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Tunneling, diffusion, and dissociation of Feshbach molecules in optical lattices
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The quantum dynamics of an ultracold diatomic molecule tunneling and diffusing in a one-dimensional optical
lattice exhibits unusual features. While it is known that the process of quantum tunneling through potential
barriers can break up a bound-state molecule into a pair of dissociated atoms, interference and reassociation
produce intricate patterns in the time-evolving site-dependent probability distribution for finding atoms and
bound-state molecules. We find that the bound-state molecule is unusually resilient against break up at ultralow
binding energy Eb (Eb much smaller than the barrier height of the lattice potential). After an initial transient, the
bound-state molecule spreads with a width that grows as the square root of time. Surprisingly, the width of the
probability of finding dissociated atoms does not increase with time as a power law.

DOI: 10.1103/PhysRevA.85.033627 PACS number(s): 67.85.−d, 25.40.Lw, 24.50.+g, 26.20.−f

I. INTRODUCTION

Ultracold atoms in optical lattices provide a versatile tool
for the experimental study of many-body quantum dynamics,
with an unprecedented degree of accessibility [1]. Quantum
many-body properties of cold atom gases such as Bose-
Einstein condensates and ultracold fermions [2] are now
studied in confining traps. Using the standing wave patterns
of reflected laser beams, the ultracold atoms can experience
a lattice potential of variable potential height [3], providing a
laboratory for realizing the effective Hamiltonians of strongly
coupled electron physics [4] and for studying tunneling physics
[5]. Recent experiments have demonstrated that cold atom ex-
perimentalists can now observe individual atoms in an optical
lattice with single site resolution [6]. The traps can realize
systems of reduced dimensionality [7]. These developments
allow for unparalleled tests of fundamental quantum dynamics
such as quantum diffusion, interference, and localization in
lattice potentials. In view of the condensed matter backdrop,
the literature on transport phenomena of particles in periodic
lattices found in crystals, quasicrystals. and metals is rich.
Examples are Bloch oscillations of atoms due to the repeated
Bragg scattering in tilted periodic potentials as reported in
Ref. [8] and the shape of the quantum diffusion front in
one-dimensional quasiperiodic systems studied in Ref. [9].

Combining the technique of Feshbach resonant [10] ma-
nipulation by tuning the strength of an external magnetic
field [11], Grimm’s group [12] succeeded in associating pairs
of optical lattice atoms trapped at the same site into bound-state
diatomic molecules of ultralow and tunable binding energy. In
this paper, we investigate the dynamics of tunneling, diffusion,
and tunneling-induced dissociation of ultracold diatomic
molecules with a binding energy comparable to or smaller
than the barrier height of the lattice potential. For quantum
tunneling through a single barrier, composite particles are
predicted to exhibit deviations from the exponential decay
law. This quantum dynamics depends strongly on the intrinsic
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(composite particle) structure as the binding energy decreases
[13]. We study the diffusion of a Rydberg-like (with ultralow
binding energy) molecule with fine-tuned binding energy in
a one-dimensional periodic lattice. In the process of quantum
tunneling through a barrier, the molecule can dissociate into a
pair of atoms that experience the same lattice potential.

The tunneling, diffusion, and dissociation properties of
composite particles in periodic lattices are subjects of in-
creasing interest [14–16]. The combined quantum tunneling,
interference, and dissociation can be used as a tool to prepare
and exploit the properties of the intrinsic molecular structure
and the population of bound and continuum states through the
controlled diffusion of molecules in periodic potentials. The
calculations reported in this article predict a universal behavior
for the long-time evolution of the spreading width of molecular
and atomic wave packets as they are affected by the reflection,
tunneling, and diffusion process. Optical lattices are unique
systems in this aspect, as they provide periodic barriers to study
relevant quantum problems that no other known experimental
setup can provide.

In Refs. [14–16], a treatment of molecular diffusion in
one-dimensional optical lattices has been carried out. Instead
of a “prepared” initial state, an exact bound-state solution is
obtained for the same Hamiltonian used in our work. This
approach contrasts with ours, where we use a molecular wave
function in a uniform gas as the initial state. In principle, our
results should agree in the limit of a tightly bound molecule,
but it should be considered as an approximation for a weakly
bound molecule. It is well-known that, when the initial bound
state is not an exact eigenstate, the time evolution is affected.
Thus, the conclusions drawn from our work are limited to the
extent that only a prepared, localized, initial state is considered.
A localized state has high energy components, which tend
to facilitate tunneling and diffusion. We thus expect that our
obtained tunneling and diffusion times are essentially larger
than those obtained for an exact solution of the initial state for
an optical lattice.

II. TUNNELING AND DIFFUSION MODEL

Our study is simplified on purpose, as we want to learn about
the fundamental aspects of diffusion of composite objects,
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subject to transforming transitions from bound to continuum
states. The optical lattice potential has the form of a sine
function with a periodicity that is the lattice constant D,
equal to half the wavelength of the interfering laser, giving
D = 0.2–5 μm (the longer wavelengths are accessible with a
carbon dioxide laser, for instance). Experimentally, the binding
energy of a Feshbach molecule is tuned up by a magnetic field
B that controls the scattering length a. This length varies with
the magnetic field strength B as

a = abg

[
1 − �

(B − B0)

]
, (1)

where abg denotes the background scattering length, i.e., the
value of the scattering length far from resonance. B0 represents
the on-resonance magnetic field, and � is the resonance width.
For most known resonances, � takes on a value between 1 mG
and 10 G. The scattering length a can be varied from abg ∼ nm
to several micrometers [17]. Near the resonance, the binding
energy of the binary system of reduced mass μ and scattering
length a are related by Eb = h̄2/μa2, so that

νb = Eb

h
= h

4π2μa2
. (2)

For diatomic rubidium-87 molecules, μ = AmN/2, where mN

is the nucleon mass and the atomic number A = 87. The
numerical value of the constant of circulation h/m is equal
to h/m = 8.0/(A/100) μm2/ms, and the binding frequency
is

νb = 1

(π2A/100)

kHz

(a/μm)2
. (3)

Thus, for a ∼ 10 nm and larger, typical binding energies are
of the order of MHz, although very close to the resonance
a binding energy of a few Hz can be achieved [18]. We use
binding energies in the range of kHz to study the dissociation
and diffusion dependence on the molecule binding.

We consider a molecule consisting of two identical
rubidium-87 atoms. The Hamiltonian for the system interact-
ing with the optical lattice is given by H = T1 + T2 + V1 +
V2 + v, where Ti is the kinetic energy of atom i, Vi is the
periodic potential of the lattice, given by

Vi = V0

[
1 − cos

(
πxi

D

)]
, (4)

and v is the interaction potential between the atoms. The
position of each atom within the lattice is given by xi and
μ = mRb/2 is the reduced mass of the diatomic system. The
interatom potential is assumed to be governed by the magnetic
field near a Feshbach resonance, which is directly related to
a positive scattering length a. As we only consider a single
bound state regulated by the scattering length, we assume
a Dirac-δ potential of the form v(x12) = −(2πh̄2/μa)δ(x12),
where x12 = x1 − x2. This potential holds a bound state at
energy Eb = −h̄2/2μa2 with wave function

ψ(x12) =
√

k exp(−k|x12|), with k =
√

−2μEb/h̄
2. (5)

After preparing the initial state with a bound-state molecule
localized within one of the lattice sites, we calculate the
tunneling, diffusion, and dissociation properties of the Fes-
hbach molecule. Taking the center of the initially occupied
lattice site as the origin, the initial wave function is written as
�0(x,y) = ψ(x12)�(xs), where xs = (x1 + x2)/2 is the center
of mass of the molecule, and

�(xs) = 1(
2πσ 2

0

)1/4 exp

[
− x2

s

4σ 2
0

]
(6)

is a normalized Gaussian wave packet centered on the origin
and localized with initial width σ0.

We calculate the wave function of the two atoms in a
spatial grid for the x1 and x2 coordinates, so that x

(j )
i = j�x,

with j = 1,2, . . . ,N . The wave function �(x1,x2,t) is
represented by the finite set of time-dependent functions
�(x(i)

1 ,x
(j )
2 ,t) = �jk(t) at the points (x(1)

1 ,x
(2)
2 ) of the

spatial grid. The derivations in the kinetic operators of the
Hamiltonian are approximated by three-point formulas. For
the boundary conditions on the far left or far right of the grid
we set �j0 = �jN = �0k = �Nk = 0.

The time evolution of the molecule wave function
�(x1,x2,t) is obtained by solving the Schrödinger equation
by a finite difference method. The wave function �(t + �t) at
time t + �t can be calculated from the wave function at time
t , �(t), by applying the unitary time evolution operator, U. In
matrix notation for coordinates (x,y),

�(t + �t) = U(t + �t,t)�(t). (7)

For a small time step �t between iterations, the time evolution
operator can be approximated as

U(t + �t,t) � 1 + (�t/2ih̄) H (t)

1 − (�t/2ih̄) H (t)
. (8)

This is an implicit equation for the time evolution and is
correct up to and including terms of the order (�t)2. It
requires carrying out matrix multiplications and inversions at
each iteration. The inversion is performed by an extension of
the Peaceman-Rachford method and is well documented in
the literature [19,20].

To analyze the time-evolving two-particle wave function �,
it is useful to distinguish the bound-state molecule amplitude
from that of dissociated atoms. The bound-state molecule
is associated with the projection of the two-particle wave
function on the bound-state wave function ψ of Eq. (5).
The probability of finding a bound-state molecule in the
interval (xs − dxs/2,xs + dxs/2) at time t is PM (xs,t)dxs ,
where

PM (xs,t) =
∣∣∣∣
∫

dx12� (xs − x12/2,xs + x12/2,t) ψ∗ (x12)

∣∣∣∣
2

.

(9)

The probability of finding a dissociated atom is the difference
of two probabilities: the probability of finding an atom and the
probability that this atom is part of a bound-state molecule. We
refer to the probability of finding a dissociated atom within an
interval (x − dx/2,x + dx/2) at time t as PA(x,t)dx. As this
atom can be either atom 1 or atom 2, and as we have to subtract
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out the bound molecule probability, we obtain

PA(x,t)=
∫

dx2 |�(x,x2,t)|2−
∣∣∣∣
∫

dx2�(x,x2,t)ψ
∗(x − x2)

∣∣∣∣
2

+
∫

dx1 |�(x1,x,t)|2

−
∣∣∣∣
∫

dx1�(x1,x,t)ψ∗(x1 − x)

∣∣∣∣
2

. (10)

In accordance with intuition—the dissociation of each
molecule (in a statistical ensemble) produces two atoms;
Eqs. (9) and (10) ensure that∫

dx

[
PM (x,t) + PA(x,t)

2

]

=
∫

dx1

∫
dx2 |�(x1,x2,t)|2 = 1, (11)

corresponding to a normalization condition satisfied by the
atom or molecule probabilities.

III. RESULTS AND DISCUSSION

We first consider the case of a tightly bound molecule for
which little dissociation occurs. There is no coupling to the
continuum, PA = 0, and the PM probability of a bound-state
molecule diffuses as a single particle in a quantum tunneling
and diffusion process in the periodic potential. An illustrative
example of PM (x,t) is shown in Fig. 1. The lattice constant D

of the potential is equal to D = 2 μm and the binding energy
Eb of the bound-state molecule is given by Eb = 10 kHz.
The potential barrier height V0 and the width are chosen
so that the molecule can easily tunnel through the barriers,
V0 = 200 Hz. The graphs show the probability of finding a
molecule at position x after time t = 0, t = 10 ms, t = 25 ms,
and t = 100 ms. For better visualization the barrier height is
rescaled by a factor so that the height of the particle probability
at the central position matches with the top of the barrier. As
expected, due to the exponential decay of the wave function
within the barriers, the probability distribution peaks in the
middle of the lattice sites. The initial wave packet, localized
at the origin, leaks successively through each barrier. The
interference of scattered and transmitted waves induces an
increasing number of wave fronts to appear in the probability
distribution as time evolves. The width of the probability
distribution for finding a bound-state molecule grows with
increasing time. As a consequence of the mirror symmetry of
the initial state and the Hamiltonian, the distribution function
maintains mirror symmetry.

In Fig. 2 we show the time dependence of the escape
probability—the probability that the molecule is not found
in the initial lattice site—of the strongly bound rubidium
molecules of the previous calculation. The time dependence
is plotted as a function of increasing potential barrier heights.
The barrier height increases each time by a factor of 1.5 in
going from the solid (V0 = 200 Hz) to the dashed-dotted curve,
from the dashed-dotted to the long-dashed curve, and from
the long-dashed to the dotted curve. As expected, the escape
probability increases at a slower pace if the barrier height is
larger. After reaching a maximum value the escape probability

FIG. 1. (Color online) Time evolution of the probability distri-
bution of strongly bound (Eb = 10 kHz) rubidium molecules in an
optical lattice with size D = 2 μm. From top to bottom the time is
t = 0, t = 10 ms, t = 25 ms, and t = 100 ms, respectively.

oscillates due to reflections that feed back amplitude to the
initial position.

We now consider the quantum diffusion of Rydberg
molecules with low binding energy Eb, where Eb < V0. In this
regime, a molecule does not only diffuse by quantum tunneling
through the barriers of the lattice, but can also dissociate into
a pair of atoms in the process of tunneling and PA �= 0. Many
notable examples of this physics with a single potential barrier

FIG. 2. (Color online) Time dependence of the escape probability
of strongly bound rubidium molecules from an optical lattice with size
D = 2 μm, as a function of increasing potential barrier heights. The
barrier height increases each time by a factor of 1.5 in going from
the solid to the dashed-dotted curve, from the dashed-dotted to the
long-dashed curve, and from the long-dashed to the dotted curve.
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FIG. 3. (Color online) Time dependence of the “integrity” proba-
bility of loosely bound rubidium molecules by tunneling and diffusion
through an optical lattice with lattice constant D = 2 μm and
potential barrier height V0 = 5 kHz. The integrity is the probability
that the molecule remains in its bound state. The binding energies
were parametrized in terms of the barrier height, with E4 = V0/20,
E3 = V0/5, E2 = V0/2, and E1 = V0/1.2.

occur in nuclear fusion reactions (see, e.g., Refs. [13,21]).
The probability that the atoms remain bound in the initial
molecule state,

∫
dxPM (x,t), is called the “integrity.” In Fig. 3

we plot the time dependence of the integrity probability of
rubidium molecules as they tunnel and diffuse through an
optical lattice with size D = 2 μm and a fixed potential barrier
height V0 = 5 kHz. The binding energies were parametrized
in terms of the barrier height, with E4 = V0/20, E3 = V0/5,
E2 = V0/2, and E1 = V0/1.2. While the center of mass of the
two atoms is initially localized within a few micrometers, the
atom or molecule probabilities spread over time. It is necessary
to have a sufficiently large lattice to accommodate the PA

and PM probabilities. This is relatively easily achieved in
one-dimensional calculations, but represents a computational
challenge for calculations in higher dimensions. In some cases
we work with a spatial mesh encompassing a few hundred
lattice sites to allow for convergence of the loosely bound
molecule amplitude.

As the binding energy of the molecules decreases from
V0, the integrity probability initially reduces. In this regime,
the tunneling rate increases with lower binding energy and
tunneling favors dissociation, in line with previous studies
in fusion reactions [13,21]. The natural interpretation is
that increased tunneling also increases the interactions of
the individual atoms with a larger number of barriers, thus
increasing the dissociation probability.

Despite the apparently obvious interpretation given above,
the molecule is also resilient to breakup: even at the smallest
binding value, the breakup probability is not that big. This
interpretation loses meaning at very low binding energies, as
seen by the case of E4 = V0/20, in which case the integrity
increases relative to that of cases 2 and 3 of higher binding
energy. At that binding energy, the trend is reversed and the
molecule tends to remain intact. This result is not unusual, as
other tunneling systems exhibit similar behavior. Perhaps the
most familiar example is the tunneling of a Cooper pair [22].
The pair does not usually dissociate as it tunnels through a
barrier. However composite particles may dissociate as the
particles tunnel through multiple barriers, as in the case of a

FIG. 4. (Color online) Lattice diffusion of molecules. The
hatched histograms are the relative probability of finding a molecule
in its ground state at a given position along the lattice. The solid
histograms give the relative probability of finding individual atoms
after the dissociation. This figure was generated for the highest
dissociation probability (20%) described in Fig. 3.

lattice potential. Moreover, the binding mechanism of a Cooper
pair is rather different from the interparticle potential binding
considered here.

In Fig. 4 we show the probability of finding the bound-state
molecule (hatched histograms) or of finding a dissociated
atom (solid histograms) in the different lattice sites for
the case Eb = 250 kHz and V0 = 5 kHz at two different
times, t1 = 200 ms and t2 = 400 ms. The time progression
gives a sense of the quantum dynamics. The height of the
hatched (bound molecule) histogram for site i, PM,i , is
equal to PM,i = ∫ [i+1/2]D

[i−1/2]D dxPM (x), whereas the height of the
solid (dissociated atom) histogram, PA,i , gives the value of
PA,i = ∫ [i+1/2]D

[i−1/2]D dxPA(x). Note that the diffusion front of the
bound-state molecule spreads with a speed greater than that
of the dissociated atoms. Because it takes additional time for
the molecules to dissociate, the atoms diffuse slower than the
bound-state molecules within the lattice.

It takes time for the molecules to dissociate and additional
time for the atoms to diffuse after the dissociation. We thus
predict that the molecules, initially confined within a lattice
site, will tunnel and diffuse away from the initial position at
a speed higher than that of the atoms that are created in the
dissociation of the molecules.

We can characterize the speed of the wave front progression
for bound-state molecule diffusion in the lattice by calculat-
ing the width σ (t) ≡

√
〈r2(t)〉, where the average is taken

with respect to the bound-state molecule distribution, when
characterizing the bound-state molecule diffusion, σM (t) ≡
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FIG. 5. (Color online) Time dependence of the spreading width
of bound molecules, σM (t), shown by the solid line, and of dissociated
atoms, σA(t), shown by the dotted line, defined in the text. The dashed
curve is a fit of the asymptotic time dependence with the analytical
formula, Eq. (15).

√∫
dxx2PM (x,t)/

∫
dxPM (x), and with respect to the

dissociated atom distribution when characterizing the dissoci-
ated atom spreading, σA(t) ≡ √∫

dxx2PA(x,t)/
∫

dxPA(x).
In the long-time regime, the molecule and atom distributions
do not spread as fast as the probability of a single free particle
quantum wave function does, σfree ∼ h̄t/(2Mσ0), where M

is the mass of the particle and σ0 is the initial width of the
wave packet. In contrast, the distribution of the bound-state
molecule with low binding energy spreads as σM (t) ∼ t1/2 at
long times, as shown in Fig. 5). The dissociated atoms spread
more slowly still, although their width, shown by the dotted
line, does not attain the form of a power law in time. Instead, the
width appears to grow in steps becoming orders of magnitude
smaller than the molecule width at long times. We also find a
nontrivial correlation between σA(t) and the molecule binding
energy. Generally, molecules of lower binding energy exhibit
a more complex time dependence of σA upon t .

IV. CONCLUSIONS

The long-time power scaling σM ∼ t1/2 contrasts with
the linear scaling of a free particle wave packet and of a
Gaussian wave packet propagating in a tight-binding model
Hamiltonian [23,24] (if the lattice potential is not tilted). How
can we understand the scaling of σM? We can try to understand
the long-time particle diffusion through the lattice by using
semiclassical arguments. Starting from the time-dependent
Schrödinger equation ih̄∂tφ = −h̄2∂2

xψ/2m + V ψ , where V

is the lattice potential, and writing the wave function as
ψ = √

ρ exp(iS/h̄), we get the semiclassical equation

m
∂v

∂t
+ mv

∂v

∂x
= −∂(V + U )

∂x
, (12)

where v = ∂xS/m is the measure of the particle velocity and

U = −h̄2 1

2m
√

ρ

∂2√ρ

∂x2
(13)

represents the Bohm quantum potential [25].
Tunneling of a wave packet through a sequence of barriers

effectively slows down the wave-packet spreading and the
process becomes akin to quantum diffusion. Our numerical

results can be simulated by adding a friction term, bv, on the
left-hand side of the semiclassical equation (12), with b being
a friction constant.

Inserting ρ = ψ∗ψ for the wave packet, Eq. (6), and
allowing a time-dependent width, σ (t), we obtain

m
∂2σ

∂t2
+ b

∂σ

∂t
= h2

4mσ 3
−

〈
∂V

∂x

〉
, (14)

where the last term contains an average with respect to the
wave packet. For a periodic potential and large values of σ ,
this term averages to zero (〈∂V/∂x〉 = 0) and σ (t) can be
obtained by solving Eq. (14) for a general case, subject to the
initial condition that σ (t = 0) = σ0.

There is a competition between the first and second
derivatives on the left-hand side of Eq. (14). One strategy
to find the asymptotic time dependence of σ (t) is to solve
Eq. (14) neglecting one of the partial derivatives in different
regimes and finding the value for which both solutions match.
This procedure is validated by comparing to the numerical
solutions of Eq. (14) for different sets of values of m, b,
and σ0. The calculations show that after a transient time,
and for a strongly bound molecule, the approximate result
holds,

σ (t) � 0.31

(
h̄2t

mbσ 2
0

)1/2

, (15)

where m is the mass of the molecule. This asymptotic behavior
is shown in Fig. 5.

Defining a diffusion coefficient by means of Dd = ∂tσ
2/2

yields

Dd ∼ 0.156
h̄2

mbσ 2
0

. (16)

Note the difference with the classical Einstein diffusion con-
stant, Dd = kT /b. We argue that the effective “temperature”
of this system is the kinetic energy of the initial state,
T ∝ h̄2/mσ 2

0 . The dependence of the temperature, or diffusion
coefficient, on the initial kinetic energy is a new result to be
tested experimentally. Notice, however, that these results might
not hold when molecules interact among themselves.

For the dissociated molecules or atoms, the time depen-
dence of the spreading width of the atoms within the lattice is
not well fitted by any power-law dependence on time (dotted
curve in Fig. 4). We observe a nontrivial correlation between
σatoms(t) and the molecule binding energy.

Currently, many of the optical lattice descriptions are based
on the Bose-Hubbard Hamiltonian [26], which is a tight-
binding model. This Hamiltonian is familiar from strongly
correlated systems and conveniently describes atom-atom
interactions in many-atom systems. In addition, however,
recent Feshbach resonance experiments in optical lattices
call for the description of bound-state molecule dynamics,
including the diffusion by tunneling of atoms and molecules as
well as the dissociation of molecules into atoms. In this work
we have shown that the dissociation followed by tunneling
of individual atoms gives rise to a complex dynamics, parts of
which cannot be described by power-law scaling at large times.
This part requires additional theory follow-up. In our simple
model based on solving the time-dependent Schrödinger
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equation on a space-time lattice, we obtain fruitful insights
into this dynamics. Some unexpected features, such as the
weakening of dissociation as the binding energies decrease or
the robustness of the molecule that tends to tunnel as a single
compact object, are exhibited by the numerical results. We
have also observed that the asymptotic time behavior of the
spreading width of the molecules is amenable to an analytical
treatment. A simple power law, σ ∝ t1/2, seems to arise from
the numerical solutions. The diffusion of molecules and their
dissociation during tunneling is a rich phenomenon which
certainly deserves more research. The inclusion of interactions

between the molecules, and atoms, in the dynamics of diffusion
is also of great interest.
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