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The continuum-discretized coupled-channels (CDCC) method is used to study the
breakup of weakly-bound nuclei at intermediate energies collisions. For large impact parame-
ters, the Eikonal CDCC (E-CDCC) method was applied. The effects of Lorentz contraction
on the nuclear and Coulomb potentials have been investigated in details. Such effects tend
to increase cross sections appreciably. We also show that, for loosely-bound nuclei, the
contribution of the so-called close field is small and can be neglected.
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§1. Introduction

The properties of unstable nuclei are one of the most important subjects in
science. The breakup reactions of such short-lived nuclei provide us with plentiful
information on their static and dynamical features. Among them, the responses
of unstable nuclei to electromagnetic fields have been intensively studied. For this
purpose, usually a heavy (highly charged) target such as 208Pb is adopted and many
of the breakup experiments have been performed at intermediate energies, say, 100–
250 MeV per nucleon, to minimize possible “contaminations” due to nuclear breakup
and higher-order breakup processes.

It is well known that a theoretical description of breakup reactions at intermedi-
ate energies requires a relativistic treatment of the reaction dynamics, though only
a relativistic modification on the kinematics has been usually included. The virtual
photon theory, or, equivalent photon method, is a fully relativistic reaction model
to describe the excitation of a projectile under electromagnetic fields caused by a
target nucleus. However, it cannot deal with the nuclear breakup and higher-order
breakup processes. To extract reliable physics quantities such as B(E1)-values and
asymptotic normalization coefficients from breakup experiments, evaluation of the
contributions from the above mentioned processes is necessary.

In our recent paper,1) we developed a full coupled-channel calculation including
a relativistic treatment of not only the kinematics but also the dynamics, based on
the Continuum-Discretized Coupled-Channels method (CDCC)2) with the eikonal
approximation, i.e., eikonal CDCC (E-CDCC).3),4) An essential ingredient of the
relativistic CC calculation was the proper treatment of nuclear and Coulomb cou-
pling potentials between the projectile and the target. We adopted the form of the
Coulomb dipole and quadrupole interactions shown in Ref. 5), which was obtained
from a relativistic Liénard-Wiechert potential with so-called far-field approximation.
As for the nuclear potential, the conjecture of Feshbach and Zabek6) was adopted.
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We showed that the dynamical relativistic corrections are responsible for an increase
of about 15% in the breakup cross sections of 8B and 11Be projectiles by 208Pb at
250 MeV/nucleon. Another important finding was that the nuclear breakup and
higher-order breakup processes were significant even at 250 MeV/nucleon.

In the present paper, we show a more detailed analysis of the dynamical rela-
tivistic effects on the breakup cross sections of 8B and 11Be projectiles by 208Pb at
250 MeV/nucleon. First, we investigate the relativistic effects on the double differ-
ential breakup cross section, which clarifies how relativity affects the cross section
at several emission angles θ and breakup energies ε. Differences in the relativistic
effects between 8B and 11Be breakup are also discussed. Second, the contribution of
the nuclear breakup and higher-order processes are shown on the ε-θ plane. Third,
a quantum mechanical correction in the breakup amplitude obtained by E-CDCC is
carried out, which enables one to perform fully relativistic and quantum mechanical
CC calculations of breakup reactions at intermediate energies. Fourth, the contri-
bution from so-called close-fields, which are neglected in obtaining the relativistic
Coulomb interactions,5) is evaluated by means of the first-order time-dependent the-
ory.

The paper is constructed as follows. In §2, we summarize some formulae of E-
CDCC and show how to include the dynamical relativistic corrections to the coupling
potentials. The contribution from the close-fields to the breakup process is also
formulated. In §3, we present our numerical results and discuss the relevant physics.
Finally, we give a summary in §4.

§2. Formulation

2.1. Relativistic CDCC

We start with the following nonrelativistic E-CDCC equations3),4) for a three-
body reaction between a projectile P, consisting of a core (C) and a valence nucleon
v, and a target nucleus T:

i�2

Ec
K(b)

c (z)
d

dz
ψ(b)

c (z) =
∑
c′

F
(b)
cc′(z) R(b)

cc′(z) ψ
(b)
c′ (z) ei(Kc′−Kc)z, (2.1)

where c denotes the channel indices {i, �, m}; i > 0 (i = 0) stands for the ith
discretized-continuum (ground) state, and � and m are, respectively, the orbital
angular momentum between the constituents (C and v) of P and its projection on
the z-axis taken to be parallel to the incident beam. We neglect the internal spins of
C and v for simplicity. b is the impact parameter (or transverse coordinate) in the
collision of P and T, which is defined by b =

√
x2 + y2 with R = (x, y, z), the relative

coordinate of P from T in the Cartesian representation. Note that in Eq. (2.1) b
is relegated to a superscript since it is not a dynamical variable. The total energy
and the asymptotic wave number of P are denoted by Ec and Kc, respectively, and
R(b)

cc′(z) = (Kc′R−Kc′z)iηc′/(KcR−Kcz)iηc with ηc the Sommerfeld parameter. The
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local wave number K(b)
c (z) of P is defined by energy conservation as

Ec =

√
(mPc2)2 +

[
�cK

(b)
c (z)

]2
+
ZPZTe

2

R
, (2.2)

where mP is the mass of P and ZPe (ZTe) is the charge of P (T). The reduced
coupling potential F

(b)
cc′(z) is given by

F
(b)
cc′(z) = F (b)

cc′ (z) −
ZPZTe

2

R
δcc′ , (2.3)

where
F (b)

cc′ (z) = 〈Φc|UCT + UvT|Φc′〉‰ = Fnucl(b)
cc′ (z) + FCoul(b)

cc′ (z), (2.4)

Fnucl(b)
cc′ (z) =

〈
Φc|Unucl

CT + Unucl
vT |Φc′

〉
‰
, (2.5)

FCoul(b)
cc′ (z) =

〈
Φc|UCoul

CT + UCoul
vT |Φc′

〉
‰
. (2.6)

Φc(ξ) denotes the internal wave functions of P, with ξ the coordinate of v relative
to C, and UCT (UvT) is the potential between C (v) and T consisting of nuclear and
Coulomb parts. Furthermore, in actual calculations, we use the multipole expansion
for each term on the right-hand side of Eq. (2.4):

Fnucl(b)
cc′ (z) =

∑
λ

Fnucl(b)
cc′,λ (z), (2.7)

FCoul(b)
cc′ (z) =

∑
λ

FCoul(b)
cc′,λ (z). (2.8)

The explicit form of the multipoles is given in Ref. 4).
In Ref. 5), the relativistic form of the electric dipole (E1) and quadrupole (E2)

interactions are given by

V rel
E1μ(b, z, ξ̂) =

√
2π
3
ξY1μ

(
ξ̂
) γZTeeE1

(b2 + γ2z2)3/2

{ ∓b, (if μ = ±1)√
2z, (if μ = 0)

(2.9)

V rel
E2μ(b, z, ξ̂) =

√
3π
10
ξ2Y2μ

(
ξ̂
) γZTeeE2

(b2 + γ2z2)5/2

×
⎧⎨
⎩

b2, (if μ = ±2)
∓(γ2 + 1)bz, (if μ = ±1)√
2/3

(
2γ2z2 − b2

)
, (if μ = 0)

(2.10)

where eEλ = [Zv(AC/AP)λ + ZC(−Av/AP)λ]e are effective charges for λ = 1 and
2 multipolarities for the breakup of P → C + v; Aj (j = C, v, P) represents the
mass number of the particle j. The Lorentz contraction factor is denoted by γ =(
1 − v2/c2

)−1/2, where v is the velocity of P. Equations (2.9) and (2.10) are obtained
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with so-called far-field approximation,7) i.e., R is assumed to be always larger than
both ξAv/AP and ξAC/AP. Derivation of these equations is described in detail in
Ref. 8). In addition, for magnetic dipole excitations (not considered here),

V rel
M1μ(b, z, ξ) = i

√
2π
3
M̄1μ (ξ)

v

c

γZTe

(b2 + γ2z2)3/2

{ ±b, (if μ = ±1)
0, (if μ = 0) (2.11)

where M̄1μ(ξ) is the intrinsic M1 operator.
One may find easily that V rel

E1μ and V rel
E2μ are, respectively, obtained from their

nonrelativistic expressions VE1μ and VE2μ as

V rel
E1±1(b, z, ξ̂) = γVE1±1(b, γz, ξ̂), V rel

E10(b, z, ξ̂) = VE10(b, γz, ξ̂),

V rel
E2±2(b, z, ξ̂) = γVE2±2(b, γz, ξ̂), V rel

E2±1(b, z, ξ̂) =
γ2 + 1

2
VE2±1(b, γz, ξ̂),

V rel
E20(b, z, ξ̂) = γVE20(b, γz, ξ̂).

Thus, we can include the dynamical relativistic corrections in E-CDCC by carrying
out the replacement

FCoul(b)
cc′,λ (z) → γfλ,m−m′FCoul(b)

cc′,λ (γz) (2.12)

with

fλ,μ =

⎧⎨
⎩

1/γ, (λ = 1, μ = 0)
(γ2 + 1)/(2γ), (λ = 2, μ = ±1)

1. (otherwise)
(2.13)

Correspondingly, we use

ZPZTe
2

R
δcc′ → γ

ZPZTe
2√

b2 + (γz)2
δcc′ (2.14)

in Eqs. (2.2) and (2.3). For the nuclear coupling potential Fnucl(b)
cc′,λ (z), we adopt

Fnucl(b)
cc′,λ (z) → γFnucl(b)

cc′,λ (γz) (2.15)

following the conjecture of Feshbach and Zabek.6) In the present CC calculation,
the Lorentz contraction factor γ may have channel dependence, i.e., γ = Ec/(mPc

2),
which we approximate using the value in the incident channel, i.e., E0/(mPc

2). This
can be justified since the energy transfer to the projectile is significantly small com-
pared with the incident energy, in the reactions considered here.

Solving Eq. (2.1) under the boundary condition

lim
z→−∞ψ(b)

c (z) = δc0, (2.16)

where 0 denotes the incident channel, one obtains the following form of the eikonal
scattering amplitude:

fE
c0 = fRuth

c0 δc0 +
2π
iK0

∑
L

f ′EL;c0 YL m−m0(K̂
′
c), (2.17)
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where fRuth
c0 is the Rutherford amplitude. The partial scattering amplitude f ′EL;c0 is

defined by

f ′EL;c0 =
K0

Kc
H(bc;L)

c

√
2L+ 1

4π
i(m−m0) [Sc0,L − δc0] , (2.18)

where
Sc0,L ≡ lim

z→∞ψ
(bc;L)
c (z) (2.19)

with bc;L = (L+ 1/2)/Kc, and Hc,L ≡ exp[2iηc ln (L+ 1/2)].
The quantum mechanical (QM) correction in the scattering amplitude can be

performed if one replaces f ′EL;c0 for small L, say, L < LC, by the QM partial amplitude
obtained with the conventional QM CDCC:

f ′QL;c0 ≡
L+�∑

J=|L−�|

J+�0∑
L0=|J−�0|

√
2L0 + 1

4π
(�0m0L00|Jm0)(�mL m0−m|Jm0)

×(SJ
iL�,i0L0�0 − δii0δLL0δ��0)e

i(σL+σL0
)(−)m−m0 , (2.20)

where σL is the Coulomb phase shift and J is the total angular momentum of the
three-body system. This correction is valid if f ′EL;c0 = f ′QL;c0 for L ≥ LC; this is
in fact the definition of LC. Note that in a full QM calculation, i.e., without the
eikonal approximation, inclusion of the dynamical relativistic corrections in the cou-
pling potentials is very complicated and actually inconsistent with the formalism.
Fortunately, however, it was shown in our previous paper1) that the dynamical rela-
tivistic corrections are necessary only for large L, where the scattering processes are
well described by the eikonal approximation. Thus, using the following scattering
amplitude

fc0 = fRuth
c0 δc0+

2π
iK0

∑
L<LC

f ′QL;c0 YL m−m0(K̂
′
c)+

2π
iK0

∑
L≥LC

f ′EL;c0 YL m−m0(K̂
′
c), (2.21)

with the dynamical relativistic correction in the evaluation of f ′EL;c0, one can carry
out a relativistic QM calculation including both nuclear and Coulomb couplings, and
also all higher-order processes, i.e., a relativistic CDCC calculation.

2.2. Contribution from close-fields to Coulomb breakup processes

As mentioned in §2.1, we have used the relation between the relativistic and
nonrelativistic Eλ (λ = 1 or 2) interactions that is appropriate for the far-field
collisions. To verify this assumption, we evaluate the contribution from the E1
close-field collisions in the following, on the basis of the first-order time-dependent
theory.

We start with the multipole-expansion form of the Liénard-Wiechert potential
for close-field collisions given by Eq. (9b) of Ref. 7):

φclose(r,R) =
∑
λμμ′

4πY ∗
λμ (r̂)

∑
Λ=0,2,4...

iΛRλ,λ−Λ (r,R)Aλμ,λ−Λμ′ (β)Yλ−Λ,μ′
(
R̂

)
,

(2.22)
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where r is the coordinate of a point charge in P relative to the center of mass (c.m.)
of P, and R is the relative coordinate between the c.m. of P and another point charge
in T. In Eq. (2.22), Rλ,λ′ and Aλμ,λ′μ′ are given by

Rλ,λ′ (r,R) =
1√
rR

∫ ∞

0

dq

q
Jλ+1/2 (qr)Jλ′+1/2 (qR) , (2.23)

Aλμ,λ′μ′ (β) =
∑

X even

gX (β)
〈
Yλ′μ′ (q̂) |PX (θq)|Yλμ (q̂)

〉
, (2.24)

where

gX (β) =
(2X + 1)

β
QX

(
β−1

)
, QX (z) =

1
2

∫ 1

−1
dt
PX (t)
z − t

(2.25)

with β = v/c and q is the momentum conjugate to the relative coordinate r − R.
If we consider E1 transitions, i.e., λ = 1, we see that Λ = 0 is only allowed, since

Λ must be even and λ− Λ is not negative. We then have

φclose
(λ=1)(r,R) =

∑
μμ′

4πY ∗
1μ (r̂)R1,1 (r,R)A1μ,1μ′ (β)Y1μ′

(
R̂

)
(2.26)

with

A1μ,1μ′ (β) =

{
g0 (β) −

√
2
5

(1μ20|1μ) g2 (β)

}
δμμ′ . (2.27)

The diagonal radial part Rλ,λ (r,R) is given by Eq. (6) of Ref. 7) and we have

R1,1 (r,R) =
1
3
R

r2
. (2.28)

Note that we assume here r > R. From Eqs. (4b) and (4c) of Ref. 7), one can obtain
explicit form of g0 (β) and g2 (β):

g0 (β) =
1
β

1
2β

ln
(

1 + β

1 − β

)
, (2.29)

g2 (β) =
5
4β

(
3
β2

− 1
)

ln
(

1 + β

1 − β

)
− 15

2β2
. (2.30)

Thus, the relativistic Coulomb dipole interaction between T and a proton inside P
for close-field collisions is given by

V̄ close
1μ (r,R) =

√
2π
3
ZTe

2 1
r2
Y ∗

1μ (r̂) {g0 (β) + cμg2 (β)}
{ √

2z if μ = 0,
∓b if μ = ±1,

(2.31)
where

c0 =
2
5
, c±1 = −1

5
. (2.32)

For far-field E1 collisions, we use the expression V̄ far
1μ (r,R) = V rel∗

E1μ (b, z, ξ̂ = r̂) in
Eq. (2.9) with eE1 replaced by e.
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We estimate the importance of close- and far-field collisions by using first-order
time-dependent theory; we consider the contribution of one proton in P to the
breakup process. The transition amplitudes due to the E1 field, from the initial
state Φ0(ξ) to the final one Φcf

(ξ), are given by

a1μ (b) = aclose
1μ (b) + afar

1μ (b) ,

aclose
1μ (b) =

1
i�

∫ ∞

−∞
eiωt

〈
Φcf

(ξ)
∣∣∣V̄ close

1μ (r,R)
∣∣∣Φ0 (ξ)

〉
r>R

dt, (2.33)

afar
1μ (b) =

1
i�

∫ ∞

−∞
eiωt

〈
Φcf

(ξ)
∣∣∣V̄ far

1μ (r,R)
∣∣∣Φ0 (ξ)

〉
r<R

dt, (2.34)

where ω represents the energy transfer as �ω ≡ Ecf
−E0. Since we assume that the

projectile moves along the z-axis with a constant velocity v, we immediately find
t = z/v and

ωt =
Ecf

− E0

�c

z

β
. (2.35)

Using Eqs. (2.31)–(2.35), we obtain the explicit form of aclose
1μ and afar

1μ :

aclose
1μ (b) =

1
i�v

√
2π
3
ZTe

2 {g0 (β) + cμg2 (β)}

×
∫ ∞

−∞
dz exp

(
i
Ecf

− E0

�c

z

β

)
Mclose

1 (R)
{ √

2z if μ = 0,
∓b if μ = ±1,

afar
1μ (b) =

1
i�v

√
2π
3
γZTe

2

×
∫ ∞

−∞
dz exp

(
i
Ecf

− E0

�c

z

β

) Mfar
1 (R)

(b2 + γ2z2)3/2

{ √
2z if μ = 0,

∓b if μ = ±1,

where

Mclose
1μ (R) ≡

〈
Φcf

(ξ)
∣∣∣∣ 1
r2
Y ∗

1μ (r̂)
∣∣∣∣Φ0 (ξ)

〉
r>R

, (2.36)

Mfar
1μ (R) ≡ 〈

Φcf
(ξ)

∣∣rY ∗
1μ (r̂)

∣∣Φ0 (ξ)
〉
r<R

. (2.37)

By comparing a1μ (b) with afar
1μ (b), we can evaluate how large far-field collisions

contribute to the total breakup amplitude.
As a typical reaction, let us consider the Coulomb breakup of 8B. The ground

state wave function reads
Φ0(ξ) = u0(ξ)Y1m0(ξ̂). (2.38)

For the final state of 8B after the breakup we choose a discretized continuum state
with l = 0, i.e.,

Φcf
(ξ) = ucf

(ξ)Y00(ξ̂). (2.39)
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Here, uc(ξ) (c = 0 or cf ) is the radial part of Φc(ξ). Using Eqs. (2.38) and (2.39)
together with r = (7/8)ξ, we have

Mclose
1μ (R) =

1√
4π

(
8
7

)2

δμ,m0

∫ ∞

8R/7
ucf

(ξ)u0 (ξ) dξ, (2.40)

Mfar
1μ (R) =

1√
4π

7
8
δμ,m0

∫ 8R/7

0
ucf

(ξ)u0 (ξ) ξ3dξ. (2.41)

§3. Results and discussion

3.1. Numerical input

We use the same set of inputs as in Ref. 1) for the CDCC calculation of 8B
and 11Be breakup reactions with 208Pb target at 250 MeV/nucleon. The internal
Hamiltonian of 8B and 11Be are the same as in Ref. 9) except that we neglect the spin
of the proton and therefore we change accordingly the depth of the p-7Be potential
to reproduce the proton separation energy of 137 keV. Note that in Ref. 9), and also
in this work, the spins of neutron and C are disregarded. We account for s, p, d,
and f-states in p-7Be and n-11Be. The maximum value of the relative wave number,
kmax, is 0.66 fm−1 for all such states. The number of discretized continuum states is
20 and 10 for the s-waves and the other waves, respectively, for both 8B and 11Be.
The optical potentials for the constituents of P, i.e., p, n, 7Be, and 11Be, on 208Pb
are the same as in Table I of Ref. 9). The maximum value used for the internal
coordinate ξ is 200 fm, and the maximum impact parameter is 400 fm for both 8B
and 11Be breakup reactions.

Note that in the present work, a relativistic calculation means a calculation
which includes dynamical relativistic corrections in the nuclear and Coulomb cou-

Fig. 1. Double differential breakup cross section (DDBUX) for 8B+208Pb at 250 MeV/nucleon

including dynamical relativistic corrections (left panel), and its difference from the calculation

without relativistic corrections (right panel).
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Fig. 2. Comparison between DDBUX, for the 8B+208Pb reaction at 250 MeV/nucleon, obtained

with relativistic (solid line) and nonrelativistic (dashed line) calculations. The left panel shows

the DDBUX with ε = 1.5 MeV as a function of θ, while the right panel displays the DDX with

θ = 0.06◦ as a function of ε.

pling potentials. Also, a relativistic treatment of the kinematics is adopted in all the
calculations shown below. Furthermore, we add quantum mechanical (QM) correc-
tions in the breakup amplitudes obtained with the relativistic E-CDCC as described
in §2.1; we use the results of fully QM but nonrelativistic CDCC for the ampli-
tudes corresponding to b ≤ 18 fm for both reactions. This prescription has been
numerically tested and the results are shown in §3.4. We assume, as in Ref. 1), the
far-field approximation to obtain the relativistic form of the Coulomb interaction
between each constituent of the projectile and the target nucleus. The validity of
this assumption is evaluated in §3.5.

Fig. 3. Same as in Fig. 1 but for 11Be+208Pb at 250 MeV/nucleon.
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Fig. 4. Same as in Fig. 2 but for 11Be+208Pb at 250 MeV/nucleon; the left (right) panel corresponds

to the DDBUX with ε = 1.0 MeV (θ = 0.04◦) as a function of θ (ε).

3.2. Dynamical relativistic effects on breakup cross section

In the left panel of Fig. 1 we show the double differential breakup cross section
(DDBUX), d2σBU/(dεdθ), for the 8B+208Pb reaction at 250 MeV/nucleon calculated
with relativistic CDCC based on Eq. (2.21). ε is the relative energy of the two
fragments of the projectile after the breakup, and θ is the scattering angle of the
c.m. of the projectile. The right panel displays the difference of the DDBUX shown
in the left panel from that calculated with nonrelativistic CDCC, which also is based
on Eq. (2.21) but including no dynamical relativistic corrections. One observes a
rather large increase in the DDBUX due to relativity at forward angles (θ <∼ 0.2◦)
and around ε = 1 MeV, where the DDBUX has quite large values as shown in
the left panel. To show this effect more clearly, we plot the DDBUX with ε (θ)
fixed at 1.5 MeV (0.06◦) in the left (right) panel of Fig. 2. The results of the
relativistic and nonrelativistic CDCC calculation are shown by the solid and dashed
lines, respectively.

The results for the 11Be+208Pb reaction at 250 MeV/nucleon are shown in Figs. 3
and 4, in the same way as in Figs. 1 and 2, respectively. Features of the results are
very similar to those of the 8B+208Pb reaction, except that 1) the magnitude of
the DDBUX is much larger than that of 8B and 2) the increase in the DDBUX
due to relativity is slightly smaller and limited at smaller angles. The larger mag-
nitude of the DDBUX arises from the larger value of the E1 effective charge eE1 of
11Be compared with that of 8B. The smaller effect of relativity for this reaction can
be understood by the decomposition of the breakup cross section (BUX) into the
components corresponding to individual partial waves of the projectile.

In the left (right) panel of Fig. 5 we show the BUX to the s-, p-, d-, and f-
waves of 8B (11Be) by the dashed, dotted, dash-dotted, and dash-dot-dotted lines,
respectively; the solid line is the sum of them. Note that the cross sections are
obtained by integrating the DDBUX over ε. In each panel, the thick and thin lines
represent the results of relativistic and nonrelativistic CDCC, respectively. Since the
ground state of 8B is the p-wave, s- and d-state BUX are dominant in the breakup
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Fig. 5. Angular distribution of the breakup cross sections (BUX) to the s-, p-, d-, and f-states of the

projectile are shown by the dashed, dotted, dash-dotted, and dash-dot-dotted lines, respectively,

and the solid line represents the sum of them. The thick (thin) lines are the results of the

relativistic (nonrelativistic) calculation. The left and right panels correspond to the 8B+208Pb

and 11Be+208Pb reactions, respectively.

of 8B, as the E1 transition gives the dominant contribution to the breakup reactions
caused by a heavy target nucleus. For the breakup of 11Be, the ground state of which
is assumed here to be an s-wave, the dominant contribution is to the p-wave; one
finds the increase of BUX due to relativity only in the p-wave channel, corresponding
to the E1 transitions. The increase (due to relativity) in the s-wave BUX of 8B has
the same feature as that of the p-wave BUX of 11Be. For the 8B breakup, the increase
in the d-wave BUX is also noticeable, which makes the relativistic effects on the total
BUX of 8B more significant.

In the analysis of a breakup experiment using a heavy target, a cutoff value for
θ, θcut, is usually introduced which aims to eliminate contributions from nuclear-
induced breakup. Since the increase in the DDBUX due to relativity is located at
forward angles, such an analysis with θcut requires a relativistic description of the
breakup reaction. This is clearly shown in Fig. 6, where the θcut dependence of the
relativistic effects on the breakup energy spectrum is plotted. The left and right
panels correspond to the 8B and 11Be breakup reactions, respectively. The solid
(dotted) and dashed (dash-dotted) lines represent the results of relativistic and non-
relativistic CDCC with (without) θcut, respectively. Here, θcut = 0.4◦ (0.2◦) is used
for the 8B (11Be) breakup. One sees that the use of a cutoff angle θcut enhances the
relativistic effects. Note that preceding analyses of Coulomb breakup processes using
the virtual photon method, or first-order perturbation theory, included relativistic
effects properly. They would give, however, very different results from those of rel-
ativistic CDCC, because of the contributions of nuclear breakup and higher-order
processes in Coulomb breakup, as shown in §3.3.

Our conclusions based on the previous figures are better seen if we plot relative
differences of the several effects we want to discuss here. For example, we show in
the left (right) panel of Fig. 7 the relative difference of the DDBUX obtained with
relativistic CDCC from that with nonrelativistic CDCC, for the 8B (11Be) breakup.
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Fig. 6. Breakup energy spectra for 8B+208Pb at 250 MeV/nucleon (left panel). The solid and

dashed lines show the results of the relativistic and nonrelativistic calculations, respectively,

with a maximum c.m. scattering angle, θmax, equal to 0.4◦. The dotted (dash-dotted) line is

the same as the solid (dashed) line but θmax = 5.0◦. Results for 11Be+208Pb at 250 MeV/nucleon

are shown in the right panel. Here, θmax = 0.2◦ (3.0◦) for the solid and dashed (dotted and

dash-dotted) lines.

Fig. 7. Relative difference of the relativistic DDX from the nonrelativistic one. The left and right

panels respectively correspond to 8B+208Pb and 11Be+208Pb at 250 MeV/nucleon.

The difference is indeed large (several tens of % level), which shows the importance
of the relativistic effects on the DDBUX.

3.3. Higher-order effects and nuclear breakup

As shown in Ref. 1), the contribution of nuclear breakup as well as higher-order
effects on the BUX is very important, even at 250 MeV/nucleon. We show in the
left panel of Fig. 8 the absolute difference of the DDBUX for 8B+208Pb calculated
with first order perturbation theory from that with relativistic CDCC, which we call
here higher-order corrections. The right panel shows the difference of the DDBUX
obtained with relativistic CDCC, which includes both nuclear and Coulomb breakup,
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Fig. 8. The left panel shows the difference of the DDBUX for 8B+208Pb at 250 MeV/nucleon

obtained with a first-order calculation from that obtained with CDCC. The right panel shows

the difference of the DDX obtained with CDCC including nuclear and Coulomb breakup to

that with only Coulomb breakup. In all calculations we take into account dynamical relativistic

corrections.

from that including only the Coulomb breakup. We call this difference nuclear
breakup correction; the effects of the interference between the nuclear and Coulomb
breakup amplitudes are also included. One sees the higher-order and nuclear breakup
corrections are of the order of 10%. They have a rather weak ε dependence, while
they oscillate with respect to θ.

As shown in the left panel of Fig. 5, all partial-wave components of the BUX of
8B are comparable at θ >∼ 0.5◦. This feature results in a non-trivial change in each
BUX component due to the inclusion of higher-order processes or nuclear breakup.
On the other hand, these corrections for 11Be breakup, as shown in Fig. 9, display a
simpler distribution on the ε-θ plane. We find from a detailed analysis that since the

Fig. 9. Same as in Fig. 7 but for 11Be+208Pb at 250 MeV/nucleon.
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Fig. 10. Breakup amplitude for 8B+208Pb at 250 MeV/nucleon as a function of the orbital angular

momentum L between 8B and 208Pb. The final state of 8B is chosen to be the s-wave 6th bin

state, and the z-component m0 of the spin of 8B in the incident channel chosen as 1. The

solid, dashed, and dotted lines show the results of nonrelativistic quantum mechanical CDCC,

nonrelativistic eikonal CDCC, and relativistic eikonal CDCC, respectively. The upper (lower)

panels correspond to the real and imaginary parts of the breakup amplitude.

p-state BUX is dominant for the 11Be breakup, the change in the p-state BUX due
to the inclusion of the higher-order processes or nuclear breakup and that in other
small BUX components add up almost incoherently.

3.4. Quantum mechanical effects

An important feature of the present CDCC calculation is that the quantum
mechanical (QM) correction is explicitly included. This is possible because, as dis-
cussed in Ref. 1), relativistic corrections in the continuum-continuum couplings are
only appreciable for the breakup amplitudes corresponding to large values of L, i.e.,
for large orbital angular momenta of relative motion between the projectile and tar-
get, where the QM correction is negligibly small.3),4) Note that inclusion of the
relativistic Coulomb and nuclear coupling potentials in a QM calculation, based on
a conventional partial wave decomposition, is very complicated.

We show in Fig. 10 the breakup amplitudes for 8B+208Pb at 250 MeV/nucleon as
a function of L. We choose the s-wave 6th bin state, whose breakup amplitude has the
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Fig. 11. Difference of the DDX obtained with nonrelativistic quantum-mechanical CDCC from that

obtained with nonrelativistic eikonal CDCC. The left (right) panel corresponds to 8B+208Pb

(11Be+208Pb) at 250 MeV/nucleon.

largest value, as a final state; the z-component m0 of the spin of 8B in the incident
channel is chosen as 1. The upper and lower panels correspond to the real and
imaginary parts of the amplitude, respectively. The solid line represents the result of
nonrelativistic QM CDCC, which adopts Eq. (2.20) for all L and has no dynamical
relativistic corrections. The dotted and dashed lines are the results of E-CDCC,
based on Eq. (2.17), with and without dynamical relativistic corrections; below we
call the former relativistic E-CDCC and the latter nonrelativistic E-CDCC. One sees
from the figure that at small L, i.e., L <∼ 500, the dashed and dotted lines agree very
well with each other, and deviate from the solid line. On the other hand, at large L,
the solid and dashed lines show a very good agreement and differ from the dotted line.

Fig. 12. Breakup cross sections for 8B+208Pb (left panel) and 11Be+208Pb (right panel) at 250

MeV/nucleon as a function of the scattering angle. The solid and dashed lines show the results

of nonrelativistic quantum mechanical CDCC and nonrelativistic eikonal CDCC, respectively.
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This is indeed consistent with the above mentioned properties of relativistic and QM
corrections with respect to L. Thus, using the amplitude obtained by nonrelativistic
QM CDCC for small L and those by relativistic E-CDCC for large L allows one to
construct an accurate CC framework that includes dynamical relativistic corrections
and QM effects, i.e., relativistic CDCC adopted in §§3.2 and 3.3.

The difference of the DDBUX with nonrelativistic QM CDCC from that with
nonrelativistic E-CDCC is shown in Fig. 11. The left and right panels correspond
to 8B+208Pb and 11Be+208Pb at 250 MeV/nucleon, respectively. Compared to the
higher-order and nuclear breakup corrections, the difference due to the QM effect,
i.e., the QM correction, seems very small. It is appreciable, however, in the angular
distribution of the BUX, as shown in Fig. 12. The solid and dashed lines represent
the BUX obtained with nonrelativistic QM CDCC and nonrelativistic E-CDCC,
respectively. For both 8B+208Pb (left panel) and 11Be+208Pb (right panel) reactions,
the θ dependence of the BUX at angles above the peak position is indeed sensitive
to the QM correction.

3.5. Role of close-field collisions

Finally, we evaluate the validity of the far-field approximation for the Coulomb
interaction used in this study. Figure 13 shows the breakup amplitude multiplied
by a weight value b. The left and right panels show the results for m0 = μ = 0 and
1, respectively, obtained with the first order perturbation model described in §2.2.
In each panel, the solid (dashed) line shows the amplitude corresponding to both
the close and far fields (only the far field). It is clearly seen that the contribution
from the close field of the Coulomb interaction is negligibly small. We expect that
the inclusion of higher order processes and the nuclear breakup does not change this
conclusion.

In Ref. 10) the close-field contribution is shown to be important at lower energies,
i.e., E <∼ 50 MeV/nucleon. At these low energies, however, the dynamical relativistic

Fig. 13. Weighted breakup amplitude for 8B+208Pb at 250 MeV/nucleon as a function of the impact

parameter b. The final state of 8B is the same as in Fig. 5. The left and right panels correspond

to m0 = μ = 0 and 1, respectively. In each panel, the solid (dashed) line shows the result

including both far and close contributions (only the far contribution).
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effects are very small and we do not need the far-field approximation that is used
only to obtain the transformation form of the Coulomb coupling potentials due to
relativity. Note that in the evaluation of the nonrelativistic Coulomb potentials,
Eq. (2.6), both close and far fields are taken into account.

§4. Summary

The dynamical relativistic effects on the 8B and 11Be double differential breakup
cross sections (DDBUX) at 250 MeV/nucleon are investigated in detail by means of
the Continuum-Discretized Coupled-Channels method (CDCC). The effects on the
DDBUX are indeed large, i.e., several tens of % at forward angles θ and at slightly
higher breakup energies ε than at the peak of the breakup energy spectrum. The con-
tribution of the nuclear breakup and higher-order processes are found to be the order
of 10% and has different θ-ε dependence between the 8B and 11Be breakup processes.
It is confirmed that the relativistic corrections are only appreciable for breakup am-
plitudes corresponding to large impact parameters, and quantum-mechanical cor-
rection is negligible there. This feature enables one to perform fully relativistic
and quantum mechanical coupled-channel calculations of breakup reactions at in-
termediate energies. The far-field approximation, which is used in the formulation
of relativistic Coulomb coupling potentials, is justified numerically by means of a
first-order perturbative calculation. Thus, we now have an accurate method to an-
alyze experimental data of nuclear and Coulomb breakup reactions at intermediate
energies by means of relativistic CDCC. Inclusion of magnetic transitions will be an
important future work.
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