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Relativistic effects in the breakup of weakly-bound nuclei at intermediate energies are
studied by means of the continuum-discretized coupled-channels method with eikonal ap-
proximation. Nuclear coupling potentials with Lorentz contraction are newly included and
those effects on breakup cross sections are investigated. We show that relativistic corrections
lead to larger breakup cross sections. Coupled-channel effects on the breakup cross sections
are also discussed.

Subject Index: 221, 223, 227, 228

Reactions with radioactive nuclear beams are a major research area in nuclear
physics. The dissociation of weakly bound nuclei, or halo nuclei, is dominated by
the Coulomb interaction, although the nuclear interaction with the target cannot be
neglected in most cases.1) The final state interaction of the fragments with the target,
and between themselves, leads to important continuum-continuum and continuum-
bound-state couplings, which appreciably modify the reaction dynamics. Higher-
order couplings are more relevant in the dissociation of halo nuclei due to their low
binding.2),3)

The continuum-discretized coupled-channels method (CDCC)4) is one of the
most accurate models to describe the breakup of halo nuclei taking account of higher-
order couplings explicitly. The eikonal CDCC method (E-CDCC),2),3) which was
developed by the Kyushu group, is a derivation of CDCC that enables one to effi-
ciently treat the nuclear and Coulomb breakup reactions at Elab ≥ 50 MeV/nucleon.
An essential prescription described in Refs. 2) and 3) is the construction of hybrid
(quantum and eikonal) scattering amplitudes, with which one can make quantum-
mechanical (QM) corrections to the pure eikonal wave functions with a minimum
task. These corrections are, however, expected to become less important as the
incident energy increases.

The eikonal CDCC equations are Lorentz covariant in the high energy limit as
shown later. However, this is only true if the Coulomb and nuclear potentials used in
the calculations are correspondingly Lorentz covariant. This has not been explored,
except for the calculation presented in Ref. 5). In fact, most rare isotope facilities
use projectile dissociation at 100–250 MeV/nucleon. At these energies, relativistic
contraction of fields and retardation effects6)–9) are of the order of 10–30%. Rela-
tivistic effects enter in the dynamics of coupled-channels equations in a nonlinear,
often unpredictable manner, which can lead to a magnification, or reduction, of the
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corrections. In this work, we confirm the relevance of the relativistic effects men-
tioned above, henceforth called dynamical relativistic effects, on the breakup cross
sections of 8B and 11Be nuclei by 208Pb target at 100 and 250 MeV/nucleon. We
make use of E-CDCC incorporating relativistic Coulomb and nuclear coupling po-
tentials. The role of the latter, a novel effect included in this work, is investigated.
We also see how the channel coupling affects the breakup cross section with and
without dynamical relativistic effects.

The multipole expansion of the relativistic Coulomb potential between the target
nucleus (T) with the atomic number ZT and the projectile (P), consisting of C and
v clusters, is given in Ref. 5):
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for the E2 (electric quadrupole) field. In Eqs. (1) and (2), eEλ = [Zv(AC/AP)λ +
ZC(−Av/AP)λ]e are effective charges for λ = 1 and 2 multipolarities for the breakup
of P → C + v. The intrinsic coordinate of v with respect to C is denoted by ξ and
b is the impact parameter (or transverse coordinate) in the collision of P and T,
which is defined by b =

√
x2 + y2 with R = (x, y, z), the relative coordinate of P

from T in the Cartesian representation. The Lorentz contraction factor is denoted
by γ =

(
1 − v2/c2

)−1/2, where v is the velocity of P. Note that these relations are
obtained with so-called far-field approximation,10) i.e., R is assumed to be always
larger than ξ. The Coulomb coupling potentials in E-CDCC are obtained with
Eqs. (1) and (2) as shown below.

As for the relativistic nuclear potentials, we follow the conjecture of Feshbach
and Zabek,11) in which Lorentz contraction was introduced in a nuclear potential
on the basis of the folding model. In the present work, we further make zero-range
approximation to the folding model. Accordingly, we replace the nonrelativistic
optical potential U(b, z) between T and each constituent of P by γU(b, γz). Even
though this is a rough prescription to include the dynamical relativistic corrections
on the nuclear potential, we can check the effects of the correction on breakup cross
sections at least semiquantitatively.

The E-CDCC equations for the three-body reaction under consideration are
given by2),3)
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where c denotes the channel indices {i, �, m}; i > 0 (i = 0) stands for the ith
discretized-continuum (ground) state, and � and m are, respectively, the orbital
angular momentum between the constituents (C and v) of the projectile and its
projection on the z-axis taken to be parallel to the incident beam. Note that we
neglect the internal spins of C and v for simplicity. The impact parameter b is
relegated to a superscript since it is not a dynamical variable. The total energy
and the asymptotic wave number of P are denoted by Ec and Kc, respectively, and
R(b)

cc′(z) = (Kc′R−Kc′z)iηc′/(KcR−Kcz)iηc with ηc the Sommerfeld parameter. The
local wave number K(b)

c (z) of P is defined by energy conservation as
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where mP is the mass of P and ZPe (ZTe) is the charge of P (T). The reduced
coupling potential F

(b)
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where
F (b)
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Φ denotes the internal wave functions of P, φR is the azimuthal angle of b and UCT

(UvT) is the potential between C (v) and T consisting of nuclear and Coulomb parts.
In actual calculations, we use the multipole expansion F (b)

cc′ (z) =
∑

λ Fλ(b)
cc′ (z), the

explicit form of which is shown in Ref. 3).
To include the dynamical relativistic effects described above, we carry out the

replacement
Fλ(b)
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The factor fλ,μ is set to unity for nuclear couplings, while for Coulomb couplings,
we take
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following Eqs. (1) and (2). Correspondingly, we use
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in Eqs. (4) and (5). The Lorentz contraction factor γ may have channel dependence,
i.e., γ = Ec/(mPc

2), which we approximate using the value in the incident channel,
i.e., E0/(mPc

2).
It should be noted that we neglect the recoil motion of T in Eq. (3); this can be

justified because we consider reactions in which T is significantly heavier than P and
we only treat forward-angle scattering in the present study,5) as shown below. Note
also that in the high incident-energy limit, R(b)

cc′(z) → 1 and K
(b)
c (z) → Kc, unless
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the energy transfer is extremely large. Thus, in this limit, Eq. (3) becomes Lorentz
covariant, as desired.

Using Eqs. (3)–(9), we calculate the dissociation observables in reactions of
loosely bound nuclei 8B and 11Be on 208Pb targets. The internal Hamiltonian of
P and the number of states included are the same as in Ref. 12) except that we
neglect the spin of the proton as mentioned above and thus change the depth of the
p-7Be potential to reproduce the proton separation energy of 137 keV. The optical
potentials between the constituents of P and T are the same as in Table I of Ref. 12).
Note that the results shown below do not depend on the choice of these potentials
significantly. The maximum value of the internal coordinate ξ is taken to be 200 fm.
The maximum impact parameter is set to be 500 and 450 fm for, respectively, 8B
and 11Be breakup reactions at 100 MeV/nucleon, while it is set to 400 fm for both
reactions at 250 MeV/nucleon.

Figure 1 displays the total breakup cross section of 8B by 208Pb at 250
MeV/nucleon, as a function of the scattering angle θ of the center-of-mass (c.m.)
of the projectile after breakup. The solid and dashed lines represent the results of
the E-CDCC calculation with and without the dynamical relativistic effects, respec-
tively; in the latter, we set γ = 1 instead of the proper value, 1.268, in Eqs. (7)–(9).
Note that in all the calculations shown in this work, we use relativistic kinematics
so that our results probe only the relativistic effects on the dynamics. One sees that
the dynamical relativistic correction gives significantly larger breakup cross sections
for θ <∼ 0.7 degrees; the difference between the two around the peak is sizable, i.e.,
of the order of 10–15%.

Figure 2 displays the corresponding partial breakup cross sections as a func-
tion of b. One sees that for b ≤ 50 fm, the difference between the two is negligibly
small, while for b > 50 fm, a clear enhancement of the cross section due to dynam-
ical relativistic effects is found. Since the nuclear coupling potentials in E-CDCC

Fig. 1. Total breakup cross section for 8B+208Pb at 250 MeV/nucleon, as a function of the scat-

tering angle of the c.m. of the projectile after breakup. The solid and dashed lines represent the

results of the full CC calculation with and without the dynamical relativistic effects, respectively.
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Fig. 2. Partial breakup cross sections as a function of b for 8B+208Pb at 250 MeV/nucleon.

calculations for the reaction under study are limited to b less than about 15 fm,
at most, the enhancement of the breakup cross section shown in Fig. 1 is due to
the dynamical relativistic correction to the Coulomb potential. In other words, the
effects of relativistic corrections in the nuclear potentials are negligible, which is a
new important finding in this study. This can be seen more clearly in Fig. 3, for
the breakup cross sections calculated by E-CDCC, with only the nuclear coupling
potentials. The relativistic and nonrelativistic results in Fig. 3 agree very well with
each other.

Next we investigate how the coupled-channel calculations affect the breakup
cross section and the role of dynamical relativistic corrections. For this purpose,
a first-order perturbative calculation is performed. This first-order calculation is
consistent with the equivalent photon method, as described in Ref. 13). In fact,
first-order Coulomb excitation can be expressed as dσ/dEγ = NEλ(Eγ)σ(Eλ)

γ (Eγ),
where NEλ(Eγ) is the equivalent photon spectrum for the Eλ multipolarity, and

Fig. 3. Same as in Fig. 1 but only the nuclear coupling potentials are included in the E-CDCC

calculation.
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σ
(Eλ)
γ (Eγ) is the corresponding photonuclear dissociation cross section. Using the

expressions for N(Eλ), λ = 1, 2, given in Ref. 13) with the matrix elements for the
Eλ operator used in the present work, we confirm that the first-order perturbation
theory and the equivalent photon method yield exactly the same results, as expected.

We show in Fig. 4 the results of full CDCC and the first-order calculation; the left
(right) panel corresponds to the calculation with both nuclear and Coulomb breakup
(only Coulomb breakup). In each panel, the solid (dotted) and dashed (dash-dotted)
lines represent the results of the full CC (first-order perturbative) calculation with
and without the dynamical relativistic correction, respectively. One sees that rel-
ativistic corrections modify the first-order results in the same way as they do with
the full CC calculation. We stress here, however, that since continuum-continuum
couplings make relativistic effects nonlinear (and nontrivial to interpret), one cannot
infer the effect of relativistic corrections by simply carrying out first-order calcula-

Fig. 4. Total breakup cross sections for 8B+208Pb at 250 MeV/nucleon with nuclear and Coulomb

breakup (left panel) and only Coulomb breakup (right panel). The solid (dotted) and dashed

(dash-dotted) lines represent the results of the full CC (first-order perturbative) calculation with

and without the relativistic correction, respectively.

Fig. 5. Same as in Fig. 4(a) but for 11Be+208Pb at 250 MeV/nucleon.
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tions. More seriously, the full CC and first-order calculations give quite different
breakup cross sections even at forward angles. Full CC calculation is necessary to
obtain a reliable breakup cross section for comparison with experimental data. In
other words, continuum-continuum couplings are important in describing breakup
processes even at intermediate energies. It is found that continuum-continuum cou-
plings for both nuclear and Coulomb parts play significant roles.

In Fig. 5, we show the results for 11Be breakup by 208Pb at 250 MeV/nucleon,
with γ = 1.268. Differences between the relativistic and nonrelativistic calculations
appear below about 0.3 degrees for both full CC and first-order perturbative results,
and the increase in the cross section around the peak is, as for the 8B breakup, about
10–15%.

Figures 6 and 7 display, respectively, the results for 8B+208Pb and 11Be+208Pb
at 100 MeV/nucleon. The main features of the results are the same as those at 250
MeV/nucleon, except that the effects of relativity are somewhat reduced, i.e., the en-
hancement of the cross section at the peak is below the 10% level. This rather small
difference can still be important for some quantitative analysis, e.g., determination
of the astrophysical factor S17 for the 7Be(p, γ)8B reaction through 8B breakup re-
action. To draw a definite conclusion, however, we need to quantitatively examine
the approximations used to derive Eqs. (1) and (2), i.e., use of point charge for C, v,
and T, and also the far-field approximation.10) Moreover, an evaluation of quantum
mechanical corrections to the breakup cross sections, which can be carried out by
constructing hybrid scattering amplitudes,2),3) will be necessary. Nevertheless, rela-
tivistic effects on the breakup cross sections of about 15% found at 250 MeV/nucleon
need to be seriously addressed in the future.

In conclusion, we have evaluated the effects of relativistic corrections of the nu-
clear and Coulomb coupling potentials on the breakup cross sections of the weakly
bound projectiles 8B and 11Be by 208Pb targets at 250 and 100 MeV/nucleon. The
relativistic corrections modify appreciably the breakup cross sections, at the level
of 15% (10%), in collisions at 250 (100) MeV/nucleon. This change is found to
be due mainly to the modification of the Coulomb potential. We have shown that

Fig. 6. Same as in Fig. 4(a) but for 8B+208Pb at 100 MeV/nucleon.
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Fig. 7. Same as in Fig. 4(a) but for 11Be+208Pb at 100 MeV/nucleon.

continuum-continuum couplings are also affected by relativistic corrections and mod-
ify breakup cross sections appreciably. These important features have been widely
ignored in the literature and deserve further theoretical studies. We have found
quite strong relativistic effects on breakup energy spectra of 8B. More detailed and
systematic analyses including this subject will be presented in a forthcoming paper.
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