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Abstract:
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energiesby a large amount. This is mainly due to the absencein tp1p, of fusion and inelasticsurface excitation. The caseof exotic (neutron-and
proton-rich) nuclei is also discussed.
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1. Introduction

In recentyearsthe total reactioncross sectionof heavy ions hasbecomethe focus of extensive
theoretical[1—6,64—68] andexperimental[7—10,69,701 attention.The reactioncrosssectionsalso find
applicationin diverse researchareassuch as radiobiology and spacescience[71]. On the theoretical
side,microscopiccalculationshavebeenperformedwithin both the tp1 p2 [21Lax approximationandthe
more exact G-matrix formulation [41.A major emphasishas been allocatedto the discussionof the
degree of transparencyin the heavy-ion system, and how this is traced to the nucleon—nucleon
scattering.A basic input in this calculation is the nucleon—nucleonelastic t-matrix appropriately
modified to take into accountnuclearmediumeffects in both projectile andtarget.

Sinceat intermediateenergiesthesemediumeffectscan be takeninto accountas correctionsaddeda
posteriori to the free nucleon—nucleont-matrix, one mayusethis exhaustivelystudiedobject in the
calculationof uR. Owing to the linear relation involving the total nucleon—nucleoncrosssection and
Tm t, through the optical theorem,the energyvariation of u~is accordingly quite relevantfor the
purpose. In particular the discussionof the reactive contentof UR, whetherfor nucleon—nucleusor
nucleus—nucleussystems,becomesintimately relatedto that of ~NN

To set the stage for action we shown in fig. 1 the already extensively exhibited o~ versus
center-of-massenergy,for thepp andpn systems[11].We notethato~is abouttwice aslargeas o-?~or
o~at small energies.At intermediateenergiesthey becomecomparable.Ignoring the very small
bremsstrahlungemission,the crosssectiono-~’atELab <280MeV is practically 100% elasticscattering.
The first reactionchannel,namelyone-pionproduction,opensat ELab —~280 MeV, followed at ELab =

530MeV by the two-pion productioncross section,etc. Thus in the energyrange280MeV< ELab <

530MeV the nucleon—nucleontotal reactioncrosssectionis just the one-pionproductioncrosssection
integratedover angle.This is shown in fig. 2.

In fact, what is plottedarethe productioncrosssectionsfor the isospin T = 1 andT= 0 states.The
identifications crR(T = 1) = o~and crR(T= 0) = 2u~— o~ then give the relevant nucleon—nucleon
crosssection.As a result,onefinds, at leastin the energyregimeELab <530MeV (i.e., beforereaching
the two-pion productionthreshold),thato~”~is about62% of a-~.For thepurposeof completeness,we
also show, in fig. 3, the two-pion production crosssection np—~npir~ir)and ~
Thesecrosssectionsare ordersof magnitudesmaller than the one-pionproductioncrosssection.

Clearly, the thresholdenergiesfor one- and two-pion production processesin the free nucleon—
nucleonsystemare significantly reducedin magnitude in the nucleon—nucleusand more so in the
nucleus—nucleussystems,owing to nuclearmediumeffects, as experimentalfindings haveshown [12].
This fact, howeverdoesnot necessarilyindicatethat qualitativeconsiderationsconcerningthe reactive
contextof nucleon—nucleus(tp), and nucleus—nucleus(tp1p2) interactions,respectively,cannotbe made
using as a guidelinethe nucleon—nucleonreactioncrosssectionsdiscussedso far.

Accordinglywe can afirm that the reactivecontentof the tp andtp1 p2 interaction is predominantly
single-nucleonknockout [13] at low energies,and/or one- or two-pion production at intermediate
energies.Clearly the excitation of collective degreesof freedom is not accountedfor in either of the
interactionsmentionedabove.Thus it becomesquite importantto investigatethe energyrangein which
the tp1 p2 interactionis the dominantcomponentof the ion—ion potential.

The vehiclethroughwhich the abovecan be accomplishedis the multiple-scatteringdescription.This
theory, not only supplies a convenient framework through which the simple Lax potentialcan be
derivedand discussed,but it also makespossible the constructionof higher-ordercorrectionswhich
may contributesignificantly to

0~Rat lower energies.
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Fig. 1. The total cross sectionof theNN systemversuslaboratoryenergy(from ref. [111).
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Fig. 2. The angle-integratedone-pionproductioncrosssection for theNN system(from ref. [11]).
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Fig. 3. The angle-integratedtwo-pionproductioncross section for the NN system(from ref. [ill).

It is the purposeof this report to investigatethe significanceof the tp1 p2 interaction for the total
reactioncrosssectionof heavyions. Both nuclearmediumeffects andhigher-order,multiple-scattering
contributions,arediscussed.The principal aim is to delineatethe energyrangein which this interaction
(at leastits reactivecontent)approximateswell the interactionbeftweentwo nuclei. Recentstudies[2],
havesuggestedthat evenat low energies(E< 15 MeV/N) the tp1 p2 interactionreproduceswell thetotal
reaction crosssection.As we shall see later in this report this is not so on accountof the fact that
several important reactionchannels,not accountedfor by the tp1p., potential, whosemajor reactive
channelis single-nucleonknockoutin bothprojectileand targetnuclei, becomeincreasinglyimportant
as the energyis lowered.

The organizationof this report is as follows: in chapter2 wepresenta detailedaccountof the theory
of

0~R• In particularwe discussseveralapproximationsused for its evaluation.We also generalizethe
one-channeltheory of 0R to multichannels. In chapter3 we presenta summaryof the multiple-
scatteringtheory appropriateto heavy-ioncollisions. The first-order tp

1 p2 interaction as well as the
second-orderdouble-scatteringcontributionsarethenderivedand analyzed.The imaginarypart of the
(f31~O2interaction is thenfully discussedin chapter4. A very carefulanalysisof the Pauli blocking in the
context of heavy ions is also presentedin this chapter.Further,we assessthe importanceof usinga
relativistic Dirac formalism in the calculationof ~R• Calculationsof

0R for severalHI systemsis then
presentedin chapter5, with a comparisonwith the datamadefor ‘2C + 12C. The effect of the identity
of the particleson 0~Ris also discussed.

The role of peripheralprocesses,with the collective participationof severalnucleonson the mutual
excitationof the nuclei, is discussedin chapter6. Of greatinterestin this contextis the excitation of
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giant resonancesin intermediateand high energycollisions, which revealnew aspectsof the nuclear
structurenot accessibleby mehnsof othernuclearprobes.As we showlater, the peripheralprocesses
imply a very peculiar mode of absorption of energyby the nuclei. The absorption of energy in
peripheralcollisions at high energieswill go preferentiallyto the excitationof collective motions or to
emissionof a pair of nucleons,or clusters.As a brief accountof this subject,we shall particularly direct
our attention to the reactionswith radioactive secondarybeams,which is a subject of increasing
interest. Finally, in chapter7, our concludingremarksare presented.

A numberof appendicesrelevantfor the discussionpresentedin the differentchaptersof the report
are collectedat the end.

2. Theory of the total reactioncrosssection

In this sectionwe presentthe full details of the theoreticalstructureof the total reactioncross
section.The basic relationbetween0~Rand the imaginarypart of the opticalpotentialis mostgenerally
and easily obtainedusing the generalizedoptical theorem. This we do first. We then turn to the
discussionof 0R within several limiting casesand approximations,in particular we investigatethe
eikonal expressionfor ~R•

Let us first considerthe Lippmann—Schwingerequationfor the optical T-matrix which describes
elastic scattering

T= V + VG~~~(E)T, (2.1)

where ~ is the free propagatoror Green function, (E — H
0 + iE)_i, with H0 being the free

Hamiltonian. In eq. (2.1), V denotesthe complexopticalpotential.
We multiply eq. (2.1) from the right by T - and from left by V’ to obtain

V~= T’ + G~(E). (2.2)

Applying the sameprocedurefor the complexconjugateversionof (2.1) gives

= TtL I) + G~(E). (2.3)

Subtracting(2.3) from (2.2) resultsin

T’ — T”
1~= V~— Vt~1~+ 2iri~(E— H

0). (2.4)

Thelast term in eq. (2.4) is just the differenceGH~(E)— G~(E).We nowmultiply eq. (2.4) from the
(+) t (+)t tleft by T andfrom the nght by T to get, afterusingthe relationsT = Vii and T = 11 V where

Q(~is the Möller wave operator,

T— T
t = I1(~t(V_Vf)QW—2~iT~6(E—H

0)T. (2.5)

We are now in a position to derive the optical theoremwhich relatesthe imaginarypart of the
forward scatteringamplitudeto the total crosssection. Indeed,taking the on-shell matrix element(in
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planewaves)of (2.5) leads,immediatelyto (k’ = k)

Tm T0~hl(k, 0°)= ~ (khii(+)t(V_ Vt)fl(+)lkl)

1 21T1~zk I on-shell 2 2 6
— 2i (2ir)3/12 J Ic (k’,k,hk2/2p.)

Using now the relation betweenT°~~and the elasticscatteringamplitudef,

f(k, 0) = _(~/2 2)T01~5~(k,0), (2.7)

we obtain

Im f(k, 0) = ~- (~~fImV~) + f dii f(k, 0)12, (2.8)

which is the generalizedopticaltheoremweareseeking. Sinceon the right-handside,we havethe total
cross section,and Jdii f(k, 0)12 is the angle-integratedelastic cross section,we can immediately
identify the first term on the right-handside to be just the total reactioncrosssection

crR—(kIEk)(tIJklImVk~Ik). (2.9)

In the abovederivationof cr~throughthe useof optical theorem,we did not pay attentionto the
long-rangeCoulombinteraction.This, however,posesno fundamentalproblemas one can generalize
the optical theorem,in suchaway as to haveIm[f(0) — fR~th(O)]on the left-handsideof eq. (2.8) and
.f dii [~f(k,0)12 — fRUth(k, 0)12] as the secondterm on the right-handsideof the sameequation.In the
aboveexpressions,fRUth(k,0) is the Rutherfordscatteringamplitude.The first term,namely0R [seeeq.
(2.9)], is unchanged.For full detailsof the abovegeneralizationwe refer the readerto Haldemanand
Thaler [14] and Husseinet al. [15]. For completeness,an alternative,more direct, derivationof 0R

usingthe usual Wronskianargumentis presentedin appendixI.
Equation(2.9) can be straightforwardlyexpandedin partial wavesyielding

~T ~(2l+1)T
1, (2.10)

with the elastic-channeltransmissioncoefficientsT1, given by

T1 f dr k~i1(k,r)1
211mV(r)l , (2.11)

where
4’i1(k, r) is the partial wave, radial, wave function, which is a solution of the radial optical

Schrödingerequation(with the full V). Of course,the following relation holds betweenT1 and the
elasticS-matrix

T1=1—IS,1
2. (2.12)
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In the large-numberlimit of partial waves,andundersemiclassicalconditions,onemayreplacethe
partial-wavesum by an integral andI by kb — 1/2, with b beingthe impactparameter.Thus eq. (2.10)
becomes

~R =2~JbdbT(b). (2.13)

In the applicationto heavy-ionreactions,it has beencustomaryto introducea strong absorptionradius
R~.1which would limit the b-integralabove in the sensethat T(b) is representedas

T(b)= (9(Rsa— h). (2.14)

Equation (2.14) implies that the limit of infinite absorption (large Tm V) for b < Rsa and zero
absorptionfor b > Rsa is a casehardly exactlymet in physical systems.It does,however,constitutea
reasonablefirst approximationfor T(b). It is important hereto remind the readerthat Rsa is energy
dependent,to accountfor the Coulombbarrier restriction.Usually Rsa is takento be

Rsa = R~(l— V~/E)~
2, (2.15)

where RB and VB are the position and height of the Coulombbarrier, and E is the center-of-mass
energy.With (2.15), TR becomes

= 1TR~(1— V~/E)- (2.16)

The aboveexpressionfor °R’ doesaccountwell for heavy-iontotal reactioncross-sectiondataup to
a center-of-massenergyper nucleonabout one fourth the Fermi energy (EF = 37 MeV). At higher
energies,the datastartdroppingoff until anenergypernucleonof about140MeV (roughlyequalto the
pion rest mass)is reached,after which 0~Rrises again. This fact clearly showsthat a greatamountof
transparencyis attained at intermediateenergies,and the question arises as to how to relate the
transparencyto more fundamentalphysical quantities,such as the nucleon—nucleontotal crosssection.
The vehicle through which this is accomplishedis the explicit connectionbetweenT(b) of eq. (2.13)
and the elastic-channelopticalpotential, as eq. (2.11) implicitly dictates.The opticalpotentialitself is
constructedfrom multiple-scatteringtheory as will be discussedin section3.

In termsof the complexphaseshift which specifies5, namelyS = exp(2i~),we maywrite

T(b) = 1 — exp[—46
1(b)], (2.17)

where81(b) = Tm ~(b). Within the JWKB approximation,we havefor the phaseshift

I/2 ‘ i/2

= urn[fdr’ (k2 — 1(1+1) — ~ V(r’)) — f dr’ (k2 — 1(1+1)) ], (2.18)
rI r0

where r1 is the turningpoint, andr0 = (I + ~) /k = b. The imaginarypart of lij, is obtainedimmediately,
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2 2 1/4

~~(l) dr’ [(k2 — 1(1+1) — ReV(r’)) + (~ Tm V(r’)) ]

x sin[0(r’)/2] , (2.19)

where

tan 0(r’) = —~ Tm V(r’) (k2 — 1(1+1) — ~ Re V(r’)). (2.20)

At sufficiently high energies,in the senseof VIE ~ 1, onemayexpand(2.19) to first order in Tm V, to
obtain

— 1 2~~ , ImV(r’) (221)
— —~ -~ ~ dr [k2 — 1(1 + 1) /r’2 — (2~t/h2)Re V(r’)]~2’

which may be consideredas a precursorof Glauber (or the eikonal) formula, sincewith the use of
cylindrical coordinatesr’ = (z’, b) and ignoring ReV(r’) in the squareroot, one maywrite

~ J dz’ImV(Vb2+z’2). (2.22)

The aboveexpressionis to be contrastedwith that given in eq. (2.21), in thatthe former involvesafree
trajectoryfor the incident particle (using classicallanguage)whereasthe latter moveson a trajectory
determinedby the combinedCoulombplus Re V(r) potentials.

We note that 8
1(b) shouldbehaveas a function of impactparameter,similarly to Tm V(b). In fact, if

we makethe approximationTm V= —W~9(R— r’), we obtain

= (k/2E)W0\/R
2— b2@(R— b). (2.23)

The difference betweenexpression(2.23) and that obtainedwith a Wood—Saxonform for Tm V is
concentratedat the surfaceregion.The transmissioncoefficient T(b) in eq. (2.17) is thengiven by

T(b)= 1 — exp[—(2kW
0IE)\/R

2— b2]. (2.24)

It is clearfrom the aboveformula that the dependenceof T(b) on E andconsequentlythat of 0R ~

determinedfrom the dependenceof W
0 on E. If W0 ~ E

112, the energydependenceof T(b) is washed
out. On the other hand, if W

0 ~E
1120NN(E), then the energydependenceof T(b) is exclusively

determinedby the energydependenceof TNN(E), as will be fully discussedlater. Obviously,the above
simplerule changesas the energyis lowered, since an extraenergydependencewill emergefrom the
factor

[k2 — 1(1 + 1)1r2 — (2p.I!12)ReV(r)]~’2
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in eq. (2.21). Further, nuclear medium effects, e.g. Pauli blocking, introduce a further energy
dependence.Thesequestionswill be fully addressedin the next section.

Though very schematic,the expressionobtainedfor T(b) in eq. (2.24) using the squarewell model
for Tm V(r), still servesto exhibit severalinterestingfeaturesof 0~R•Using eq. (2.24) in eq. (2.13),we
obtain for UR(E)

~R(E)~R(12 1(1~~), (2.25)

whereA = EIkW
0is the meanfree path. Theequationwas first derivedby Bethe[16]. To correctfor the

Couloumbbarrier effect one merely replaces(2.25) by [17]

/ 1—(1+2R IA)e
2’~/ V \

UR(E) 1rRE~1—2 (2REIA)2 — -i-), ( . )

whereRE = R+ 1/k.
Equation (2.26) may be comparedwith the purely geometrical formula (2.16), and thus the

transparencyfactor, T, definedby

= 1TR~(1— T)(1 — VB/E), (2.27)

can be immediatelyextracted,

T = 2[1 — (1 + 2REIA)e2’~](2RE/A)2. (2.28)

Figure4 exhibits the behaviourof T versus2RE/A.

T~

0 10 2.0 3.0

(2R/\)
Fig. 4. The transparencyfactor versus2AJR (eq. 2.28).
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Equation(2.28) identifiesthe physicalparameterthat determinesthe valueof T, namely2RE/A. For
large 2REIA, namelyA ~ 2RE,we obtain for T,

T~A2I2R~, (2.29)

and accordingly,the total reactioncrosssectionbecomesproportionalto the surface,

0R — ITRE(1 — A2/2R~)(1— VBIE)

I A2’3 for nucleon-inducedreaction, 2 30
~1~(A~3+ A~’3)2 for ion—ion collisions.

The above result is characteristicof strongly interacting systemscharacterizedby short A such as
hadron—nucleus.On the otherhand, in the otherextreme,namely2REIA~ 1 (implying long meanfree
pathA comparedto the effective diameterof the interactingsystem),we obtain

T~1 — ~(2RE/A), (2.31)

thusgiving for the total reactioncrosssectionthe following form which is proportionalto the effective
volume of the system:

~ IA for a nucleon-inducedreaction,
(~irR~)IA~ 1~(A1’3 + A~’3)3 for ion—ion collisions. (2.32)

The behaviourof °kwith respectto A in eq. (2.32) is typical of weakly interactingprobeswith a
nucleartarget.Examplesareelectron-andphoton-inducedreactions.The meanfreepathin thesecases
is quite long owing to the weaknessof the underlying electromagneticinteraction.Accordingly, the
wholenucleusis “seen” in the processof the collision, in contrastto hadron-inducedreactions,where
only the surfacenucleonsparticipatein the collision process.

Clearly, the abovepicturedependson energy,in the sensethat weakly interactingprobesbehave,at
higher energies,like hadrons(in the photo-nuclearcasethis is commonlyreferred to as the vector-
mesondominancephenomenon[18]). It seemsobviousnow that hadron-likeprocesses,such as the
ion—ion collision discussedhere,behaveat intermediateenergies,like weakly interactingsystemsowing
to the diminishing value, at these energies,of the total nucleon—nucleoncross section,the basic
microscopicquantity for these systems. In the next section we investigate,within more realistic
calculations,the behaviourof 0~RandT as a function of the combinedradiusof the heavy-ionsystem.

So far we havediscussedthe total reactioncrosssectionwithin a one-channel(optical) descriptionof
the elastic scatteringprocess.In many instances,a more generaldescriptionof nuclear absorption,
basedon the coupled-channelstheory,is calledfor. Thus,in the following we presentsucha description
for the purposeof completenessand in order to develop a theoretical framework through which
improvementsupon the multiple scatteringcalculation,presentedin the bulk of this paper, can be
eventuallymade.

We introducenowthe projectionoperators,P
0, P’ andQ, whichprojectout, respectively,the elastic

channel,the directly couplednonelasticchannelsand the closedchannels(fusion). The elimination of
the Q-subspaceand the energyaverageperformedsubsequently,resultsin an effective P0 + P’ = P
coupledchannels.The aim now is to evaluatethe total reactioncrosssectionin P0.
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The equationfor the elastic elementof the T-matrix becomesnow, insteadof eq. (2.1),

P~TP1= P~VP() + P0VPG~J~~PTP0, (2.33)

which may also be written in the following equivalentform:

PQTP0 = U0~1+ ~ (2.34)

= P0VP0 + P~VP’G
1~1P’VP

1, (2.35)

where P’ G + )p~is the effective, exactpropagatorin the P’ -subspace.
Of course the discussionpresentedearlier following eq. (2.1) can be immediatelyapplied to eq.

(2.34),with the only differencethat the structureof the effectiveopticalpotentialoperator(]op5 is now
fully exhibitedin eq. (2.35). Using eq. (2.35) in (2.5),which we write now as

P0(T—T~)P11= P01i(~tP0(U0~1— U~~1)POQ~~
1P()

— 2’iriP
0T

tP
05(E — H0)PQTP0, (2.36)

we have

P11(T— T~)P()= P0ii~
tP(V—V’)P~121~~P

1

+ P(IQ(+)tPO[POVP*G(+)P*VPO _(P0VP9G~P*VP0)
t]P

0iiWP0

— 2iriP0T
tP

06(E — H0)POTPQ. (2.37)

Note that V ~ V
t owing to the averagedout closedchannels(fusion).

Assumingnow that the P
0Pcoupling interaction is Hermitian ~ = ~ which is a reasonable

approximationif weconsiderthat the effectof the averagedout Q-spaceresultsmostly in an imaginary
contributionto the diagonalterms, ~ andU,~[which appearsin (2.34)],we havethe following for
the secondterm on the RHS of eq. (2.37):

~ — P*G(+)tPI)PVP0Q(+)P0= P0ii~)tP0VPF

~ (—~ ~ + PlG~tP~(V_V~)G P’)P’VPQ(+)P - (2.38)

The aboveresult is a consequenceof an identity satisfiedby the Greenfunction P’G~~P’.Using the
fact that the Möller operatorP’ defining the channelsis

p~çl(~p0= ~ (2.39)

we can now write for P0(T — Tt)P0, eq. (2.36), the following expression:
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P0(T— T
t)PQ = P

0ii~tP0(V_ V~)P0ii~~~P0+ P0ii~
tP’(V— Vt)P’ii~PQ

—21Ti~~ ~

— 2iriP
11TtP0~(E— H0)POTPO. (2.40)

The derivationof the total reactioncrosssectioncan now be accomplishedusing exactlythe same
stepsfollowed in deriving eq. (2.9). Then

= ~ (~m ~ + ~ (~4~IImV~’l~) + ~D’ (2.41)

where
0~Drepresentsthe direct reactioncontributionto 0~Rand it correspondsto the third term on the

rhs of eq. (2.40). The first term in the aboveequationrepresentsabsorptionin the P
0 andP’ channels

owing to coupling to the closed-channelsubspace,andthus it correspondsto fusion. Theabovegeneral
expressionfor the fusion crosssection hasrecently been used in discussingheavy-ionfusion at low
energieswherecoupled-channelseffects seemto be important [19—21].

Clearly eq. (2.41) is, in principle, equivalentto eq. (2.9),as long as the opticalpotentialusedin the
latter representsthe exactinteractionin the elasticchannel.The decompositionof

0R into the distinct
terms,namelycTF and0D is, however,quiteuseful in discussingthe reactivecontentof microscopically
derivedopticalpotentials.The tp

1 p2 interactionanalysedfully in the following chaptersrepresentsbut
oneterm in

0D~ This maywell be the dominantterm at intermediateandhigh energies.However, at
lower energies,we expectthat 0F andthe othertermsin u

0 such asinelastic channels,to be by far the
dominanttermsin °~R•The derivationof the aboveresultusingthe Wronskianis presentedin appendix
A.

To end this chapter,we commentbriefly on the possibleneedof using a relativistic descriptionof
heavy-ionelasticscatteringespeciallyat ECM/A > 200MeV/nucleon, whererecentresearchin proton—
nucleusscatteringseemsto indicatethe startingpoint in such a descriptionin the opticalDirac equation
with combinedscalarand time-componentvectorpotentialsemployedas an interaction[22].

Our aim is to assessthe importanceof the relativistic effects on
0~R~For the purposewe have

evaluatedo’R for protonscatteringon 40Caand208Pb[23]. The detailsof this calculationarepresented
fully in section5. Our resultsindicatevery little differencebetweenthe relativistic and nonrelativistic
0R~ We thereforereachthe conclusionthat a nonrelativisticcalculationof 0R for heavyions at energies
up to ECMIA = 800MeV/nucleon, should be quite adequate.In section 3 we discuss in detail the
nonrelativistictp

1 p2 interaction.

3. Multiple-scattering theory

3.1. Proton—nucleustp interaction

In this subsectionwe discussin detail the microscopicnucleon—nucleusopticalpotential.We do this
for two reasons.The first one is that this interaction hasbeenthe subject of intensive theoretical
investigationfor morethan25 years,which resultedin quite a satisfactorystatus,andthe secondbeing
that, in principle, the nucleus—nucleusopticalpotentialcan be definedin termsof the nucleon—nucleus
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interaction through a folding integral (single folding). Of particular interestis the discussionof the
reactive content of the nucleus—nucleusinteraction, given the structureof the underlyingnucleon—
nucleusoptical potential. This is important for a betterunderstandingof the natureof the total HI
reactioncrosssectionat intermediateenergies,which hasreceivedgreatattentionrecently.

A simple, first trial, guessat the form of the nucleon—nucleuspotential is the classicalrelation

U(r) = f dr’ p(r’)V(r, r’),

where V(r’, r) is a properly antisymmetrizedprojectile-nucleon—target-nucleoninteractionandp(r’) is
the single-particle (classical) density of the target nucleus (obtained from, e.g., a Hartree—Fock
calculation).Clearly the aboveexpressionis not entirely correctsince, firstly, U is real whereasthe
opticalpotentialmust be complexto accountfor the nonelasticprocesses,and secondly,V(r, r’) cannot
be used as it containssingular components(the “hard core”) at r<0.4fm. What is used insteadof
V(r, r’) is an appropriateeffectivepotential,(or G-matrix) whosehardcoreis smoothedout, in favor of
density dependence[absentfrom V(r, r’)].

An apparentlydifferent method, usually applied at higher energiesis to formulate the problem
within a multiple scatteringframework. Here one has as an input, the nucleon—nucleont-matrix
(generallyoff the energyshell). In thispaper,we usethislatter approach,both in nucleon—nucleusand
in nucleus—nucleusscattering.For the purposeof completenessand the presentationof a general
frameork, wherecorrectionto first-order approximationmaybe constructedanddiscussed,we present
below the essentialingredientsof this approach[24].

The Hamiltonian for the projectile-nucleon—target-nucleussystemis written as,

H——(h2/2m)V2+HN+V, (3.1)

whereHN is the target nucleusHamiltonian and V is the interactionbetweenthe incidentnucleonand
the target nucleus,which can be written as a sum of individual nucleon—nucleoninteractions,

~ (3.2)

The solution of the scatteringproblemis representedby the full nucleon—nucleusT-matrix

T= V + V[E — (H — V) + is]’T, (3.3)

whereE is the CM energy.The solution of (3.3) is facilitated by the decomposition

T = ~ T~~(E)’q~(E), (34)

= V~+ V~~[E— (H — V) + ir]’r~. (3.5)

Substituting(3.4) into (3.3) gives

= 1 + — H— V ~ r~
1(E)?)1(E). (3.6)

iF
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The setof equations(3.4)—(3.6) constitutesthe basisof the multiple-scatteringserieswhich resultsin

~ E (H1V)+• r~
1(E)+”. (3.7)

At this point it is important to emphasizethat the are not two-bodyprojectile—nucleontransition
matrices;the propagator1I[E — (H — V) + ie] G0(E) containsthe full nuclearHamiltonian HN [see
eq. (3.1)] and consequentlyr~is an (A + 1)-body operator.

The usual procedureis to replace~ by the correspondingnucleon—nucleonT-matrix in free space

t~1(E)= + V~(E+ 112V
212m+ ie)’t~~(E). (3.8)

The correctionsto the replacementr—÷t resides in correctionsto the free Greenfunction — the
replacementof an (A + 1)-bodyoperatorby atwo-bodyoperator,andto the useof the CM energyof
the p + 1 systemin the p—N system(which is reasonableif A’ ~ 1).

The stageis now set for obtainingthe opticalpotential operatorwhich is formally defined by the
equation

T= ~V+ 1V[Po(E+h2V2I2m~ KA)~]T, (3.9)

whereP
0 I ~lç)(V~J’is the projectionoperatoronto the target-nucleusgroundstate,andKA represents

the kinetic energyof the CM of the nucleus.Then

‘V= T(E) — T(E)G0(E)T(E) +

= ~ t1(E) + ~ t~(E)E + (112/2 )V
2 — KA t~(E)+.... (3.10)

The groundstatematrix elementof 1V gives us the optical potential for elasticscattering,via

11(E) = t(k, n’, 01111k,0,0) = (21T)38(k’+ n’ — k)°V(k’,k, E), (3.11)

where n’ is the center-of-massmomentumof the target nucleus,and k is the momentumof the
projectile. The first-order potentialobtainedfrom eq. (3.10) reads

11W(k~,k; E) = f d~ ~
0(p1+ q; p1)t(k~,k1 E’), (3.12)

(2ir)

where 4~is the target-nucleusdensitymatrix, which is relatedto the densityby

f dp1
p(q)=i

-~ (2’zr)

q = k’ — k, k1 = k — (p.Im)(k +p~), k~= k’ — (1.tlm)(k’ +p1), (3.13)

= E—(k+p1)
2I2(m~ + m).
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The next step is to set p1 = 0 in t, which resultsin the tp expression

11w(kl,k; E) = p(q)t(k, k1 E)=p(q)t(0 =0°;E). (3.14)

The last form ignores off-shell effects. It has the advantageof supplying a model-independent
procedurefor discussingnucleon—nucleuselasticscattering.The reactivecontentof ~ as is known, is
quasifreeknock-out [13]. It is to be expectedthat the impulse-approximationform of V~,eq. (3.14)
would be valid at intermediateproton energies(E~-~ 100MeV). At these energies, the nucleon—
nucleonscatteringis practically purely elastic (exceptfor a very small bremsstrahlungemission).At
higher energies,pion productionbecomesimportant(E~ 140MeV). This is clearlyseenfrom fig. 1,
showing the total reactioncrosssection for the free nucleon—nucleonsystem.Clearly medium effects
modify this picture to some extent (e.g., shifting the pion production thresholdto lower energies).
Further, thesesamenuclearmedium effects [5] like Pauli blocking and Fermi motion of the target
nucleus,bring aboutchangesin the form of 11(1) (validity of impulseapproximation)as well as make
higher-ordercorrections,relatedto nucleon—nucleoncorrelations,more important.

Among the numerouscorrectionsrequired for a better treatmentof the scatteringprocess,the
second-orderdouble-scatteringeffect seemsto be the easiestto estimate.In momentumspace(using
the free nucleon—nucleont-matrix as basic input) [25] this term looks like

(k’, 0I11
12~Ik0) = ~ f d~ (k’ OIt

1Ik” a)(E — 11
2k”2/2m — E~+ is)~ (k” alt,Ik 0)

i=I ~ a (2ir)
(3.15)

Several approximationsare usually employed to simplify the above equation. We use an average
nuclearexcitationenergyin the free Greenfunction, Ea ~ E~ E, employ closure to get rid of the

~a~O — 0)~0I,and employ the eikonal (high-energyapproximation)in evaluatingthe Green’s

function. Introducing the two-particle correlationfunction

P~2~(r’,r) = A(A—1 1 ~~(r
1,...,TA) ~ ~ 6(r’ r~)6(r—r1)~i0(r1,... ,rA) dr1 . drA,

1=1 1+1 (3.16)

one can thenwrite an approximateform for the doublescatteringcontribution. In coordinatespaceit
looks like

—(ikI2E)[ 11(U(r)]
2Rcorr ‘ (3.17)

where ‘V111 is the first-order tp potentialandRcorr is the two-particle correlation length, given by

p(2)
Rc

0~1 =f ((‘~~— i) d(r— r’). (3.18)

Herea further assumptionon the quantity P
121/pphasbeenmade,namelythat it dependsonly on the

relativeseparationbetweenthe two nucleonsand not on their individual positions.In the absenceof
two-body correlations,Rcorr = 0. In general, it is expectedthat P12~(r’,r) would approachthe no-
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correlationform at a separationlarger than the hard core radius (—~0.4fm). At smaller separations
p(2) = 0. Thus Rcorr —0.4 fm.

The estimategiven abovefor Rcorr is very crude.In a more refined treatmentof Rcorr presentedby
Ray [26] it is actuallycomposedof four distinct contributions,

Rcorr = Rp~~
1j+ RSRD + RPSR+ RCM. (3.19)

Following Boridy andFeshbach[27], Rpauij is relatedto the Pauli exclusion-principlecorrelations,RSRD

is related to the short-range dynamical correlations and RPSRis connected to the combination of a Pauli
and a short-rangedynamicalterm. Finally RCM arises from center-of-mass correlations. Wegive below
the approximate expressions for these four contributionsto Rcorr derivedby Ray [26]

1/ 5 4\ 3i~ 1
Rp~~1j= ~~1— + ~) 10k~(r) 1 +

—RSRD= ~(i — + b~+8B’ (3.20)

1 / 5 ~ \ ~ / 2 ~ \i/2~ -(k~(r) 1 ~
RPSR 2 l~,1— A.~+ ~) -j~j-~k~(r)+ ~) L1 +8B~

1j—~-—+

—RCM = (1—2/A + 1IA
2)l~,

where the parametersA, kF(r), B, b, I~are the target mass number, local Fermi momentum,
finite-range parameterof the nucleon—nucleonelastic t-matrix, short-rangedynamical correlation
parameterand the effective “correlation length”, respectively.We should mention that B exhibits a
non-negligible energydependence:0.66 at ELAB = 100MeV and dropping to about 0.1 at ELAB=

2200MeV.
We haveevaluatedRcorr accordingto eqs. (3.19) and(3.20) for the systemp + ‘2C at severalproton

laboratoryenergies.The resultsare presentedin fig. 5. As can be seen in this figure the dominant
contributionsto Rcorr arisefrom the Pauli and center-of-masscorrelations.Further, the valuesof the
calculatedR~

011over a wide rangeof protonenergiesapproximatescloselythe very simple estimatefor
Rcorr given earlier,namely —0.411 fm.

We seeclearly from our approximateform for 1(2) in eq. (3.17) thatthe multiple-scatteringseriesis
an expansionin termsof the correlationradius. The third- and higher-orderterms would dependon
three- and many-body correlations.No simple expressionsare found for theseterms. In the next
subsectionwe shall employ the above theoreticaldevelopmentsfor the calculation of the ion—ion
interactionat intermediateenergies.

3.2. Nucleus—nucleustp1 p., interaction

Once the nucleon—nucleuspotential operatoris constructed,the correspondingnucleus—nucleus
potentialcan in principle,be obtained,with duecarefor antisymmetrization,by a folding procedure.In
discussingheavy-ionreactionsat low energies,it has beencustomaryto employ the double folding
prescriptionin conjunctionwith an effective nucleon—nucleoninteraction (G-matrix) which contains
mostof the nuclearmediumeffects. A morethoroughdiscussionof thishasbeengiven by Satchlerand
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Fig. 5. The correlationdistanceR,
0,, versuslaboratoryenergyfor the p +

12C system.Seetext for details.

Love [28], who write for the real part of the ion—ion potential

ReV=Jdr
1fdr2pi(r1)p2(r2)11(r12=R+r2—ri), (3.21)

where l
1is given by the M3y interaction

—2.5r

1,

11(r12) = 6315 etiri, — 1961 .5r17 + J006(r12), ~ = —81 MeV fm
3.

The last term in the aboveexpressionfor 11takesinto accountthe nucleonexchangeeffects.No energy
dependenceis presentin the above expression.Of course at higher energies,the procedureabove
should be replacedby the more appropriatenucleon—nucleonG- or f-matrix, which, wheninsertedin
the doublefolding integral above,would determinethe energydependenceof the resulting,complex
ion—ion potential.Thus, following the discussionof the previoussectionwe write

t(0 = 0°; E) J dr’ pA
1(r)pA,(r — r’) = 4~ fNN(

0 = 0°; E) J dr~PAi(T’)PA
2(T — r’),

(3.22)

wherefNN is the nucleon—nucleonscatteringamplitude.With the helpof the optical theoremwe may
now obtain the imaginary part of ‘V~(r),
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Tm 11~(r)= — k UNN(E) J PA (T’)PA(T — r’) dr’, (3.23)

which is clearly just the proton—nucleusimaginary interactionfolded onto the projectile density.
The real partof 11~A(r),which would correspondto the intermediateenergyversionof the double

folding interaction, can be obtained from the systematics of Re fNN~One usuallywrites [26]

Re fNN = a Tm fNN’ Im fNN = (ko~NI41r)exp(—a~~q2). (3.24)

The parametera dependson the nucleonenergy,attainingthe value of 0.06 at ELAB = 800MeV and
becomingnegativeat E> 1000MeV. In table 1 we presentthe values of the physical parametersthat
determinefNN atseverallaboratoryenergies.As a consequenceof eq. (3.24) andtable 1, the real part
of ~ at EIN 1000MeV should become attractive. We turn now to the considerationof the
second-order(double-scattering)contributionto the ion—ion potential.

Our recipefor this contribution is to perform a symmetrizedsingle folding with the projectile and
target densities.This thensuggests

= _(~kI4E)Rcorr(J[~1NA (r — T’)]2pA (r’) dr’ +J [11NA (r — r’)]2pA (r’) dr’), (3.25)

where 11~-~(r) is the nucleon—nucleus(A
1) tp type opticalpotentialdiscussedearlier.

We evaluatedthe second-order(double-scattering)correctionto the tp1 p2 potential,accordingto eq.
(3.25),with Rcorr given by eqs. (3.19) and (3.20) for the system

12C+ ‘2C at the following laboratory
energypernucleon:100, 200, 300 and500MeV. In figs. 6 and7, we showthe radial distributionof the
second-ordercorrectionto the opticalpotential for the 12C+ 12C systemsat the aboveenergies.For
comparison,we also show the contributionof the dominant tp

1p2 DF potential at 100MeV/N. The
rangeof the second-orderpotential is appreciablyshorter than that of the first one owing to the
high-orderdensity dependence(tp1)

2p
2 versus(tp1)p2 [29]. It is interestingto notethat the imaginary

part of the opticalpotential changesat 100MeV/N namely, ~ is regenerativewhereasat the other
cited energiesit is absorptive.We should stress,though,that the sumof the contributionsof W~and
W~

2~is guaranteedto be absorptive.The abovebehaviourof ~ is a consequenceof the folding
formula (3.25). Using explicitly the form of ‘V~’~in eq. (3.20), we have

Table 1
The parametersof theNN amplitude accordingto eq. (3.24); from ref. [26]

ELAB (MeV) o~(mb) a~, ~ (fm2) o-~(mb) a
5~ a5~(fm

2)

100 33.2 1.87 0.66 72.7 1.00 0.36
150 26.7 1.53 0.57 50.2 0.96 0.58
200 23.6 1.15 0.56 42.0 0.71 0.68
325 24.5 0.45 0.26 36.1 0.16 0.36
425 27.4 0.47 0.21 33.1 0.25 0.27
550 36.9 0.32 0.04 35.5 —0.24 0.085
650 42.3 0.16 0.07 37.7 —0.35 0.09
800 47.3 0.06 0.09 37.9 —0.20 0.12

1000 47.2 —0.09 0.09 39.2 —0.46 0.12
2200 44.7 —0.17 0.12 42.0 —0.50 0.14
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Fig. 6. The real part of thesecond-ordernucleus—nucleuspotential at four laboratoryenergies:100MeV/N (dashedcurve), 200MeV/N (dotted
curve),300MeV/N (dashed—dottedcurve) and500MeV/N (dashed—double-dottedcurve). For reference,theusualdouble-foldingpotential is also
shown (solid curve).
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namelyIm tp, p. is also exhibited(solid curve).
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Re 11(2)= _(EI2k)IRcorrIao~.(p~ipA.,+pA
2pA1Xr),

(3.26)
Im 11(2) = (E/4k)IRcorrl(a

2— 1)o~.(P~A
1PA7+ PA2PA1)(r)

(P~AiPA,+ pA2pA1)(r)= J p~(r— r’)pA(r’) dr’ + f p~(r— T’)PA(T’) dr’. (3.27)

ThereforeRe 11(2), beinglinear in Re fNN (andcorrespondinglyin the parametera), is attractivein the
energyrange100MeV < E<800MeV and repulsiveat ELAB > 1000MeV. In contrastTm 11(2) behaves
as a

2 — 1 and thus is regenerativeat thoseenergieswherea> 1, and absorptiveat the other energies
wherea <1. The sum Im 11(1) + Tm 11(2) is guaranteedto be always negative(absorptive)as unitarity
requires.

In our calculationof the ion—ion opticalpotentialto bedescribedlater, we haveusedPauli-blocking
correctednucleon—nucleontotal érosssections.The full detailsof the structureof Im(11~1) + 11(2)),

whichis usedlater for the calculationof UR, aregiven in the following section.Herewe maymention
that owing to the fact that the volume integral of 11(2) is 0.3 times that of ~ it is expectedthat the
effect of 11(2) °~‘°k is small. Wehave verified this by evaluating, within the JWKB approximation
discussedin section 2, the total reactioncross sectionof 12C+ t2C using 11(1) + 11(2) for an optical
potentialand havefound that 11(2) hasan influenceof less than 10% on 0~R’ as comparedwith the
calculationwith only 11~1) included. In our calculation,to be describedfully in section 4, we have
includedthe Pauli-blockingeffect mentionedabove, and performedan appropriateaverageover the
Fermi motion of the nucleonin the projectile and target.

4. The imaginary part of the tp
1p2 interaction

In this sectionwe developfurther the theoryof the imaginarypart of the ion—ion potentialdiscussed
in the previoussection. In particular we investigatethe effectof Pauli blockingon the potentialandthe
subsequenteffect on the meanfree path. Other medium effects such as the binding energy,off-shell
effectsand the non-locality of the potentialwill also be briefly discussed.

As we saw in the previoussection,the imaginarypart of the tPA PB interaction,can be written in the
following form:

W(E; r) = —~-u~(E)Jdr’p~(r— r’)pB(r’), (4.1)

where E and kN are the energyand momentumper nucleon,respectively,and 0NN is the nucleon—
nucleontotal crosssection.The Pauliblocking is includedin the aboveexpressionfor W, by modifying
(reducing) rr. Accordingto Kikuchi andKawai [30] this entailssubstitutingo~aboveby an average
crosssectiongiven (for the caseof proton—nucleusscattering)by

-NN 1 f f
°T (E) = ~ j dk2 j dii 2kUNN(k, k), (4.2)

kl(SITkF)

whereit is assumedthat k1 is the momentumof the projectile nucleon,kF is the Fermi momentumof
the target,k2 is the momentumof a target nucleon,dii’ is the elementof solid anglethat definesthe
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direction of the final relative momentumk’; k is the initial relative momentumand 0NN(k,k’) is the
differential NNcross section. The integrals appearing in eq. (4.2) take into account the Pauli blocking
throughthe restrictionimposedon k2I <kF and on dii’. Assuminganisotropicangulardistributionof
o-(k,k’) = (1 I41T)a-~(k),one is thenable to derive for &NN the following simple expression[31]:

-NN NN
°T (E) = °T (E)P(EFIE), (4.3)

I1HX, x~4,P(X)=11 — ~ ~X(2—X~)
5’2, x� ~. (4.4)

In obtainingeq. (4.3), it is assumed that the free nucleon—nucleontotal crosssectionis independentof
energy, which is a reasonable assumption at energies above 100 MeV. Assuming that the cross section is
inversely proportional to the energy, P(X) attains the form P(X) = 1 — ~X.

For the nucleus—nucleusinteraction,eq. (4.1), the Pauli blocking effect is incorporatedinto &~N

sinceboth projectileand targetnucleonsare Pauli blocked.No simple expressionfor P(X) is obtained
in this caseandonly throughnumericalintegrationsis one able to obtain&~N. Nonetheless, analytical
formulas areobtainablefor the allowedscatteringsolid angle[601,The pertinentformulaeaswell as the
detailsof the calculationare given in appendixC.

The above Pauli blocking is takeninto considerationin nuclearmatter. In actual finite nuclei we
invoke two straightforwardmodifications on the results obtained so far: firstly, the local density
approximation,which renderskF dependenton the radial distance,through kF(p(r)),

3 2 i’3kF = [~1T p(r)] (4.5)

and secondly,we usean averagenucleon—nucleoncrosssection.For nucleon—nucleusscatteringwe
have

= [(A — Z)&Nfl + Z&NP]/A, (4.6)

whereN refersto n or p accordingto whetherthe incidentnucleonis protonor neutron,respectively.
In the absenceof Pauli blocking, oneexpectsfrom eq. (4.6) that generally~~-~)is larger than the free
p—p or n—n cross section. Of course for N = Z nuclei,

= 1(Nfl + &~)= ~(u~ + o~)P(EF/E). (4.7)

The symmetrized~N relevantfor nucleon—nucleusscatteringhas the form

NN Z
1Z2+(A1—Z1)(A2—Z2)-Nn Z1(A2—Z2)+Z2(A1—Z1)-Np

(~T )= A1A2
0T + A

1A2

Sincewithin the local-densityapproximation&~N and ~&~)arer-dependent,the expressionfor W
in eq. (4.1), becomes

W(E; r) = —~fdr’ pA(r—r’)pB(r~(&)[E k~(r,r’); k~(r’)]. (4.8)

To take better accountof the surface,we have alsocorrectedkF(r) [32],
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i 2 3 2 2/3 ~ 2

[kF(r)] = [51T p
1(r)] + ~(Vp~Ip~)~ , (4.9)

where~ is of the orderof 0.1. The aboveform of kF is the oneemployedin the calculationof W in eq.
(4.8).The Fermi momentumof eachnucleushasbeendeterminedusingeq. (4.9) by dividing thespace
occupiedby the nucleusinto threeregions, internal, centraland surface.

Using the aboveas well as the resultsof appendixD we havecalculatedthe Pauli-blockingmodified
NN crosssections.In figs. 8 and9 we presentthe behaviourof andUnP versusk. Also shownarethe
free-spacecrosssections.Differentvaluesof the Fermi momentumof the targetnucleus,kFI, kF2, were
used for the purposeof comparison. In figs. 10 and 11 are shown the effective

0~NNappropriatefor
nucleus—nucleusscattering,for different valuesof the Fermi momentakFl and kF

2 of the two ions.
From thesefigures, one can see clearly that the Pauli-blockingreduction in the valuesof

0’NN is
greater in the nucleus—nucleussystemsthan in the nucleon—nucleussystemsat higher energies.At
lower energiesthe situationis reversedquite drastically. In fact at k< kF, the nucleon—nucleoncross
sectionsin the nucleon—nucleuscaseapproachzero. On the other hand, at theselow energiesthe
nucleus—nucleuso~,and o~,is non-negligible. This is so due to the increasedrole of the surface

EL(MeV) EL(MeV)
21 83 187 332 519 747 21 83 186 332 518 746
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Fig. 8. The Pauliblocking-correctedtotalproton—protoncrosssection Fig. 9. Sameasfig. 8 for theneutron—protontotalcrosssectionin the
in the proton—nucleussystem, for severalvalues of k~,(the target proton—nucleussystem.
Fermi momentum).Also shownis thefree o~/5.
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Fig. 10. Sameas fig. 8 in thenucleus—nucleussystem. Fig. 11. Sameas fig. 9 in thenucleus—nucleussystem.

nucleons that still have enough energy owing to Fermi motion which enables them to scatter nucleons
into the Pauli allowedangularregion.

It is commonlyassumedthat thetotal nucleon—nucleoncrosssectionin free spaceis a slowly varying
function of energyand is consequentlyreplacedby a constant.Sucha procedureis used,e.g.,to derive
the Pauli-modifiedcrosssection,eq. (4.3). However, in the energyregion of interestto us, the energy
dependenceof the free crosssectionsis quitestrong andhasto betakeninto account,aswe havedone
here.

We are now in a position to calculate W. In figs. 12 and 13 we presentour resultsfor two systems.
Also shown is the W evaluated with the free

0~N, for comparison. Clearly Pauli blocking reduces
greatly the strengthof W at lower energiesas expected.At intermediate and high energies the
Pauli-blockingeffect is reducedin importance,and W approachesthe value with free 0~N We should
mention that at low energies,other reactionmechanismsbesidessingle-nucleonknockout comeinto
play renderingour calculatedW with Pauli blocking certainly smaller than the W extractedfrom
adjustmentof the total reactioncrosssection.This we discussfully in the following sections.To take
into accountthe effect of these other mechanisms, one has to have a model for W which accountsfor
collective surfaceexcitation, as well as for fusion.

Beforeproceedingwith a calculationof
1R for severalsystems,it is relevantto assessthe importance

of anothereffect,which is completelyalien to the formalism developedso far, namely relativity. By
relativity, we mean the actualrelativistic treatmentof the particles involved andthe use of the Dirac
equation.Therefore,we dedicatethe next sectionto this questionand considerspecificallyp—nucleus
scattering.
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Fig. 12. The imaginary part of the tp

1p2 interactionfor ‘
2C+ ‘2C: (a) Fig. 13. Sameas fig. 12 for the 208Pb+ 208Pbsystem.

with Pauli blocking; (b) without Pauli blocking.

5. Relativistic Dirac form of the total reaction cross section

The discussionand calculationof 0R presentedin this paperwas basedon nonrelativisticscattering
theory. In recentyears, it has becomequite clear that proton—nucleusscatteringat intermediate
energiesis more correctly describedby a relativistic Dirac optical equation. In particular, spin
polarizationand rotationseemquite clearly to require,for their description,sucha relativistic theory
[33,34]. One would also like to check whether such a relativistic theory will influence UR. In this
section,we presentthe relativistic formulation of 0~Rand apply it to proton—nucleusscattering[23].

The Diracequationthat describesthe elasticscatteringof a nucleon,treatedasa Diracparticle,from
a spin-saturated nucleus, is usually formulated using a time-dependent description,

[a~p+f3(m+V)+V
0]ifi=Et/i, (5.1)

where it is assumedthat the average,complex, nucleon—nucleuspotential is a sum of a scalar
component,V~and the fourth (time) componentof a vectorpotential, V0. The matrices a and /3 are
Dirac’s, and ~(#is the four-component vector wavefunction.

Let us write V~and ~ as

V~=U~—iW~,V0=U0—iW0. (5.2)
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Equation(5.2) can be rewrittenas

[y4(E—V~)—iy~p—(m+Vç)]t/i=0, (5.3)

obtainedfrom the usual relations, iy ~y4a, y4 /3. We now perform the usual manipulationsof
multiplying eq. (5.3) from the left by ~1i= ~j~y4and constructingits conjugatewith the subsequent
multiplication from the right by ~i, to obtain finally

~[y4(E- V0) - iy~p - (m + V~)]~= 0, (5.4)

~[y4(E - V~)- iy. p - (m + v:)I~= 0. (5.5)

The usual Wronskianargumentused in appendixA now suppliesus with the continuity equation

—V~j = (2!I1)(lIJ
tW

0qI + i/i
ty

4W~ç1i). (5.6)

The hadronic current is

ji~’ç1’. (5.7)

Integratingeq. (5.6) over a large volume and using Gauss’ theorem,gives us

_fi.dA = ~ + ~ (5.8)

wherethe integral is over a surfacesurroundingthe potential, in a region wherethe potentialhas
completelyvanished,and describesthe net inward flux due to absorption(W0 ~ 0, W~� 0). Dividing
this flux by the incidentcurrentvI[1 — (v/c)

2]1’2 vy (assumingthat l/i~ is normalizedto unity), gives
the total reactioncrosssection

(5.9)

We remind the readeragainthat ~ is a scatteringvectorwavefunction.
Equation(5.9) can be further reducedto aform moreconvenientfor numericalevaluation.We do

this by explicitly writing ~ in termsof its upper(large) andlower (small) components,

~ (E + m~2/ 1 \
~‘ ~ 2m ) ~(1/A)r~p)~’ (5.10)

whereA = E + m + V~— V~,and u~satisfiesthe reducedDirac equation

[(u. p)A~(~r.p) — E — m — V~— V
0]u~= 0. (5.11)

With eq. (5.10) crR of eq. (5.9) becomes
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= he LI d3r [(14~+ W
5)uu~- (W~- W0)(~u~ ~ ~ (5.12)

Using the fact that (W~— .w0) / A 2 = (A’ — At~)I2i, we can, after performingone integrationby
parts andusingGauss’ theoremon the secondterm on the rhs of eq. (5.12),write for

0~Rthe following
surfaceintegral:

o-R_~jdA[uS(-—~_ ~ fr.p)tus], (5.13)

which reduces,in the appropriatelimit s—~ ~, whereA—~ E + m = (1 + y )m, to the final expression

~ J dARe(uu’ño-.pu~). (5.14)

Equation(5.14) could havebeenobtaineddirectly from the first part of eq. (5.9) namely from the
identification UR = — ($~=~dA . j) /‘yv. Our derivationaboveservesas acheckof the correctnessof eq.
(5.9). In the following, we evaluateeq. (5.14) in the eikonal (small-angle)limit.

The eikonal approximationto or u
5 of eq. (5.1) or eq. (5.11), hasbeenrecently discussedby

Amado et al. [35]. Here we derive an eikonal form from o~,startingwith eq. (5.14). We follow the
notation of ref. [36].

Within the eikonalapproximationto u,, we have,as r—~~,
pu~—*mvy~u5. (5.15)

Using eq. (5.15) in eq. (5.14), we obtain

u~=—J dAuñ~u5. (5.16)

Since s is any large surfacesurroundingthe interaction potential, we may take for it two planes
perpendicularto the z-axisat z = ~ We thenhave

(5.17)

Equation (5.17) exhibits very nicely the physical meaningof in terms of the probability densities

I u~I
2(b,z—~—o~)and Iu,12(b, z—* +co).

Using the usual substitutionfor the upper component

u~= e~~ (5.18)

Herethex~areDirac spinorsand S(r) satisfies the differential equation

k.VS(r)=m[V~(r)+V~
0(r)(ff.rxk—ir./c)]. (5.19)
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In equation(5.19) the centralV~(r)and spin—orbit V~0interactionsare given by [seeeq. (5.11)]

2 2
E V(r,j-V~r

V~(r)= V~(r)+ — V0(r) + 2m (5.20)

V~0(r)= ~—~--j-~~- [V~(r)— V~,(r)] (5.21)

andk= ~(k + k’), the averageof the initial andfinal momenta.
Defining the z-axis to be alongthe direction of k, the eikonal phase S(r) can be written as

iS(r)=—~f dz’[V~(b,z’)+~0(b,z’)(ff.bxk—ikz’)]. (5.22)

Using eq. (5.22) in eq. (5.18), we can write down immediately

u~J
2(b,z) = ~ exp[—2 Tm S(b,z)]x~. (5.23)

We remind the readerthat S is an operatorin spin space.

Let us introducethe quantities
F=E—V

0(b,z), (5.24)

N=m—V~(b,z). (5.25)

Then eqs. (5.17), (5.20) and (5.21) give us

= x:[f d
2b (1 — ~ (5.26)

where

4(b) = ~~(b)— ~
0(b)o . (b x k), (5.27)

= (h)
2k f dz Im(N2 — F2), (5.28)

~
50(b)=bf dz ~ Im(F~N~ (F+N)). (5.29)

At this point it is worth mentioningthat the quantities4~(b)and 450(b) are relatedto the thickness
functionst~(b)and t~0(b)of Amado et al. [35,36] definedby

t~(b)= 2(hc)
2k J dz’ (N2 — F2 + E2 — M2), (5.30)
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dz’ F+N ! ~-(F+N). (5.31)

Thus

4~(b)= 2 Re t~(b), (5.32)

450(b)= 2 Re t~0(b). (5.33)

Going backto eq. (5.26), we notefirst that we can write it as

= x~(Jd
2b ([1 — e~exp(—~

50u.~ x

= x:(f d
2b[1 — e~ cosh~

50(b)+ g. (~~ k) e~ sinh

= 2~~x~(Jb db [1 — e~ cosh~50(b)])x~=
2i~J b db [1—e~ coshcb~

0(b)]. (5.34)

The term involving o~ x ~ doesnot contributeto the b-integraldue to symmetry about the z-axis.
Equation(5.34) can also be written as [seeeqs. (5.32) and (5.33)]

~R =21T1 b db (1 —exp[2Ret~(b)]cosh[2Ret~0(b)]). (5.35)

Equation(5.35) is the principal result of this section. It expresses
0R in the usual form of an impact

parameterintegral involving “relativistic” transmissioncoefficients given by

T(b) = 1 — exp[2 Re t~(b)]cosh[2 Re t~
0(b)]. (5.36)

It is clearthatthe exactform anddetailsof T(b) would be irrelevantif the nucleon—nucleusscattering
was dominatedby a black-disktype absorption.In sucha caseT(b) would be representableas

T(b)= ø(b—R~), (5.37)

where 0(x) is the stepfunction, andR~is a characteristicabsorptionradius.If eq. (5.37) is used u0.

becomesthe simple geometricallimit,

= irR~. (5.38)

If the abovewere true, not too much physics would be extractedfrom
0~R~Luckily total reaction

cross-sectiondataof proton—nucleussystemsat intermediateenergiesexhibit majordeviationsfrom the
black-diskresult of eq. (5.38). Nuclei becomequite transparentto nucleonsat intermediateenergies
[2], andthe quantity thatmeasuresthis nucleartransparencyin detail is given by T(b) of eq. (5.36).
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Therefore a detailed evaluation and discussion of T(b) andthe resulting0’R is clearlycalled for. Thishas
been done by Digiacomo, DeVries and Peng [2] using conventional nonrelativistic theory. In the
following we presentour result for anddiscussionof 0’R within theDirac-eikonal treatmentpresentedin
this section.

Before presentingour results, we warn the readerthat t~(b)is ill-defined for proton scattering
becauseof the presenceof the long-rangeCoulombpotentialwhich is presentin 1/

0(r). This difficulty
can be dealtwith easilyby someappropriatemodification of theintegral involved. The detailsaregiven
in appendix I of ref. [23].Here we only cite the final Coulomb-modified,but finite,

0~R

= 2ir f b db {1 — exp[2 Re i~(b)]cosh[2 Re t~
0(b)j}, (5.39)

—i f / 2 I ., 2EZZe
2\t~(b)= 2(hc)2k ) dz ~N + F + E2 — m — r(b, z) (5.40)

Finally, a word about the optical theorem and its generalized version for charged-particle scattering.
For neutralparticles the usualform of the optical theorem,

= Im F(k, k; E) — f IF(k, k’; E)~diik., (5.41)

should yield the correct expressionfor o~.In fact, with the elastic scatteringamplitude F(k, k’; E)
derived by Amado et al. [35,36],

F(k,k’;E)=F
1 +o-~ñF-,, (5.42)

F1 = —ikf db bJ0(qb){e~~cosh[t~0(b)]— 1}, (5.43)

F2 = —kf db bJ1(qb)et~sinh[t~0(b)], (5.44)

where q = k — k’j, and J0 and J1, are ordinary Bessel functions, eq. (5.42) results in exactly the
expression for

0’R given in eq. (5.35).
For charged-particle scattering, eq. (5.41) yields infinite values for both terms on the rhs. However,

a generalized optical theorem can be derived for this purpose and it doesprovide meansof calculating

cr~= Im[F(k, k; E) — F~(k,k; E)] —f [IF~(k,k’; E)12 — IF(k, k’; E)~2]dii, (5.45)

where F~is the point Coulomb scatteringamplitude. In a way, the procedurewe employ amounts
basicallyto calculatingthe differenceF — F~in the form of an impact-parameterintegral, which yields
completely convergent results.
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5.1. Numericalresults

In what follows we presentthe results of our calculation of 0~R’ eq. (5.39), for p + 40Ca and
p + 208Pb,in theprotonenergyrange10MeV < E~< 1000MeV. We takefor the proton—nucleusoptical
potential the impulse-approximationDirac optical interactionfor spin-saturatednuclei in the general
form [33,34]

(k’IU
00lk) = —(4rrikIm)[F~(q)p~(q)+ y4F~(q)p~(q)]V~(q)+ V0(q). (5.46)

In eq. (5.46), F~andF~are the scalar and vector piecesof the Lorentz-invariantNN amplitude,
respectively,andp~andp,~,are the scalarand vectorform factorsof the targetnucleus,given by

p~(q)= (01 ~ e
1’~”~lO), (5.47)

p~(q)= (Oj ~ y’~e~T’I0). (5.48)

The abovedensitiescan be bettervisualizedwhen written in configurationspace,

0CC.

p~(q) = (01 ~ y~(r—r,)l0) ~ l/Ja(r)lIia(r), (5.49)

0CC.

p~(r)= (01 ~ ~(r—r.)l0) ~ l/J~(r)c1f~(r), (5.50)

where we find a-sumsare over occupiedsingle-particlestates. In terms of the upper and lower
components,

— ‘Pat 7_

11u —

‘Pa ;L)’ W’..’P0 ‘P~
‘Pa /

we can expressp~(r)andp~(r)as

0CC. 0CC.

~ kI’~(r)I
2 ~ ~/I~(r)l2—pU(r)—pL(r), (5.52)

0CC. 0CC.

p~(r)= ~ k~’~(r)I2+ ~ ifr~(r)~~()+ pL(r). (5.53)

Thereforethe differencep~(r)— p
5(r) measuresthe strengthof the lower componentdensity2pL(r), and

accordinglythe degreeto which the opticalpotentialis relativistic.
The potentialcalculatedby McNeil et al. [34]is obtainedby settingF~(q) F~(0)andF~(q) F~(0)

in eq. (5.46). In this limit, which is quite reasonablein the energyrangeconsidered,the Fourier
transformof eq. (5.46) yields a localpotentialin configurationspace,with its y-dependencecompletely
specifiedby p~(r)andp~(r).We thereforewrite

= V~(E)~5(r)= [U~(F) - iW~(E)]~5(r), (5.54)
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V0(r) = V~(E)~~(r)= [U~(E) - iW~(E)1~~(r), (5.55)

wherej
3~and~ representthe shapeof the densitiesandtheyarebothnormalizedto unity in the central

region. McNeil et al. [34] presentedtheir resultsfor U~(E),W~(E),U~(E)and W°
0(E)at a radius

wherep~andp~are both 0.16fm
3. These values of the densitiescorrespondto a final momentum,

kF = 1.37fm1. It is found that W~is negative,implying, using our conventionin eq. (5.2), that the
scalar interaction is regenerativewhereas the vector one is absorptive. Their values come out
comparable,with W~(E)a bit largerthanW~.All of theseresultsare in accordwith phenomenological
findings.The aboveresultswerealsoconfirmedby Horowitz[37] in his nuclear-mattercalculationof W~
and W

0.
Armed with the above facts we evaluated

0~Rof eq. (5.39), using the results of McNeil et al. as
presentedin their fig. 1. For the density shapeof 208Pb we have used Wood—Saxon forms with
parametersfixed in accordancewith resultsobtainedfrom electronscattering,which basicallysupplies

~ for protons.We have,howeverset ,ô~(r)= ,~~(r)for all r. The radiusR and diffusenessa parameters
for 208Pb, are [2] R = 6.624fm, a = 0.549fm.

The densityshapeof 40Ca is usually parametrizedas

P40ca(r) = (1+ wr2IR2)[1 + exp(r— R)Iaj~, (5.56)

with w = 0.1017,R=3.669fm,a =0.584fm.
The resultsarepresentedin figs. 14 and15*). It is clearfrom the figures that theagreementof our

in the energyrange100MeV < E< 1000MeV with the data [2] is as good as the oneobtainedwith the
nonrelativistictheory. This finding convincesus that our calculationof 0’R for heavyions presentedin
this paper,with the conventionalnonrelativistic tp

1 p2 potential should be adequate.

10.0 I

10’ 102 1o
3

E (MeV)
Fig. 14. Total reactioncrosssectionfor p + 40Cacalculatedwith the relativisticDirac description.The datapointsweretaken from thereferences
cited in ref. [231.

*1 The p + 40Ca and p + 208Pbwere collectedfrom severalreferences;see ref. [23].
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Fig. 15. Sameas fig. 14 for p + 20’Pb.

6. Calculation of o~for severalheavy-ionsystems

Having obtainedthe microscopicion—ion potentialin the previoussections,we arenow in a position
to test it insofar as its reactivecontentis concerned.Further,the rangeof dominancein W of inclusive
single-nucleonknockoutat intermediateenergiescan now be assessed.In this sectionwe presenta
detailedaccountof our calculationof the total reactioncrosssection,UR, for severalheavy-ionsystems.
In particularwe discussthe degreeof transparencyin thesesystemsand howthisis relatedto the mean
freepath,as discussedqualitatively in section2. Anotherrelatedquestionwhich is addressedhereis the
dependenceof 0’R on the effectiveradiusof the systemandhow this dependencechangeswith energy.
In our calculation,we also includethe second-orderdoubleNN scatteringpotentialdiscussedin section
3.

The expressionwe usefor UR is the WKB one given in eqs. (2.13), (2.17) and (2.21), namely,

= 2ir Jb db {1 — exp[—43
1(b)]}, (6.1)

with ~1(b)givenby eq. (2.19), andevaluatedfor the tp1p2 potentialdiscussedin the section 3. with the
Pauli blockingeffects fully incorporatedasdone in section 4. The expressionwe usefor LTR containsthe
effect of refractionarisingfrom the real part of the heavy-ioninteractionpotential[3]. It also contains
an improvementover the treatmentof other authorsin that we include, besidesthe usual nuclear-
mediumcorrections,the second-orderdoublescatteringcomponentdiscussedin section3.

We havecalculated
0’R for severalheavy-ionsystems,rangingfrom light, suchas thevery extensively

studied12C+ t2C to the very heavy 208Pb+ 208Pb.Our aim in this, is not somuchthe reproductionof
the existing data, but ratherto pin down the energyregion in which the tpp interactionapproximates
well the complexion—ion potential, with its reactivecontentbeingpredominantlysingle- and double-
nucleon knockout (single knockout and double knockout being, respectively,associatedwith the
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imaginary parts of the single scatteringtp1 p2 and doublescattering(tp1 )
2p

2 interactions).We shall see
that, at low energies where Pauli blocking greatly reducesthe strengthof the imaginarypart, as that
seen in the previous chapter, the total reaction cross section calculated according to eq. (6.1) becomes
much smaller than is obtained from the data; this should be expected since no accountis takenof
nuclear surfaceinelasticexcitation, fusion and other processeswhich dominate

0R at theseenergies.
In fig. 16 we present the resultfor 12C + ‘2C. The solid curverepresentsthe resultobtainedwith eq.

(4.1), including the Coulomb and the real part of the nuclear potentials. In the energy range
100MeV/N < ECM/A <800MeV/N the agreementwith the data is reasonable.At lower energies,
however, our calculation underestimatesthe data by a factor which could be as large as 2 at
ECM~10 MeV/A. The dashedcurve representsthe result without VN and V~and with no Pauli
blocking. The fact that this curve approximatesvery well the data is clearly fortuituous. The crosses
shownrepresentthe resultof nuclearmattercalculationreportedby Faessleret al. [4]. This calculation
seemsto comeclose to our calculationwhen Pauli blocking is takeninto account,but with neither VN
nor V~(shown as the dashed—dottedline). It is important to notice that both Pauli blocking and
nuclear+ Coulomb refractive effects are quite insignificant at higher energies.Thus it is in the low
energyregimethat the theorygetsits major check.Of courseit is exactlyat theseenergieswhereother
nuclearprocesses,not accountedfor by the tpp interaction,startcoming into play, asalreadydiscussed.
Theseprocessesgradually fill in the gapbetweenthe calculatedmicroscopico~and the data. Of these
incomplete fusion and deep inelastic processesare probably the most important at 5 MeV/N <

E/A <15 MeV/N, followed by complete fusion. Inelastic and transfer reactionsas well as other
quasi-elasticprocessesalwayscontributewith varying weights,dependingon the energy.

We havealso calculated0R for other systems.In figs. 17—24, we showour resultsfor ‘2C +

40Ca+ 40Ca, 12C + 90Zr, 90Zr + 90Zr, 12C + 208Pb,40Ca+ 208Pb, °Zr+ 208Pband 208Pb+ 208Pb. These

I 11111 I 11111 F I FF1111 I F IFFIFF~ I I 1111111 I 1111111
170 — 510 —

150 -~ C~C - 450 - -~ 2C+208Pb
— .- -

.~

+ II I~ ~ II? I F II

1 2 51020 50100200 500 1 2 51020 50100200500

Ec.MJA (MeV/nucleon) ECM,A(MeV/nucleon)
Fig. 16. The total reactioncross sectionfor 1C+ ‘C versusE(~N,/A. Fig. 17. Sameas fig. 16 for 2C + 208Pb.
The solid curve includesPauli blocking plus refractive effects, the
dashed—dottedcurve correspondsto & with no refractiveeffeCts, and
the dashedcurverepresentscalculation with the free o’~.The data
points were collected from the experimental paperscited in the
referencelist (refs. [7—10]).
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- 220—
E1000 — -
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800_~ ~-

20o~’/~+VI~ 20 11111 II

1 2 5 10 20 50 100 200 500 1 2 5 10 20 50 100 200 500
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Fig. 18. Sameas fig. 16 for
208Pb+ 208Pb. Fig. 19. Same as fig. 16 for ‘2C + 40Ca (no calculation with ö is

shown; seetext for details).

___________________________________________ I 1111111 F 1111111 I II III
I I 111111 I I 111111 I 111111 — I I II

300 — - - -- ~ 40Ca+40Ca — 300 - - - - 12C+90Zr

260— .,.. — 260— .-..-.. —

I IllillI I 11111111 I 1111111 I 1111111 I I 111111 I I 11111’

1 2 5 10 20 50 100 200 500 1 2 5 10 20 50 100 200 500
E~M,A(MeV/nucleon) ECM,A(MeV/nucleon)

Fig. 20. Sameas fig. 16 for 40Ca+ 40Ca. Fig. 21. Sameas fig. 16 for 12C + ‘°Zr.

systemswerechosento representdifferentmassregions. In somecasesfew datapointsexist, in others,
none. In all cases,we see the clear drop in 0’R (solid curves)as the energyis lowered, indicating the
approachto the thresholdof the processesdescribedby the tp

1 p2 interaction.Further,the smalldip in
0’R closeto the effectivethresholdfor single pionproductionin the nucleon—nucleonscatteringbecomes
less conspicuousas the massof the heavy-ionsystemincreases.

Having calculatedmicroscopicallythe total reactioncrosssectionfrom the tp
1 p2 interaction,it is now

possibleto evaluatethe degreeof transparencyin the different HI systemsat intermediateenergies.
Beforedoing this, it is useful to establishfirst the connectionbetweenour calculatedresultsfor

0R and
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Fig. 22. Sameas fig. 16 for 90Zr+ °°Zr. Fig. 23, Sameas fig. 16 for 40Ca+ 208Pb.
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Fig. 24. Sameas fig. 16 for 90Zr + 208Pb.

the geometricalformula given by eq. (2.16),

= irR2(1 — VBIECM). (6.2)

We consideredthe systemst2C+ 208Pb,40Ca+ 208Pb,90Zr + 208Pb and 208Pb+ 208Pb at ECMIA = 10,
200, 400 and 600MeVIN. To reproducethe theoreticalvaluesof UR with eq. (5.2),we were forced to
usethe following small values of the radiusparameterr

0 [R = r0(AI’
3 + A1’3)]: 1.22, 1.26, 1.26, and

1.26fm, respectively,for the four systemsmentionedabove.
Thesevaluesfor r

0 areconsiderablysmallerthanwhat onemight expectif thegeometricallimit of UR

had been reachedby thesesystems.Such a limit is usually specifiedby the strong absorptionradius
which gives r0 = 1.5 fm. In fact to reproducethe available ‘

2C + ‘2C data, shown in fig. 14 at
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ECMIA 5 MeVIN, we need to use r0 = 1.57fm. It is thereforeclear that thesesystemsdo exhibit a
large degreeof transparencyT (eq.2.27) as was suggestedby severalauthors.However,one hasto be
carefulwhenassessingthistransparencysincethereis a strongdependenceon the value of r0 used.For
exampleaccordingto Bohlenet a!. [9] thereis a 12% transparencyin

12C+ ‘2C at ECM/A = 12MeV/N
whereasDe Vneset al. [2] predicta zerovaluefor T. Sucha discrepancystemsfrom the fact that these
authorsusedifferent valuesfor the strong-absorptionradiusparameterin eq. (6.12).

We presentnow our calculation of T, basedon our theoretical results,which we compareto the
equation

0R = 1rR~(1— VBIECM)(1— T), (6.3)

with a radiusparameterr
0, of about 1.5 fm. For the

12C + 12C systemthis parameteris slightly larger
(r

0 = 1.57). In table2 we showour resultsfor
12C+ 12C, 12C+ 208Pb,40Ca+ 40Caand208Pb+ 208Pb at

ECM/A = 50, 100, 200 300 and500MeV/N. We see clearly that the transparencyfactor rangesin value
from about50% for the lightest systemto about27% for the heaviestone.

In our calculationof 0R presentedso far, we did not take into accountthe effect of statisticsin the
identicalprojectile—targetsystems.We now discussthis point, andpresentestimatesof the effect. The
elasticscatteringamplitudef(O) shouldbe written as

f(O) = f(O) + r(—)21~f(1T— 0) (6.4)

whereT = + (—) for boson(fermions), I is the intrinsic spin of the partnersands denotesthe channel
spin s = 0, 1, 2,. . . ,21. In what follows we take the caseof two bosonswith 1=0 (e.g., 12C). Thus,
throughthe applicationof the optical theoremto f(0), and with P

1(O) = (_)tPl(IT — 0), we obtain

= ~ (2! + 1)[1 + (—)‘]T1, (6.5)

which can be written, in the impact parameterrepresentation,as

= 2~J db b[1 + cos(kb — ~)] T(b), (6.6)

wherewe haveused (_1)t = cos irl and 1 + ~ = kb.

Table 2
The percentagetransparencyfor

12C + 12C, ‘2C + 208Pb,40Ca+ 40Ca and 208Pb+ 208Pb, at severalcenter-of-massenergies;
see text for details

+ 12C~ 12c+ ~°8Pbt~) 40Ca+ 40Cab) 208Pb+ 208Pbb)

Ec,~,(MeV~T ECM(MeV\T ECM(MeV\T Ec~,,(MeV T
A \nucleonI A knucleon) A \nucleonI A ~nuc1eon

50 46.7% 50 34.4% 50 28.9% 50 26.2%
100 50.9% 100 32.2% 100 32.4% 100 29.1%
200 49.0% 200 35.4% 200 31.1% 200 28.2%
300 47.8% 500 32.9% 300 30.0% 300 27.1%
500 44.0% 900 25.2% 500 27.2% 500 25.5%

~r
01.57fm. bIl5Of
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Table 3
The identical-particlecorrectionof the total reactioncrosssectionsof thesystems

1C + ‘~C,30Ca+ 10Ca.~°Zr+
and 2O~p~+ °8Pb;see text for details

+ 40Ca+ 411Ca 911Zr+ 90Zr 21~Pb+ 20~Pb
EL b/A

(MeV/N) b~(fm) sir, (fm) b~ icr, (fm2) b~ ~u, (fm2) b~ ~Xo,(fm2)

2 5.5 —8.56 5.0 —4.28 5.0 —0.03 4.0 0.44

4 5.5 12.28 5.0 —2.24 5.0 —0.85 4.0 —0.37
6 5.5 —11.29 6.5 0.14 6.5 —1.29 4.0 0.27
8 5.5 7.97 7.0 —3.46 7.0 —0.61 6.0 0.44

10 5.5 —3.4 7.0 2.71 8.0 —0.52 8.5 0.74
12 5.5 —4.49 7.0 —2.75 8.5 0.46 9.0 —0.69
14 5.5 6.72 7.0 2.23 8.5 —1.45 9.5 —0.46
16 5.5 —1.07 7.5 —2.53 9.0 1.31 10.0 —0.69
18 5.5 —6.09 7.5 1.15 9.0 1.35 11.0 —0.48
20 5.5 2.11 7.5 2.37 10.0 —0.19 12.0 0.72
22 5.5 4.6 8.0 0.89 10.0 1.2 15.0 0.54
24 5.5 3.8 8.0 1.45 12.0 —1.12 15.0 0.42

Let usnow evaluatethe aboveexpressionin the sharpcut-off model, namely,

T(b) = 0(b~— b), (6.7)

whereb~is the Coulombmodified sharpcut-off radius. Then

0’R(E) = tJR(E) + ~ (6.8)

0’R(E) = irb~, (6.9)

~~~tat = 2~{(b~/ir)sin(kb~— ~) + (1 Ik2)[cos(kb~— ~) — cos(~)]}. (6.10)

In the aboveexpression~O’Siat representsthe correctionto 0’R arisingfrom the identityof the particles.
In table 3 we presentthe values of ~Ustat for several identical heavy-ionsystemsat several CM

energies per nucleon.We see clearly that ~ contributesat most about5% at theseenergies.At
higher energiestheeffect is evensmaller.Thus,for all practicalpurposes,we can ignore AO’stat. The use
of the more realistic T(b) in eq. (6.1) doesnot changeappreciablythe aboveconclusions.

In the nextsectionwe turnour attentionto the caseof exotic (neutron-andproton-rich)nuclei.The
study of thesenuclei has intensified considerablyin the last several years and a summaryof some
relevantfacts is in order,particularly what concernsthe total reactioncrosssection.

7. Reactionswith radioactivesecondarybeams

Somenuclearfragmentsoriginating from heavy-ionscatteringat high energiesare formed from a
pieceof the projectilenucleusthat hasnot beenscrapedoff by the target.Suchfragmentstendto keep
variouspropertiesthat the projectile nucleushad before the collision. For example,theyhavealmost
the samevelocity as the beamvelocity. As regards the neutron-to-protonratio NIZ, heavy-mass
projectilessuchas 238U containmoreneutronsthanprotons(NIZ = 1.6 for U). On theotherhand,the
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stability line of nucleiextendsalongNIZ = 1 for light nuclei. Therefore,light-massprojectilefragments
from U beamstend to fill the unstableneutron-richregion.

Following this idea,severalnew neutron-richisotopeslastinga short periodof time werediscovered
at the BEVALAC accelerator[38—40].One interestingapplicationof theseisotopesis their usageas
secondarybeams. Since the velocities of these isotopes are almost equal to the beam velocity,
high-quality secondarybeamsare expected.Recently,a Japanesegroup [41] hasextensivelyinvesti-
gatedandmeasuredthe inteactioncrosssectionsof secondarybeamsat the BEVALAC, following this
technique.Such experimentshave also beenperformedat GANIL with intermediate-energybeams
[42,43].

In this chapterwe makea brief analysisof the reactioncrosssectionsinvolving radioactivesecondary
beams.An importantmotivationfor thesemeasurementsis to determinethesize of neutron-richnuclei.

By comparingthe experimentaldatawith the geometricalareao = 1T(R~,+ R~),with R~(RT) equal
to theprojectile(target)radius,onefinds [41] thatthe radii of 11Li, ‘Be and 14Be aremuchlargerthan
expectedfrom the standardformula R

1 = 1.2A”
3 fm. Sato andOkuhara[44] andBertsch,Brown and

Sagawa[45] haveshownthat these reaction cross sections for light nuclei can be calculatedquite well
with the approximationsof the Glaubermodel,which is given, e.g.,for a zero-rangenucleon—nucleon
interaction,by [seeeqs. (6.1) and (3.23)]

= 2~fb db [i — exp(—UNN f d3r
1p (lriI)p~

T~(Ir
1 — bI))].

______ (7.1)

m(r)=fdzp(Vr2+z2).

The densitiesaredeterminedfrom the Hartree—Focksingle-particlewavefunctionscombinedwith the
shell-modeloccupationprobabilities[45].The resultof this calculationis shownin figs. 25—27 wherethe
isotopicdependenceof

0~Ris shown.The energydependence0~Rfor the casesshown,namelyLi andBe,
is completelydeterminedby that of 0~NN’ as alreadyemphasizedearlier in the report.

The situation becomes complicated if thetargetis a nucleuswith alargeZ. In this case,the Coulomb
interactionbetweenprojectile andtargetplaysan importantrole. In fact, Coulombexcitationof giant
resonancesis a relevant part of the reactioncross section already for intermediate-energynuclear
collisions [46]. Bertulani and Baur [47] have studied extensively the implications of the Coulomb
interactionin high energycollisions. For relativistic energiesthe crosssectionsfor Coulombexcitation
of giant resonancesmayevenbe largerthanthe geometricalcrosssections.Since the giant resonances
decay mainly through particle emission, or by fission, the relevance of such processesto the
computationof total reactioncrosssectionsis obvious.

Not only the coherentactionof the Coulombfield becomesimportantin highenergycollisions.Also,
the coherentaction of the nuclearfield leadsto new effectsin peripheralcollisions at high energies.The
effect of emissionof correlatednucleonswas studiedamongothersin refs. [48,49].

We shall not enterinto the detailsof the effectsof the coherentactionof the nuclearand Coulomb
fields in peripheralcollisions at high energies.But, dueto their largecontributionto the total reaction
crosssections,it is worthwhile to show examplesof their applications.Being a rapidly growingfield, the
reactionswith radioactivesecondarybeamsoffer a good opportunity for this (seeref. [50]).

Besides the measurements of the reaction cross sections with radioactive secondary beams, another
intriguing experimentalresult is relatedto the momentumdistributionof the 9Li fragmentsoriginating
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Fig. 25. Total reaction cross section for Li isotopes on at Fig. 26. Sameas fig. 25 for Be isotopes.
EIA = 800MeV/N. See text for details.The data points were taken
from ref. [41].
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Fig. 27. Total reactioncross sectionof

11Li on severaltargetsat EIA = 800MeV/N. The data pointswere taken from ref. [41].

from the reaction ~Li + target—* 9Li + X. These fragmentsresult from peripheralreactionsand give
information aboutthe nuclearmatterdistribution nearthe surfaceof the ‘1Li isotope.The perpendicu-
lar momentumdistributionof the 9Li fragmentsshowsa “two-peak” structure[41],with a narrowpeak
on top of a wider one. The widths of gaussianfits to thesepeaksaregiven by 0~wjde= 95 ±12 MeV/c for
the wider peak,and0narrow = 23 ±5 MeV/c for thenarrowerone. Suchstructurehasalsobeenfound in
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the reaction‘4Be + target—÷12Be + X. In the caseof ‘1Li it is knownthat the separationenergyof the
last two neutronsis ~2n = 0.19±0.10MeV, while the separationenergyof only onenucleonis as much
as S

1~=0.96±0.1MeV.
Hansen and Jonson [51]have argued that it is the strength of the neutron pairing which is responsible

for the differencesin the separationenergiesof “Li and of other neutron-richnuclei. This pairing
makesthe bond betweenthe two loosely bound neutronsmuch strongerthan the respectivebonds
betweeneachof them andthe

9Li core.That is, the ttLi is muchlike a clusternucleuswith a di-neutron
system bound to the 9Li core. It is the aim of thispaperto showthat both the widths of the momentum
distributions as well as the total cross sectionscan be explainedby assuminga simple cluster-like
structurefor StLi as adi-neutronboundto a 9Li core.Butwe also showthatanalogousresultscan be
obtainedby consideringthe excitation of a soft vibrationof the protonsagainst the neutronsin “Li.
The presentlyavailabledata do not unambiguouslydistinguishbetweenthe two models.

Due to the small energynecessaryto removethe neutronpair, the reactionprocessis of peripheral
nature. The fragmentationis thenoriginated by the nuclearfield when the tails of the nucleonic
distributions just toucheachother,or by the Coulombfield evenwhenthe nuclei passseveraltensof
fermis far from each other. The scattering angle 0 is thereforevery small, andthe momentum transfer
in the reaction~p is relatedto energytransferby

i~p—p~cosOp
1—-E/v, (7.2)

wherev is theprojectile velocity. Sincethe energy E* transferredin peripheralprocessesis typically of
the order of a few MeV, it cannot be absorbedby a single nucleon. The nucleonwould carry a
momentum~~.V2mE*,which is appreciablylarger than that of eq. (7.2) for v -~c. However, such
energy could be absorbed by a nucleon pair, or a pair of clusters, which can have high kinetic energy
and small total momentum when the nucleons move in approximately opposite directions. Relation
(7.2) can also be satisfiedif collectiveexcitations, like vibrational modes,areexcited.

Let us assumethat the energy E
5’ depositedin the nucleuswith mass number A leads to its

fragmentationinto two pieceswhich fly apartwith oppositemomentahavingthe samemagnitudep. If
one of the fragmentshavemassnumbera, the following relationsholds:

E* — = p212(A— a)mN+ p2/2amN, (7.3)

wheremN is the nucleonmassand e is the bindingenergybetweenthe two clusters.The momentum

widths of the fragmentsare obtained,after averaging(7.3), by

(p2) =2mN(K)a(A— a)/A, (7.4)

where (K~= (E*) — (r ~ is the average kinetic energy of the fragments.
This formula is very much like the one obtainedby Goldhaber[52] for the momentumwidth of a

fragmenthavingmassnumbera resultingfrom the fragmentationof a nucleus of mass number A. No
wonder,becauseboth approachesrely on momentumandenergyconservation.Goldhaberassumesthat
the momentumwidth resultsfrom an averageof the net momentumobtainedby addingthe individual
momentaof the nucleons inside the fragment at the exact moment it flies off the nucleus. This
procedure realates (p2) to the Fermi momentum ~F of nucleusA. The final result (which assumes
(E*) —‘0) is eq. (7.4) with 2mN(K) replacedby P~I5.
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Since the transferred energy depends on the specification of the target, as well as on the beam
energy,then by meansof a variation of theseparametersthe measurementof (p2) yields precious
information about (r). In the case of “Li—* 9Li + 2n, the narrow peak with width

= 23 ±5 MeV/c, gives (K) = 0.17±0.08MeV, while for the wide peak with width
= 95 ±12 MeV/c one obtains (K) = 2.9 ±0.8MeV. Since the binding energy r of any pair of

neutrons in “Li cannot be larger than severalMeV (onecould imaginethat at leastone of the neutrons
comesfrom the inner part of “Li, where it is more tightly bound), the above results show that the
energy E* transferredin the processcannot be larger than several MeV, too. This meansthat the
dissociationis very soft and occurs at very large impact parameters,probing the tail of the nuclear
matterdistribution in ‘1Li. The averagekinetic energy(K) associatedwith the narrow peakis of the
samemagnitudeas the binding energyof the loosely boundneutrons.Then, it may give information
about the correlationdistancebetweenthe di-neutronsystemandthe 9Li core, within the cluster-like
hypothesis.Onthe otherhand,thewider peakrevealsthata moretightly boundneutronis takenout of
“Li. An analysisof the dissociationcrosssection as a function of the relative final momentumof the
fragmentsconfirms the abovehypothesis,as we shownext.

Assumingthat the “Li possessesa binary clusterstructure(di-neutron+ 9Li), one can makesimple
estimatesof the crosssectionsfor its dissociation.Using a deuteron-likewavefunctionfor the pair of
clustersand a strong absorptionmodel, simple expressionswere obtained in ref. [53]. The nuclear
contribution to the differential cross section, in the limit q —*0. is obtained as

2 2 22dcr~Idq= RT q I(’q + q ) , (7.5)

where q is the relative momentumof the clustersafter the dissociation,RT is the target radius,and
= ~/~Ih, with ~t equalto the reducedmassof the clusters.
The Coulombcontributionto the differentialcrosssection(taking only the El-multipole contribu-

tion) in the samelimit, is given by

— ‘~z2(c~2(Z,A
2— A1Z2~

2 ~~q4 [~ (_r~_~— -f-- (76)
dq — ~ T~

0) ~ A I (~

2+q2)4 Ln\~6WR! 2c2

wherey = (1— v21c2)1’2 is the relativistic Lorentz factor, 6 = 0.891 and/1w = h2(ij2 + q2)/2~.A
1 (Z1)

refersto the mass (charge)numberof cluster i (A = A, + A2) andR = RT+ R~.
The aboveexpressionsrevealthat the spreadin q

2 is of order of (q2) ~ This meansthat the
relative kinetic energy of the clusters after the dissociation has on the average the same value as their
binding energies. This is indeed what we obtained above for (K) associatedwith the narrow
momentumcomponent.Therefore,the narrowmomentumcomponentcan beinterpretedasoriginating
from the removal of two neutronsweakly bound in “Li. The root meansquareradius for “Li,
supposedto bea deuteron-likesystem,is (r2)”2 = 1 I\/~i~— 5.8fm. Th experimentalvalue[41] for the
rms radius of the 9Li core is about 2.5fm. Therefore, the di-neutronsystemforms a neutronhalo
aroundthe 9Li core.

As has been pointed out by Tanihata [55] the amount of kinetic energy associated with the broad
momentum width (‘—3 MeV) is related to the binding energy of neutrons in the 9Li core. As in the case
of 9Li + 2n describedabove,a pair of neutrons in the 9Li core can also absorb the transferred energy in
the reactionwith the final relative momentumand energyobeying eq. (7.2). In this casethe decay
constant ~ in eqs. (7.5) and (7.6) can be related to the average binding energy of neutrons in the 9Li
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core as ij = ~/hf~Ih. Taking CC --‘ 3 MeV, this yields a rms radius of about 2.65 fm, which agrees very
well with the rms radius of 9Li.

Neutronscoming out of the 9Li corecan also havetheir origin in its collectiveexcitation.The most
effective way of creatingsuchexcitationsis by meansof the Coulombinteraction.It gives the same
“kick” to all Z protons inside 9Li, leading to their collective motion. For collisions with impact
parameterb, this kick leadsto an energytransferwhich can easilybe calculatedas [55]

= 2Z(ZTe2)2/mNb2v2,

where ZT is the target charge. But the protons are not free and they pull the neutrons together. This
leads to a movement of the whole nucleus, and the Coulomb recoil that one obtains by assuming that
the nucleus with mass number A is a rigid body is

= 2(ZZTe2)2IAmNb2v2.

The difference between these energies goes to the vibration of the Z protons against the N neutrons,
andis

E* = — = 2(NZIA)(ZTe2)2ImNb2v2. (7.7)

If we assumethat only the protonsandneutronsin 9Li participatein thesevibrations (N= 6, Z = 3),
onefinds E* = 0.26MeV in a collision with b = 15 fm for “Li beams(0.8 GeV/nucleon)incidenton Pb.
This energy is far below the excitation energyof giant dipole resonances(GDR) in normal nuclei,
which meansthat the excitationcrosssectionof a giant dipole mode in the 9Li core is small.

Indeed,assumingthat thisdipole resonanceexcitedon the 9Li core can beaccountedfor in the same
way as a normalgiant dipole resonancepositionedat EGR, and usingthe TRK sumrule,onefinds for
the total Coulombcrosssection

/ ~2 222
2jc~ SR I V~ 2 2

~GR = — ZTa~—) EGR(MeV) ~K0K1 — -~-—~-(K, — K0) mb, (7.8a)

SR = 6ONZIA, (7.8b)

whereall modified Besselfunctions,I(~,are functionsof 4 = EGRRIYhV,andN, Z andA refer to the
neutron, charge and mass number of the

9Li core (6, 3 and 9, respectively). Assuming that the
resonancelies in the energyrangeEGR = 10—20MeV, andfor beamswith 0.8GeV/nucleonincidenton
Pb, onefinds o-GR-—5O—400mb.

One could think about other vibrational modes in “Li, like all protonsvibratingagainstall neutrons,
or a 9Li core vibrating against the di-neutron system. (Such type of motion has been recently studied by
Suzuki et al. [56], which is called by the authors a pygmyresonance.)For the formercase(N = 8, Z = 3
and A = 11) we find E* = 0.29MeV, while for the latter caseone makes the substitution of Z by
Z~/(A— 2) in the equationfor z~E,and obtainsE* = 0.02MeV. From thesevaluesone seesthat it is
very improbablethat the latter vibrational modecouldbe excited. It is muchmorereasonableto think
that another possible way for the “Li to absorb energy is by the excitation of vibrations of all protons
against all neutrons in it. Due to the existence of the neutron halo, one might think that the protons
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move almostfreely inside “Li and that the excitationof such dipole vibrationswill occurat very small
energies(soft dipole mode).

Recently,Kobayashiet al. [57]havemeasuredthe totalcrosssectionfor thedissociationof “Li (into
9Li + 2n) incidenton severaltargets(Pb, Cu andC) with beamsof 0.8 GeV!nucleon.We shall refer to
their particularresult for Pb targetswhich hasthe advantageof having a largeZ, andinducesa large
Coulombcrosssection.Theyobtainedthe valuea~= 1.31 ±0.13b. In the 9Li + 2n clustermodel, the
total crosssectionfor direct Coulombdissociationis obtainedby an integrationof (6.6) which resultsin

4 2

21c Z,A2 A,Z2\
2 1 / /y/1v\ v2 \

a-CD =
3~ZTa ~-) ~ ) ~ ~ln~~) — ~). (7.9)

v A &R 2c

For the reactioncited aboveit gives a-CD I .44i’i~b, wherethe uncertaintiesare dueto theerrorin the
binding energy.

The nuclear contribution to the direct break-up cannot be obtainedby an integration of (7.5)
becauseit was basedon the impulseapproximation,neglectingthe interferencewith an eclipseterm.
Including such an effect the crosssection is well describedby the Glauber formula [58]

a-ND ~ir(2ln2— k)RT/~. (7.10)

In addition to this (diffractional) dissociationonehasto accountfor the absorptionof the 2n systemby
the target(stripping). The crosssectionfor this processwas obtainedfor the deuteronby Serber[59].
For othercluster-like [a + (A — a)] nuclei one has

a-NS = ~7r(aIA)R~/ij. (7.11)

For the reaction“Li + target—*
9Li + X oneobtainsa-ND = 270~°mb anda-NS = 165t~mb, respective-

ly. One then sees that the Coulomb dissociation accounts for the main part of the measured cross
section, although the nuclear contribution is not negligible. At this point we observe that the
Coulomb—nuclear interference in these reactions may be neglected for the following reason. The
nuclear contribution to the total cross section can at most come from those impact parameters (from
bmi to bm) for which the neutronhalo of “Li touchesthe nuclear matter distribution of Pb. The
contribution of the Coulomb field to the total cross section from this interval of impact parameters is,
percentually,given by

= ln(bmax/bmjn) (7 12

lfl(yfIV/&b.)

Using typical values of bmjn 10 fm and bmax 13 fm, one finds ii 5%. This meansthat only about
5% of the Coulombcontribution should interfere with the nuclearcontribution.The reason is that,
althoughthe fragmentationinducedby the Coulombinteractionmaybe small in a single collision, the
interval of impactparameterscontributingto the total crosssectionis very large,up to somehundreds
of fermis. Therefore, we can write a-ioial a-N + a-,

1.. Adding the Coulombdissociation, the nuclear
diffraction dissociation,and the strippingcrosssectionsone can reproducequite well the experimental
value of Kobayashi et al. [57] for the total cross sectionsfor two-neutronremoval from secondary
beamsof “Li incident on Pb.



MS.Husseinet a!.. Microscopic theory to stableand exotic nuclei 323

If we now restrictour studyto the Coulombcontributionto the dissociation,which is the dominant
part of the cross sections, we find that the excitation of giant resonances as described above can also
lead to large values of the cross sections. In fact, if we assume that the energy of excitation, EGR,of a
soft vibrationmodein “Li is of the orderof 1 MeV, andthat the contributionof this soft modeto the
sum rule SR is of about 10%, we find (using N = 8, Z = 3 and A = 11) a-OR 1.3b. Due to its low
binding energy,oneof the main channelsfor the decayof this resonancemust be the emissionof the
two neutrons.This indicatesthat the excitationof this soft dipole modeis anotherpossiblemechanism
to explain the narrow momentumcomponentin the data for “Li—* 9Li + X, as well as the total cross
sectionfor the fragmentation.

From the presentavailabledata it doesnot seempossibleto find out whetherthe fragmentation
“Li—* 9Li + X in secondarybeamreactionsproceedsvia the direct break-upof a two-clustersystemor
by the excitation of a soft dipole mode. But note that the two mechanismsassumevery distinct
structures for “Li. The direct break-up supposes that the protonsaretightly boundto the neutronsin
the 9Li core, while the excitation of the soft mode assumes that the protons move almost freely against
a neutronicbackground.Since the Coulombkick to the protonsdoesnot enterin either hypothesis,
only one of the two mechanismscouldbe responsiblefor the measuredcrosssections.Due to the large
errors in the knowledge of the binding energyof two neutronsin “Li, and also due to lack of
informationaboutthe energylocationandaboutthe strengthof the photonuclearcrosssectionfor “Li
at the energiesinvolved, precise theoreticalcalculationsbasedon either of thesemodels are not
conclusive,andthe agreementwith the experimentaldatais not unique.Certainly,moreexperimental
resultsand theoreticaldiscussionsare neededin order to determinewhich of the nuclearmodelsis
adequate.

In contrastto the simple modelsdescribedabove,conventionalshell-modelcalculationsperformed
by Bertsch and collaborators[61,62] have been unableto reproducethe amount of electric dipole
strengthin “Li necessaryto explain the electromagneticdissociationcrosssections.As concludedby
Bertsch and Foxwell [61] it maybe essentialto take cluster aspectsinto account.Nonetheless,the
failure of the shell-modelcalculationsto determinethe enhancementof the electric dipole strengthof
“Li at low energies— which is neededto reproducethe experimentaldata— has led thoseauthorsto
wonderwhetherthe experimentalvalues of the electromagneticdissociationcrosssections[57] have
beencorrectly extractedfrom the total crosssections.

Their point is that in ref. [57] one assumesthat the nuclear cross section scales as a-N =

2ir(R~+ RT)Ll, which is characteristicof a peripheralprocessconcentratedin a small ring width Lt at
the surfaceof the projectile (Serbermodel). By adjusting the parametersof this scaling law the
“experimental”valuesof a-N wereobtainedfor othertargets,andthe Coulombcontributiono’~to the
crosssectionwas inferredby subtraction.But, since“Li hasa longtail in its matterdistribution,sucha
procedureis doubltful. Assumingthat the target is a “black disk”, the nuclearstripping of the outer
nucleonsin “Li should be

a-N =21T(R~ + RT)~P(RT), (7.13)

where P(RT) is the probability that the outer neutronswill be removedfrom “Li. Due to the long
matter tail, this probability dependson RT. Actually it should be approximatelyproportional to the
area A of overlap between the target and the neutron halo in “Li. From simple geometrical
considerationsit is possibleto showthatA c RT. Thatis, a-N shouldincreaselike R~.,which would result
in larger values of o-~°’than what was determinedin ref. [57]. This hasas a consequencethat u~
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should be smallerthan the valuesdeterminedby Kobayashiet al. [57]. Indeed,in ref. [63] an eikonal
approachto the nucleardissociationof “Li usingthe nucleon—nucleonamplitudesas input hasshown
that a more appropriateparametrizationof a-N and AT is

a-N = (aA~’3+ bA~3+ c) mb, (7.13a)

a = 98.7, b = 2.284, c = —25.89. (7.13b)

For largevaluesof AT, the aboveequationresultsin an appreciabledeviationfrom theA.’
1-’

3 scaling
law [57]. This is in fact a very relevantpoint since the electromagneticdissociationof neutron-rich
nuclei revealsimportantaspectsof their intrinsic structure.

8. Conclusions

It is quite obvious from our resultspresentedin the previouschapters,that the tp,p
2 interaction,

correctedfor by Pauli blocking and higher-ordermultiple-scatteringeffects, is only adequatefor
accountingfor the absorptivecontent of the HI interaction,in a limited energydomain,contrary to
several claims [2]. This energy region is dominated by single- and/or double-nucleonknockout
processes.At lower energiesthe Pauli blocking, thoughslightly weakenedby the attractivenuclear
interaction, reduces significantly the contribution of these processes to the total reaction cross section.
This is also the conclusionreachedwhena nuclear-matterG-matrix calculationis performed[4].

To account for
0~Rat E/A < r,~, several channels, related principally to mean field effects, such as

fusion, incomplete fusion, deep inelastic, nuclear quasi-elastic and particle transfer channels, have to be
added to the knockout channel. This has been partially carried out by Faessler[4]. At relativistic
energies, peripheral processes play a relevant role, and Coulomb excitation of giant resonances (or
direct Coulomb fragmentation) dominates the reaction cross section, especially for loosely bound
nuclei.

Appendix A. Derivation of Uk from the Wronskian

In this appendix,we supplya derivationof a-R using explicitly the opticalSchrodingerequation

—(h2/2it)V2i/i~+ (V— iW)~i~= EI/J1~~, (A.1)

wherewe take W>0 to describeabsorption.From (A.1) one can immediatelyderive the equationfor
flux conservation,

hfV.Jd3r=2(IWI~~), (A.2)

where j is the probability current

j = (h/21Ti)[i/J*V~, — (V,fr*)~/i]. (A.3)

Applying Gauss’ theorem to the lhs (A.2), we have then
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—Jf.dA=(2//1)~IWI~i~), (A.4)

wherethe integral is over anysurfacesurroundingthe interaction,in a regionwherethe potentialhas
vanished.Equation(A.4) simply saysthat the net radial flux is not zero becauseof absorption.The
total reactioncrosssectionis definedas the net inwardradial flux givenby the lhs of (A.4) divided by
the incident flux ~r~2v, whereu is the asymptoticrelative velocity

—.fj’dA 2 (~w~~)
= (+)12 = (+)12 . (A.5)

If we choosethe normalization of ç1t~to be ~(+)j2 = 1 we obtain our expressionfor 6TR, eq. (2.9),

oR—(2I!v)(~1~W~/J)—(k/E)(c1I~Wkr). (A.6)

We leaveit to the readerto convincehimself that eq. (A.4) can be written in the morefamiliar optical

theoremform,

Imf(0) - J f(0)~2dIl = ~ (Wl
4~), (A.7)

wherethe first termis the total cross section and the second the total elastic cross section. Clearly (A.6)
is consistentwith (A.7).

The extentionof the above considerationsto coupledchannelsis straightforward.Insteadof eq.
(A.1) we now haveto considerthe following:

h + (V0 - iW0)~= ~ - ~ ~ (A.8)
,u. j+0

whereW0 representsthe absorptivepotentialin ~f,~,+)) in the limit V01 = 0.
Gauss’ theoremthengives

_JJ.~4~ (~4~wj~4~)+ ~ Im(lV01GV0l~~~). (A.9)

The secondtermon the left-handsiderepresentsthe contributionto Jj.dA arising from the channels],
coupledto the entrancechannel.This termcan befurther decomposed,as was shownin chapter2, into
a genuineopen-channelscontributionandclosed-channelscontributions(fusion). In fact, taking V,,1 to
be Hermitian, we have[19]

Im(~lV01G~0l~)= (~IV~1Im~

=~ ~

— / (~)~ (+)t~i (~)ii , (~)
\‘P0 0] j “j j JOWO

= -~ JI(~I~0~)I
2dul
1 - ~ ~ (A.1o)
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Accordingly, (A.6) becomesnow

a-R = ~ ((~÷w0l~)+ ~ (~(+)~w~(±)))+ a-D’ (A.11)
/+0

wherea-D describesthe direct-channelscontribution.

(WKB) (eikonai)Appendix B. Comparison between ô, and 6~

In this short appendixwe presenta comparisonbetweenthe imaginary part of the nuclearelastic
phase shift calculated within the eikonal approximation,eq. (2.22),

= — ~-~ f dz W(’/b
2 + z2), (B.!)

with the more preciseone obtainedwithin the WKB approximation,eq. (2.19),

= ~ far’ [(E_ ~ — U(r’)) + W2(rf)]sin[~0(rI)],

rI (B.2)

tan 0(r’) = —W(r’)[E — Eb2/r’2 —

for severalcases,involving the ‘2C + ‘2C system,using U(r’) = 0 for simplicity. A Woods—Saxonform
was employedfor W(r’),

W(r) = —W~,[1 + exp(r — R
0/a)]’ , (B.3)

with a = 0.6fm and R0 = 8.0fm. W0 was varied.
The results are presentedin fig. 28. Clearly, the higher the energy, the better the agreementone

obtains betweenthe two expressions.In the application described in this paper, we have always
employedthe WKB expressionwith the real part of the potentialtakeninto account.

Appendix C. Pauli blocking effectson the nucleus—nucleustotal crosssection

C. 1. Calculation of
t7NN for nucleon—nucleusscattering

In the first part of this appendix,we review the calculationof 0’NN in nucleon—nucleusscattering.
Although this hasbeendiscussedextensivelyby severalauthors,we feel that a reviewis necessaryas a
preparationfor the calculationof 0’NN in the nucleus—nucleuscase,presentedin the secondpart of this
appendix.

The averagecrosssectionof two nuclei, one of which is found with momentumk
2 is given by
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I I ~ b (fm)Fig. 28. The imaginaryphaseshift calculatedaccordingto theWKB approximation(solid curve) andtheeikonalapproximation(dashedcurve): (a)ECM= 10MeV, W05MeV; (b) ECM= 10MeV, W0=5OMeV; (c) ECM = 100MeV, W0=5MeV; (d) ECM=100MeV, W0=5OMeV.
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~= ~— f dk2 a-~(q,q’), (C.!)
VF7

whereVF2 us ~1Tk~2is the volume of the Fermi sphererepresentingthe targetnucleus(labeledhereby
2), anda-~(q,q’) is the free nucleon—nucleoncrosssection,which dependson the relative momenta
q = k, — k2 and q’ = — k~,before and after the collision, respectively,where k, is the incident
nucleonmomentum.Whenusing eq. (4.1) one normally employsfor a~an empiricalform, which is
valid for fixed target nucleons.To correct for this, namely for the fact that k~ 0, one inserts a
transformationfactor, k, — k2~/k,,thus giving

- 1 f k,—k2~ NNa- = -~~— j dk2 k a-~- (C.2)
F2 I

Clearly, Pauliblocking entersthroughthe restriction, k~>kF2, kj > kF2. Therefore,whenexpressed
in termsof the differentialcrosssection,eq. (C.2) takesthe following form in the energyregion,where
a-

T~’JdQda-/dQ:

&= ~—f~~2~ Jdfl ~ for k~
2+ k~2>2k~

2. (C.3)

Using now energyand momentumconservation,we can recastthe aboveequationinto the following
form:

k~

2+k~2=k~+k~

a-, = ~_fdk
2 hh1kk2~ f d106(q—q’)dq’~. (C.4)

After integratingover q’, we obtain, assumingda-/d12= a-~”(q)/41T, the following

- 1 k~+k~—2k~2~ NN
a-=kV fdk2 + a-T (q), (C.5)

1F2 1 2

where the lower limit of integration,obeys,k~+ k~>
2kF

2.
It is usual practiceto assumethat a-~(q)is a constant, a-0, which resultsin the following simple

expressionfor O~NN:

— ~L..2 /k
2\1 k2 >2k2

a-
0~ 5~. F2 ~)J’ i F2’

0= (C.6)
a-~[1— ~(k~2/k~)+ ~(k~2/k~)(2— k~/k~2)”

2], k~~ 2k~.
2

which are nothingbut eqs. (4.3), (4.4), mentionedin section4. NN

In the applicationwe envisagein this paper,we shall use the empiricalenergy-dependenta-T (q).
For this purpose,a more convenient form for the evaluationof &NN is the following, equivalent,
relation:
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U = k,V1-2 1 dk~1k, — k21 a-~q) J dIl, (C.7)
Fault

wherethe restrictionsimposedby theconservationlaws andPauli’s principle arecontainedimplicitly in
the solid-angleintegral.The aboveform of a-NN is the onewhich is most easilyadaptableto the ion—ion
case.

In the calculationof the integral SPaULIdfl, one resortsto geometricalarguments.Pauli blocking,
within the Fermi gasmodelusedhere,implies a restrictionon the lengthsof the vectorsk andk~,as
visualizedin fig. 29a. Themomentak, andk2 definethe total momentum2p = k, + k2 andthe relative
momentum2q = k, — k7, with p specifying the centerof the scatteringsphereand q it radius, as
indicatedin fig. 29b; the conservationof linear momentumimplies fixed p. Fromenergyconservation,
we also have k, . = k . k~and q = q’, which implies a constantradius for the scatteringsphere.
Imposingnow Pauli blocking, gives

lk~l= l~+ q’l > kF2, Ik~l= I~— q’l > k~2, (C.8)

which implies that the amountof solid anglenot allowedis as indicatedin fig. 29c by the dashedarea.

•

~2K,

K,
/ \.5)( /

/ .\I~—~s ~ / \
b\J ~ /

I ‘

P t\ p 1/ 1t I I

-~ /
‘t \ J 2 I 0
‘ ~ -“— K

— \~/~ ~2

b) c)
Fig. 29. The geometricalrealizationof Pauli blocking in the nucleon—nucleussystem:(a) restrictionson the momentumvectors;(b) the allowed
scatteringsphereand(c) thePauli forbiddenregion(dashedarea).
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Thus .fPauIi dQ =
41T — i’2a~which when insertedin eq. (C.7), yields the closedexpression,eq. (C.6), if a

constanta-!~(q) is used.The solid angleportion [2~is given by [obtaineddirectly from eq. (C.8)]

fla = 4ir — 2~(k~+ k~— 2k~
2)/2q. 2p. (C.9)

C.2. Calculation of UNN(E) for nucleus—nucleusscattering

In the nucleus—nucleuscase,the calculationof UNN(E) involves the considerationsof threespheres;
the two Fermi spheresrepresentingthe projectile and target nuclei and the scatteringsphere,
determinedby the momentumand energyconservationlaws andthe Pauli principle, in closeanalogy
with the considerationspresentedin the first part of this appendix.

The starting expressionof &NN(E) in the nucleus—nucleuscaseis

NN(
- 1 2qa-.,-t,q

a-NN(k, kF,, kF2)= 17 17 j dk, dk2 —~— ~ dfl, (C.10)
~FI~F2

Faull

where VF, = ~1Tk~, and VF2 = ~1Tk~2 are the Fermi volumes of the projectile and target nuclei,
respectively,and 2q = 1k, — k2 + kl with k denotingthe relative-momentumspheresalluded to above.
Using similar argumentsas thosediscussedin the first part of this appendix,leadsus to concludethat
the region not allowedby the Pauli exclusionprinciple in the nucleus—nucleuscaseis the oneshownas
the shadedregion in fig. 30b.

The restrictedsolid-angleintegral is

f dfI = flPauIi(0a,
0b’ 0) = 4~— 2fla — 2~b + ~, (C.11)

Fault

where£2~and 12b are the solid anglesspecifying the excludedconesand£2 representsthe intersection
area of the two conical sections. The solid angles fla and~2b areeasily determined.

Fig. 30. Sameasfig. 29 for thenucleus—nucleussystem:(a) the three“spheres” describingthescatteringregion in momentumspace,and(b) the
Pauli forbidden region (dashedarea).
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~‘2a21T(1C050a), flb=21T(l—cos0b), (C.12)

cos0~=(p2+q2—k~
2)I2pq,cos0~(p

2+q2—k~,)I2bq, (C.13)

2pk
2+k+k,, 2q=~k2—k—k,, bk—p. (C.14)

The evaluationof 12 is tediousbut straightforward[60]. We givebelowthe pertinentexpressions.Two
possibilitiesarise:

(1) 12=2
12j(0,6a,0b)+2[2~(7T~0,0a,0b) for 0~0a~°b> ~ (C.15)

(2) £I=212i(0,Oa,Ob) forO+Oa+Ob~~r, (C.16)

wherethe angle0 is given by

cos0 = (k2 —p2 — b2)/2pb. (C.17)

The solid angleui~hasthe following values:

(a) 11~=0for0�Oa+Ob, (C.18)

cosObcosOcosOU
(b) ui~=2[cos (,~ . 2 2 1I2

sin0a(cos 0a +cos 0b —2cos0cos0~cosOb)

- / cos0 —cos0cos0
+cos ‘~ 2 2 b t12

sinOb(cos 0a+cos Ob—2cosOcosOUcosOb)

/cos0 —cosOcos0 \ - fcosO —cos0cos0 \1
— cos 0 cos’(\ b a) — C05 C05 a b)ja sin 0 sin ~ sin0 sin 0b

~ (C.19)

(c) 12. = 12b for 6b ~ Oa, 0 ~ I 0b — 0a I (C.20)

(d) 12i12a for0a~0b,0~I0b—0aI. (C.21)

The first caseaboverepresentsthe situationwhereno intersectionof the two conicsections,a andb,
occurs.

We shouldmentionthat in somecases,for severalvalues of p, q and kF,, the cosinefunctionsabove
may happento attain unphysicalvalues (>1). Thesecasesare

(1) p+q<k~
2 forcos0a<—1,

(2) p+qI>k~2 forcos0a>+1,
(C.22)

(3) p+q<k~, forcos0b<—1,

(4) p—q~>kF, forcos0b>1.
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Underconditions1 and3 we merely set fPaulj dli equal to zero, since the scatteringspherein this caseis
situated inside the Fermi sphere of either the target or projectile nucleus. If, on the other hand,
cosOa> I andcos0h > 1 (conditions 2 and 4) then two possibilities are considered,

Ip>q—*ul =0
p—qj>k~

2, ~p<qn,(~~0)o (C.23)

1b>q—*ul~=O,
b—q~>k~,,~ (C.24)

The cases ha = 0 and
12b = 0 represent the situations when the scattering sphere does not intersect the

Fermi spheres.
In eq. (C. 10) the averagenucleon—nucleoncrosssection&NN clearlydependson the Fermi momenta

kF, and kF
2 which are related to the matter densitiesaccordingto [32]

k~(r)= [~1T
2p(r)]213 + [(Vp)/p]2, (C.25)

wherethe secondterm amountsto a surfacecorrectionwith ~ about 0.1.
In our calculastionof UNN, we haveusedthe aboveexpressionfor kF, andkF

2 in eq. (C.10), which
was evaluated numerically. A simple analytic expression, such as given in eq. (3.3) for the nucleon—
nucleus case, was found, even in the limiting caseof the constantfree nucleon—nucleontotal cross
section.
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