurs.

We should mention that in some cases, for several values of p, q and k,, the cosine functions above
may happen to attain unphysical values (>1). These cases are

(1) p+q<kg, forcosf <-1,
(2) |p+q|>ke, forcos,>+1,

(C.22)
(3) ptq<kg forcosd <-1,

4) |p-—q|>ky forcosf >1.
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Under conditions 1 and 3 we merely set [,, ., d2 equal to zero, since the scattering sphere in this case is
situated inside the Fermi sphere of either the target or projectile nucleus. If, on the other hand,
cos 8, >1 and cos 6, > 1 (conditions 2 and 4) then two possibilities are considered,

p>q—12,=0,

lp B ql>kF2 ’ {p< q_»‘QPauli(ea’ 0[7’ 0):()’ (C23)
b>q—02,=0,

,b - KI[ > ke {b<q_)‘()Pauli(0u7 6,,0)=0. (C.24)

The cases {2, =0 and {2, = 0 represent the situations when the scattering sphere does not intersect the
Fermi spheres.

In eq. (C.10) the average nucleon—nucleon cross section oy, clearly depends on the Fermi momenta
kg, and kg, which are related to the matter densities according to [32]

ke(r) =37 p(]”" + 3 €[(%p) Ip]” (C.25)

where the second term amounts to a surface correction with £ about 0.1.

In our calculastion of gy, we have used the above expression for k., and kg, in eq. (C.10), which
was evaluated numerically. A simple analytic expression, such as given in eq. (3.3) for the nucleon-
nucleus case, was found, even in the limiting case of the constant free nucleon—nucleon total cross
section.
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