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We propose a novel method to measure the neutron-neutron scattering length using the 6He(p, pα)nn reaction
in inverse kinematics at high energies. The method is based on the final-state interaction (FSI) between the
neutrons after the sudden knockout of the α particle. We show that the details of the neutron-neutron relative-
energy distribution allow for a precise extraction of the s-wave scattering length. We present the state of the
art in regard to the theory of this distribution. The distribution is calculated in two steps. First, we calculate
the ground-state wave function of 6He as a αnn three-body system. For this purpose we use Halo effective
field theory, which also provides uncertainty estimates for the results. We compare our results at this stage to
model calculations done with the computer code FaCE. In a second step we determine the effects of the nn
FSI using the nn t-matrix. We compare these FSI results to approximate FSI approaches based on standard
FSI enhancement factors. While the final distribution is sensitive to the nn scattering length, it depends only
weakly on the effective range. Throughout we emphasize the impact of theoretical uncertainties on the neutron-
neutron relative-energy distribution, and discuss the extent to which those uncertainties limit the extraction of
the neutron-neutron scattering length from the reaction 6He(p, pα)nn.

DOI: 10.1103/PhysRevC.104.024001

I. INTRODUCTION AND CONCLUSION

The significant difference between the proton-proton (pp)
and the neutron-neutron (nn) interaction is a consequence
of the charge symmetry breaking of the nucleon-nucleon
(NN) interaction. It has its fundamental origin in the different
masses and electromagnetic properties of the light quarks
[1]. The charge symmetry breaking of the NN interaction
is, for example, manifested in the s-wave scattering lengths
that parametrize the zero-energy NN cross section. Because
of their fundamental importance, the nn and pp scattering
lengths have been a topic of intense research. The cur-
rent accepted values are astr

pp = (−17.3 ± 0.4) fm and astr
nn =

(−18.9 ± 0.4) fm [2–4]. The superscript “str” indicates that
electromagnetic effects have been removed in these numbers,
but in the remainder of the paper we actually use the raw
quantities measured in experiment. The corresponding value
for the nn interaction is ann = (−18.6 ± 0.4) fm.

It should be noted, however, that there is a systematic and
significant difference between the extracted values of ann from
neutron-induced deuteron breakup reactions measured by two
different collaborations with different experimental setups. A
group from Bonn has measured the d (n, pn)n reaction and
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extracted ann = −16.3(4) fm [5] using a theoretical analysis
based on three-body Faddeev equations [6]. Different beam
energies and analysis methods (absolute vs relative cross sec-
tions) yielded slightly different, but consistent, values for the
scattering length. This result was confirmed (but with larger
uncertainties) in a more recent measurement in Bonn using
the same reaction but with only the final-state proton being
detected [7]. Around the same time as the earlier Bonn experi-
ment, a group from TUNL extracted the value ann = −18.7(7)
fm [8]1 from their experiment using the same reaction with
all final particles detected and the same theoretical treatment.
This value was later confirmed in a reanalysis of the TUNL
experiment [9]. The discrepancy between the two values is an
unsolved puzzle and points towards an unknown experimental
systematic uncertainty.

An alternative method which avoids the complication of
the hadronic three-body final state is given by the pion capture
reaction π−d → nnγ . In this case, a slow pion is captured in
a 2H atomic state and then absorbed by the deuteron yielding
the breakup into two neutrons and a photon. In some experi-
ments only the high-energy photon is measured; in others the

1The value is from Ref. [8], but the uncertainty band is from
Ref. [9], where almost the same group published a reanalysis of the
data.
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FIG. 1. Recent experimental data on the neutron-neutron scattering length, as reported in Refs. [5,7–9,14–17]. The horizontal band displays
the uncertainty band of the accepted value, according to Refs. [2,3]. The line style of the error bar encodes information on the reaction; see
legend. Results based on the same experimental data only differing in the analysis use the same point style. In the shown values for ann, effects
of the magnetic-moment interaction are not removed; see, e.g., Ref. [2] for more details.

photon is measured in coincidence with one of the outgoing
neutrons. The scattering length is extracted from a fit to the
shape of the neutron spectrum, i.e., the decisive feature is
the relative height of the quasifree pπ capture peak and the
peak caused by final-state interaction (FSI). From the com-
bination of experiments at PSI [10–13] and Los Alamos [14]
ann = −18.6(4) fm is deduced [3], which is in agreement with
the deuteron breakup experiments at TUNL and presently
considered the accepted value.

The most recent data for ann are displayed in Fig. 1 together
with the limits of the accepted value (horizontal band). We
also display there a result obtained at KVI from the reaction
2H(d,2 He)2n. Using a simple reaction model, they extracted
an upper bound of −18.3 fm at the 95% confidence level.

The nn scattering length can be also inferred from
pion photoproduction on deuterium γ d → π+nn as, e.g.,
Refs. [18–21] have shown. While the theoretical study in
Ref. [20] used chiral perturbation theory for the regime of γ

energies close to pion-photoproduction threshold, it is supple-
mented for higher γ energies by a recent study in Ref. [21]
using a realistic model for this reaction. The determination
of the nn scattering length with such an experiment can be
realized by a precision measurement of the energies of the
incoming γ and the outgoing π+. The neutron detection effi-
ciency is not problematic for this experimental method but an
analysis of the theory uncertainties remains to be carried out.

In this paper we propose a novel method to measure ann.
This method takes advantage of inverse kinematics at a 6He
beam energy of a few hundred MeV/nucleon. The 6He beam
impinges on a proton target, resulting in quasifree knockout of
the α particle. The two halo neutrons of the 6He projectile are
liberated by this knockout, and both continue flying forward
in the laboratory system with approximately beam velocity.
Their relative energy remains small: it is determined by the
overlap of the nn wave functions in the 6He ground state
and the nn scattering state, and so depends strongly on the
nn scattering length at low relative energies. The neutrons
are detected at approximately 10 m distance from the target
around 0◦ with a 1 × 1 m2 large detector array covering the

nn relative-energy spectrum from 0 to 1 MeV. In addition
to the two halo neutrons, both the α particle and proton are
detected, allowing selection of events in which the charged
particles are scattered to large angles. This quasielastic high-
energy scattering process results in large relative energies
between the charged particles and the neutrons: that this
occurs is verified by the measurement of the tracks of the
two scattered particles. Any non-nn final-state interactions
are now again high-energy scattering processes, resulting in
substantial changes of angles and relative energies between
the particles. In particular, the neutrons will not remain in
the low-relative-energy state (Enn < 1 MeV) in the case of
final-state interaction with the charged particles, and so will
not be detected—and the kinematical signature of energies
and angles of charged particles would also then not corre-
spond to the quasielastic kinematics. Therefore, although the
non-nn FSI is present, it results only in a reduction of observed
events and does not distort the low-energy Enn spectrum.
Nowadays the relative energy between the high-energy neu-
trons can be measured with an energy resolution of about
20 keV, so the nn energy spectrum can be mapped out with
high accuracy. In this paper we argue that the imprint of ann

on that low-energy nn (relative) energy spectrum far exceeds
uncertainties coming from the 6He structure and the reac-
tion dynamics. And, because all four final-state particles are
detected, a background-free measurement can be performed.
We conclude that this kind of 6He(p, pα)nn measurement can
be used to extract the neutron-neutron scattering length. A
proposal to carry out such an experiment has been approved
at RIKEN [22].

In contrast to the novel method proposed in this paper,
previous extractions of ann relied on measuring the intensity
of the neutron-neutron FSI peak relative to the quasifree peak.
These are located at rather different neutron energies. In our
proposal, the neutrons originating from the projectile have a
high and almost constant velocity avoiding possible sources of
systematic uncertainties due to energy-dependent corrections
for neutron efficiency, scattering, and attenuation in the target,
etc., as were necessary in the previous experiments.
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It is clear that a general description of the 6He(p, pα)nn
knockout reaction is a formidable task. However, we stress
that the proposal is to extract ann in high-energy kinematics
where we argue that the ann dependence of the relative-energy
distribution of the neutrons can be calculated reliably and with
quantified theoretical uncertainties. An analogous extraction
could be made in the t (p, 2p)nn knockout reaction as a cross-
check, but we will not consider that reaction in this paper.

The calculations presented below demonstrate the sensi-
tivity of the nn relative-energy distribution in 6He(p, pα)nn
to the nn scattering length. In Sec. V we show that varying
the nominal scattering length of −18.7 fm by 2 fm changes
characteristic parts of the distribution around Enn = 100 keV
by roughly 10%. This sensitivity will enable a precise exper-
imental determination of the scattering length. Furthermore,
the spectrum has only a small dependence on the nn effective
range: we find that its effect is less than 1%. We now lay out
the procedure and assumptions through which we calculate
the nn relative-energy distribution. We also summarize here
the uncertainties associated with each piece of our calculation.

(1) In Secs. II and III we describe and present results from
our computation of the ground-state momentum distribution
of 6He, i.e., the distribution in the absence of final-state in-
teractions. We treat the nucleus as a αnn three-body system
and use both an effective field theory (EFT) of the halo nu-
cleus [23,24] and a three-body model. The EFT calculation
is carried out at leading order (LO) and has a nominal un-
certainty of ≈ 20% for Enn ≈ 1 MeV. We compare the EFT
momentum distribution to that obtained with a three-body
model of 6He that uses local Gaussian two-body potentials
as well as a three-body force. This “LGM” calculation is
in the tradition of, e.g., Refs. [25,26], and is implemented
via the computer code FaCE [27]. The resulting momentum
distribution is consistent with that obtained from the Halo EFT
within the expected uncertainty of a leading-order calculation.
At next-to-leading order the EFT uncertainty band will be
smaller and better agreement is expected. We analyze which
effects cause the differences between the EFT and LGM dis-
tribution and show that corrections to the nc t-matrix are the
most significant next-to-leading-order (NLO) corrections to
the structure of 6He in the EFT approach.

(2) In treating the reaction dynamics we assume the knock-
out of the α by the proton results in its sudden removal and
does not distort the Enn spectrum. To some degree this can be
ensured during the analysis of the experimental data by taking
only those events where the measured charged particles meet
the necessary kinematical conditions. Nevertheless, assessing
the error induced in the neutron-neutron relative-energy spec-
trum by this use of the sudden approximation is an important
topic for future work.

(3) At the moment only nn FSI is taken into account. The
reason that the distortion effect due to αn or pn FSI is higher
order is the smallness of the effect in the chosen kinematics
according to scaling arguments. The αn FSI is suppressed
by the ratio pnn/k, where pnn and k are the relative momen-
tum between the two neutrons and the momentum transfer to
the α particle, respectively. The experiment in the proposed
kinematics selects by construction small pnn and large k, re-
sulting in the suppression of effects due to FSI between the

neutrons with the charged particles involved in the reaction.
Any remaining correction, if necessary, will be small, so that
the accuracy of calculating the correction does not have to
be high to fulfill the precision requirement of the analysis of
experiment and the extraction of ann.

(4) Under the assumptions of the previous two points the
nn relative-energy distribution is straightforwardly obtained
from the 6He wave function using a two-body treatment of
FSI. In Sec. IV we compare results based on a full calculation
of the nn FSI using the t-matrix to approximate results based
on so-called enhancement factors. We discuss the derivation
of the latter technique, which was established by Watson [28]
and Migdal [29]. (Reviews can be found in Refs. [30,31].) By
formulating the problem in terms of two-potential scattering
theory we show that the enhancement factors are approxi-
mations to an exact calculation of nn FSI via the t-matrix.
This establishes a preference for the t-matrix approach. But,
regardless of that preference, the calculations of Sec. IV show
that the key parts of the distribution around Enn = 100 keV
that change by roughly 10% if ann is varied by 2 fm (see
Sec. V) are moderately insensitive to the approach used for
the nn final-state interaction. We conclude that the impact of
different treatments of nn FSI on the error budget of the ann

extraction is minimal.
(5) Our calculations of the neutron energy distribution after

α-particle knockout use only the partial-wave state where the
nn system and the (nn) − c system are both in a relative s
wave. This is the most important component in our calculation
of the ground state, and the nn FSI increases its dominance.
We quantitatively assessed the relevance of the other compo-
nents and found that in the case of a LGM calculation with nn
FSI the contribution to the nn energy distribution for Enn < 1
MeV from two neutrons in a relative 3P1 wave is at least a
factor of 30 smaller than that that from the 1S0 wave.

Having laid out the procedure for calculating the nn
relative-energy distribution in Secs. II–IV, in Sec. V we in-
vestigate the sensitivity of that distribution to the scattering
length. We close in Sec. VI with an outlook regarding future
calculations.

II. THREE-BODY CALCULATIONS OF 6He

The first step for obtaining the nn relative-energy distri-
bution is obtaining the ground-state wave function of 6He.
Because of its halo structure it can be described as a αnn
three-body system. The halo structure manifests itself in a
two-neutron separation energy, which corresponds to the bind-
ing energy of the αnn three-body system, B(0)

3 = 0.975 MeV
[32], much smaller than the α core’s excitation energy E∗

α ≈
20 MeV. We calculate the wave function in Halo EFT at
leading order and compare to results obtained in three-body
model calculations of the system. In this section, we introduce
concepts and quantities necessary for both methods. The rel-
ative positions and momenta can be described by splitting the
three-body system into a two-body system and a third particle.
The momenta are then given in terms of the relative momen-
tum between the constituents of the subsystem and the relative
momentum between the third particle and the center of mass
of the subsystem. In position space, the coordinates can be
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chosen analogously. The third particle is called the spectator,
and its choice is arbitrary. These momenta are called Jacobi
momenta. The Jacobi momenta of the three-body system with
momenta ki and masses mi (i ∈ {1, 2, 3}) are given by

pi := μ jk

(
k j

mj
− kk

mk

)
, qi := μi( jk)

(
ki

mi
− k j + kk

Mjk

)
, (1)

where the definitions μi j := (mimj )/(mi + mj ), μi( jk) :=
(miMjk )/(mi + Mjk ), and Mi j := mi + mj hold.2 In order to
describe this three-body system in a partial-wave basis we
have to assign quantum numbers. With the coordinates, they
generally depend on the chosen spectator. The relative or-
bital angular momentum quantum number of the subsystem
is given by l; the one between the third particle and the
subsystem is given by λ. The quantum number s specifies
the total spin of the subsystem, while σ denotes the spin of
the third particle. In jJ coupling the relations j = l + s and
I = λ + σ hold. A general partial-wave state reads

|(l, s) j, (λ, σ )I; J, M〉i, (2)

where the index i on the right specifies the spectator.
Before going into the specifics of the three-body calcula-

tions, we want to discuss the reference states for calculating
the ground-state wave function. Since we are investigating
ground states, we have in the case of 6He the condition J =
M = 0. The spin of the α particle is zero. This implies σ = 0
in the case of the α particle as spectator (indicated by an index
c for core at the bra/ket). The two neutrons with spin 1/2
can couple to 0 or 1, meaning that s is 0 or 1. Under these
conditions four different types of partial-wave basis states can
be formed; states of each type are parametrized by the orbital
angular momentum quantum number of the subsystem l . If
s = 0, the states are of the form∣∣�(0,l,l )

c

〉
c

:= |(l, 0)l, (l, 0)l; 0, 0〉c with l � 0. (3)

For s = 1 the following three types of states can be formed:∣∣�(1,l,l−1)
c

〉
c

:= |(l, 1)l−1, (l − 1, 0)l−1; 0, 0〉c, l �1, (4)∣∣�(1,l,l )
c

〉
c

:= |(l, 1)l, (l, 0)l; 0, 0〉c, l �1, (5)∣∣�(1,l,l+1)
c

〉
c

:= |(l, 1)l+1, (l + 1, 0)l+1; 0, 0〉c, l �0. (6)

This produces a complete, orthogonal angular momentum ba-
sis for a three-body system of J = M = 0 that is formed out
of two distinguishable spin- 1

2 particles and one spin-zero par-
ticle. In the following we will call these basis states “reference
states” and calculate their overlaps with the eigenstate of the
three-body Hamiltonian in order to obtain wave functions on
the partial-wave basis.

The ground state of 6He has positive parity and is anti-
symmetric under interchange of the two neutrons. Only the
piece of a reference state with the same symmetries as the

2Note, that, e.g., in Ref. [26] a different convention for the Jacobi
momenta is used. Some notes on the differences can be found in the
Supplemental Material [33]. We use the convention which is used,
e.g., in Refs. [23,24,34].

ground state will have nonvanishing overlap with it. There-
fore, �(1,l,l−1)

c and �(1,l,l+1)
c are not suitable reference states,

as they have negative parity. Similarly, the requirement of
nn antisymmetry means that we only need to consider states
�(0,l,l )

c where the quantum number l is even, together with
states �(1,l,l )

c where l is odd. This analysis of the possible
states is consistent with other three-body calculations of the
ground state of 6He presented, e.g., in Refs. [25,26].

A. Local Gaussian model

Our model calculation of the three-body system employs
commonly used local l-dependent Gaussian potentials as
well as a three-body force. We call this a local Gaussian
model (LGM). To solve it for the three-body system we
use the computer code FaCE [27].3 It calculates the position-
space wave function of a three-body system by solving the
Schrödinger equation with local l-dependent two-body in-
teractions and phenomenological three-body potentials. It is
capable of removing unphysical bound states from two-body
potentials via the supersymmetric (SUSY) transformations
described in Ref. [36]. The name FaCE is an acronym for
“Faddeev with core excitation.” It alludes to the fact that in the
default setting it solves not the Schrödinger equation but the
equivalent Faddeev equations.4 As the name also expresses
core excitation effects can be taken into account within this
code.

This code and its ancestors were used for calculations
of multiple nuclei. In the case of 6He, the position-space
probability densities and transverse-momentum distributions
were already calculated with ancestors of the FaCE code, e.g.,
in Refs. [25,26]. The results for the transverse momentum
distribution agree well with available experimental data.

We now define the parameters that are specified in a typical
FaCE input file for 6He, and in the process also write down the
potentials employed in our LGM for this system. For the nn
interaction as well as the nα interaction we use local central
and spin-orbit potentials:

〈r; l, s|V (l̃ )
c |r′; l ′, s′〉

:= δl,l ′δl,l̃δs,s′
δ(r′ − r)

r′2 V̄ (l )
c exp

[−r2/
(
a2

c;l

)]
, (7)

〈r; l, s|V (l̃ )
SO |r′; l ′, s′〉

:= δl,l̃

δ(r′ − r)

r′2 V̄ (l )
SO 〈l, s|LS|l ′, s′〉 exp

[−r2/
(
a2

SO;l

)]
, (8)

where the depth parameters are denoted by V̄ (l )
c and V̄ (l )

SO . The
range parameters are given by ac;l and aSO;l .

3The code itself can be obtained from a research data repository
[35].

4Note that the Faddeev equations which are used by FaCE are
equivalent to the ones used in our EFT calculation. However they
are not of the same form. FaCE uses matrix elements of potentials;
the EFT calculation uses matrix elements of t-matrices. These two
versions of the Faddeev equations have the decomposition of the total
state into components in common.
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In the LGM calculation the nc interaction is present in
the s wave, p wave, and d wave. In the p wave and d wave
both central potentials and spin-orbit potentials are used. A
p-wave nucleon-α potential of this form was first specified
in Ref. [37], where it was shown to provide a reasonable
description of low-energy pα phase shifts. Here we take for
all nc potentials a range of ac;l = aSO;l = 2.3 fm. The depth
parameters are V̄c;0 = V̄c;1 = −47.32 MeV, V̄SO;1 = V̄SO;2 =
−11.71 MeV, and V̄c;2 = −23.0 MeV. These parameters ex-
cept the s-wave ones were inter alia used for the calculation
with an ancestor of FaCE in Ref. [26] and presumably in
Ref. [25] as well as in the recent Ref. [38]. In the case of
the s wave we do not use the repulsive potential used in
Ref. [26]. Instead, we follow the FaCE sample input file for
6He which means we use the previously mentioned attractive
potential and remove the unphysical nα bound state using the
SUSY transform capabilities of FaCE. This attractive potential
produces a satisfactory fit to the phase shifts given in Ref. [39].

For the nn interaction we use a s-wave central potential
with the parameters V̄c;0 = −31.0 MeV and ac;0 = 1.8 fm.
These parameters were also used inter alia for the calculation
in Refs. [26,38] and are taken from Ref. [40].

The phenomenological three-body force reads

V3B(ρ) := s3B

1.0 + (ρ/ρ3B)a3B
. (9)

The parameters ρ3B = 5.0 fm and a3B = 3 are used, as they
are set in the sample input file of FaCE. The depth parameter
s3B will be tuned to reproduce B(0)

3 .
FaCE calculates the wave functions of three-body systems

such as 6He in terms of a decomposition in the hyperangular
momentum K . The single components are specified by the
hyperangular momentum quantum number and the angular
and spin quantum numbers. By doing the decomposition in
K , the wave function’s coordinate-space dependence on x and
y, which are conjugate to p and q, can be replaced by the
dependence on the hyper-radius ρ :=

√
x2 + y2. In the follow-

ing these wave-function components χK (ρ) will have only the
additional indices l and S, as, due to the symmetries discussed
in the beginning of this section, these determine all other
quantum numbers of the 6He ground state with J = M =
0 and positive parity in jJ coupling: λ = l , s = S, σ = 0,
and j = I = l (core as spectator). The nn relative-momentum
distribution is calculated using the momentum-space wave
function, while the calculation of this wave function from
χS

K,l (ρ) is summarized in the Supplemental Material [33]. It
contains also details on the computational parameters of the
model calculation.

B. Halo EFT approach

A second approach for obtaining the three-body wave func-
tion of 6He is using Halo effective field theory (Halo EFT).
An effective field theory is a toolkit for exploiting the scale
separation of a physical system in order to calculate observ-
ables as a series in the ratio of a typical momentum scale
over a high-momentum scale. The high-momentum scale is
the lowest scale of omitted physics. Systematic improvement
of the results is then possible by calculating higher orders in

the expansion. And at any given order the EFT’s expansion
in a ratio of momentum scales enables robust uncertainty
estimates for its predictions.

Halo EFT is a pionless EFT describing halo nuclei. The
halo nucleons are associated with the lower momentum scale
while the high momentum is associated with effects such as
pion creation, removal of nucleons from the core, or excitation
of the core. In the case of 6He the low-momentum scale
Mlow can be determined, using the three-body binding en-

ergy B(0)
3 = 0.975 MeV, to be Mlow =

√
mnB(0)

3 ≈ 30 MeV.
The high-momentum scale is given by Mhigh = √

mnE∗
α ≈

140 MeV, where the excitation energy of the core is given
by E∗

α ≈ 20 MeV. The basic ingredient of an EFT calculation
is the power counting. It tells which terms are of which order
in Mlow/Mhigh and thereby defines which have to be included
in a calculation at a given order. The nα system was first
investigated in a Halo EFT framework in Refs. [41,42], which
proposed different power countings: Ref. [41] proposes a1 ∼
M−3

low and r1 ∼ Mlow, where a1 is the p-wave scattering volume
and r1 is the p-wave effective range. Usually one expects that
the effective range parameters are of order of the appropriate
power of Mhigh, thereby we have two fine-tunings here. Ac-
cording to the power counting of Ref. [42] a1 ∼ M−2

lowM−1
high

and r1 ∼ Mhigh hold. This power counting has the minimum
number of fine-tunings necessary to produce a bound state or
resonance in the low-energy region of the EFT.

The latter power counting was used in Ref. [23], where
Halo EFT was applied to 6He. In that paper the two-body
subsystems as well as the three-body system were success-
fully renormalized. In order to renormalize the three-body
system with a three-body force the binding energy B(0)

3 was
used as input. Additionally, Faddeev amplitudes were cal-
culated and their independence of sufficiently high cutoffs
was demonstrated. This paper was continued in Ref. [24],
where ground-state probability densities were calculated in
Halo EFT. The potentials corresponding to the leading-order
t-matrices used in Refs. [23,24] are energy dependent. While
in the case of the s-wave nn interaction this dependence van-
ishes in the limit that the cutoff goes to infinity, in the case of
the p-wave nc interaction it does not vanish. In Refs. [43,44]
quantum mechanics with energy-dependent potentials is dis-
cussed. Inter alia a modified normalization condition for wave
functions is derived. These findings were applied to the cal-
culation of the probability density in Ref. [24], where it was
found that these modifications are negligible in the low-energy
region. Furthermore, the robustness of the results with respect
to the regulator was checked. The probability density is inde-
pendent of the cutoff and the form of the momentum-space
regulator.

In this paper, we use Halo EFT to calculate the ground-state
wave function of 6He. We base our calculation on the method-
ology used in Ref. [24]. We will solve the same Faddeev
equations as in Ref. [24]; the only difference is that we will
not calculate overlaps of plane wave states with |�〉 but over-
laps of partial-wave states with |�〉. Since partial-wave states
were also widely used in that paper, many formulas can be
reused. At this point, we briefly review the Faddeev equations.
While they can be derived in a nonrelativistic (effective) field
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theory (see, e.g., Ref. [34]), we describe here the connection
to the Schrödinger equation. This allows for straightforward
comparisons with quantum mechanical model calculations.
The Schrödinger equation for a three-body system with a
kinetic Hamilton operator H0, two-body interactions Vi, and
a three-body potential V3 reads(

H0 +
∑

i

Vi + V3

)
|�〉 = E3|�〉, (10)

where E3 is the energy of the three-body system. The index i
is the index of a third particle defining the subsystem consist-
ing of the remaining particles, in which Vi acts. Accordingly
i ∈ {c, n, n′} holds. For the moment we consider the system
without the three-body force. The Schrödinger equation can
be rewritten into a set of coupled equations, the so-called
Faddeev equations, for the Faddeev amplitudes |Fi〉 (see, e.g.,
Refs. [23,45,46]):

|Fi〉 =
∑
j �=i

G0t j |Fj〉, (11)

where the connection to the desired |�〉 is given by

G0ti|Fi〉 = G0Vi|�〉, (12)∑
i

G0ti|Fi〉 = |�〉. (13)

We will use the latter equation in order to obtain the ground-
state wave function from the Faddeev amplitudes. When we
solve the Faddeev equations numerically, we have to use a
representation of the states. It is common to use the following
representation for |Fi〉:

Fi(q) =
∫

d pp2gli (p)i〈p, q; �i|Fi〉, (14)

where we assumed that Vi acts only in one partial-wave chan-
nel given by the set of quantum numbers �i seen from particle
i and that it has a one-term separable form in the correspond-
ing two-body subsystem.

The three-body force can be included in the Faddeev for-
malism in several ways. One way is to modify Eq. (11) and
leave the relation of obtaining the full states from the Faddeev
amplitudes, namely, Eq. (13), unchanged [46]. We use this
method, the employed three-body force is given in Ref. [23].
Alternative possibilities for this force in the case of 6He can
be found in Ref. [47].

We now give some more details on the used two-body
interactions. Since we solve Faddeev equations in momentum
space, which are equivalent to the Schrödinger equation, the
two-body interactions are specified in the form of t-matrices.
The real part of the denominator of the t-matrix corresponds
to an effective-range expansion, which is carried out up to
a certain order that is determined by the power counting
of the EFT and the order of the calculation. But this does
not determine the (off-shell) t-matrix. For convenience in the
implementation of the Faddeev equations, we use separable
t-matrices corresponding to separable potentials. This is a
common choice; see, e.g., Refs. [23,24]. The elements of the
t-matrix describing the interaction between particles i and j

read

〈p, l|ti j (E )|p′, l ′〉 = 4πδl,l ′δli j ,l gli j (p)τi j (E )gli j (p′), (15)

where li j specifies the quantum number l of the interaction
channel. The functions gl (p) are regulator functions specify-
ing the damping at and above momenta of the order of the
cutoff scale β parametrizing these functions. Additionally,
they determine the off-shell behavior of the t-matrices. We
use gl (p) = plθ (β − p). For our three-body calculation we
have to embed the t-matrix into the three-body system and
take matrix elements of this embedded version. We obtain for
the elements of the matrix ti describing the interaction given
by spectator i, i.e., the one between j and k, the following
expression:

i〈p, q; �|ti(E3)|p′, q′; �′〉i

= δ�,�′δ�,�i〈p, li|t jk

(
E3 − q2

2μi( jk)

)
|p′, li〉, (16)

where li = l (�i ) is the subsystem orbital angular momentum
quantum number of the interaction channel given by the multi-
index �i. The reduced t-matrix elements τ jk (E ) contain the
first terms of the effective range expansion in their denomi-
nators. In our leading-order Halo EFT for 6He, they are given
by

τnn(E ) = 1

4π2μnn

1

γ0 + ik
, (17)

τnc(E ) = 1

4π2μnc

1

γ1
(
k2 − k2

R

) , (18)

whereby the relation k = √
2μ jkE holds. The parameter γ0 is

the momentum of the nn virtual state and at leading order is
given by the nn scattering length via γ0 = a−1

0 . In contrast to
the nn interaction, the p-wave τnc does not contain a unitarity
term at leading order according to the power counting. The nc
interaction is parametrized by the effective range expansion
parameters a1 and r1 via γ1 = −r1/2 and kR = √

2/(a1r1),
whereby kR is the momentum of the low-energy resonance.
The values r1 = −174.0227 MeV and kR = 37.4533 MeV
were used. They can be obtained from the a1 and r1 given
in Ref. [48]. The core mass is approximated by mc ≈ 4mn.

After discussing the interactions, we briefly describe how
the wave functions are obtained. From the system of equations
for the Faddeev amplitudes given in Eq. (11) one obtains
a coupled system of integral equations by using the repre-
sentations given in Eq. (14). By discretizing the function it
turns into an eigenvalue problem which is solved numeri-
cally. Based on the results for the Faddeev amplitudes the
wave function can be calculated; details can be found in
Appendix A. We check the convergence of the results for the
wave functions and other quantities by varying the number
of mesh points used for this discretization and for subsequent
integrations.

In addition to the scale β that parametrizes the scale
at which the regulator function gl (p) cuts off the two-
body t-matrix in Eq. (15) we also place a cutoff � on the
momentum-space integral equations obtained from Eq. (11)
by using Eq. (14). We vary these two-body and three-body
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cutoffs and assess how sensitive our predictions are to that
variation. Typically we use the same value for both cutoffs.

III. GROUND-STATE nn
RELATIVE-MOMENTUM DISTRIBUTION

We compare ground-state nn relative-momentum distribu-
tions obtained with Halo EFT and with LGM . By doing so,
we can analyze and understand the uncertainty in the ground-
state momentum distribution, which is an important ingredient
for the final distribution after the knockout. As a preparation,
we discuss the details of our definition of the distribution.

In the beginning of Sec. II, the reference states for obtain-
ing wave functions in a partial-wave basis were discussed.
Symmetry considerations yielded that only �(0,l,l )

c (l is even)
and �(1,l,l )

c (l is odd) are relevant. Using these different ref-
erence states yields complementary information due to the
orthogonality of their angular and spin part. We calculated
wave functions in our leading-order Halo EFT framework
using both sets of states for low l in the low-energy region
up to roughly 140 MeV. As expected, the importance of
wave-function components decreases with increasing l . And
in fact, only the wave-function component with partial-wave
quantum numbers �(0,0,0)

c is relevant in this region. All other
components are suppressed in this region by a factor of ap-
proximately 20, or even more.

Therefore in what follows we define the wave function

�c(p, q) := c〈p, q; �(0,0,0)
c |�〉. (19)

For simplicity we sometimes use the abbreviated symbol
�c := �(0,0,0)

c in what follows. The corresponding ground-
state nn relative-momentum distribution is given by

ρ(pnn) :=
∫

dqq2 p2
nn|�c(pnn, q)|2. (20)

In the case of LGM, the suppression of the other wave
functions compared to the wave function with the quantum
numbers �(0,0,0)

c is generally not as strong as in the case of
the LO Halo EFT calculation. Nevertheless, in order to do an
appropriate comparison, also for the LGM we calculate only
this wave-function component. This choice is also motivated
by the fact that after the nn final-state interactions the domi-
nance of the component �(0,0,0)

c , where the nn pair is in 1S0, is
even increased in the low-energy region, as the nn interaction
is much stronger in this partial wave.

Note that we have developed a cross-check for our results
for ground-state nn relative-momentum distributions ρ(pnn)
obtained in LGM. We calculate 〈r2

nn〉 for different partial
waves l using the relation

〈
r2

nn

〉
l = − π

4

(∫
d pnn∂

2
pnn

ρl (pnn) − 2(1 + l (l + 1))

×
∫

d pnn
ρl (pnn)

p2
nn

)
(21)

and compare the overall result with the results from Ref. [26],
where 〈r2

nn〉 and other observables were obtained in similar
model calculations.

A. Comparison of results

Figure 2 shows the LGM result for the ground-state
nn relative-momentum distribution in comparison with the
leading-order Halo EFT result. They are normalized to have
a certain arbitrary value at a certain position. We use this nor-
malization procedure, as the absolute value is not necessary
for determining the scattering length. More information on
that can be found in Sec. V. This also avoids the difficulty that
the norm of the EFT results depends on values of the wave
function outside its range of validity. The uncertainty band of
the EFT result is based on the size of the next-to-leading-order
corrections. They are suppressed by p/Mhigh. Accordingly the
uncertainty is �ρ(p) ≈ ρ(p) p

Mhigh
. In the left panel (a) it can

be seen that EFT and LGM results agree within the uncer-
tainty bands of the LO Halo EFT result. The EFT distribution
has generally bigger values and its maximum is at higher
momenta. In higher-order Halo EFT calculations, the uncer-
tainty bands (i.e., the relative uncertainty) will get smaller.
Agreement between that higher-order Halo EFT calculation
and LGM result is expected within this smaller uncertainty
band. That implies that NLO corrections will move the Halo
EFT result towards the LGM one, although at some high
order no further improvement of agreement can be expected.
Eventually, the assumptions of the model calculation will
become visible in terms of small insurmountable differences
between a high-order EFT and a model calculation. The right
panel (b) shows that the agreement is, as expected, better in
the low-energy region. Importantly, the determination of the
nn scattering length involves measuring the distribution only
up to Enn ≈ 1 MeV, i.e., the region where the agreement is
especially good.

This comparison shows the consistency of the results.
But we are interested in the sources of the discrepancies
and in what results we can expect from a Halo EFT cal-
culation at next-to-leading order. There are several possible
sources for the discrepancies, such as the phenomenolog-
ical LGM three-body potential, different effective-range-
expansion parameters, or different off-shell properties of the
two-body interactions that are not compensated by the used
three-body forces (see Ref. [49] for details on this topic). Ad-
ditionally, the discrepancies can be caused by terms which are
part of higher-order EFT descriptions, e.g., the unitarity term
of the nc system or interactions in additional partial waves
such as 2P1/2 and 2S1/2 in the nc system. In order to estimate
the importance of these different effects, we performed ad-
ditional model calculations. We introduced modified versions
of LGM that have fewer nc interaction channels (LGM2) or
in which the three-body potential is completely absent or of
shorter range. The LGM2 calculations show that the LGM re-
sult gets more similar to the EFT one if the nc interactions are
turned off in channels other than the 2P3/2 (see Fig. 3). The
s-wave, d-wave, and 2P1/2 nc interactions, which in the EFT
are higher-order effects, are therefore causing part of the dis-
crepancy. Meanwhile, calculations using other LGM variants
(see Supplemental Material [33]) show that the phenomeno-
logical LGM three-body force is an important ingredient: if
it is omitted, the gap with the EFT result increases. However,
the range of the LGM three-body force seems to play only a
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(a) (b)

FIG. 2. LGM result in comparison with the Halo EFT result. The three-body potential in the LGM calculation was tuned to reproduce B(0)
3 .

The used settings for LGM are denoted by LGM1. In order to be independent of the normalization the distributions are divided by their value
at a certain position, which is indicated by the red cross. Note the dashed and solid vertical lines in the left panel (a). They indicate relative
energies of 1 and 3 MeV, respectively. In the planned experiment 1 MeV will be roughly the upper bound of the measurement range.

small role. Using a value of 2.5 fm instead of 5 fm for ρ3B has
only a small effect on the LGM result, provided the three-body
force’s strength is adjusted to reproduce the physical binding
energy of the three-body system.

While the interactions for the LGM calculations are
specified in terms of coordinate-space matrix elements of
potentials, momentum-space t-matrices are used for the EFT
calculations. In order to connect the EFT calculations to a
model, we also performed calculations using a model for-
mulated directly in momentum space. This can be achieved
by using our computer code for the EFT calculations with
different separable t-matrices. The resulting model calcula-
tion has the same interaction channels as Halo EFT at LO

FIG. 3. YM results (dot-dashed lines) in comparison with the LO
Halo EFT result (solid line) as well as LGM results (dashed lines).
All are normalized to have a certain arbitrary value at a momentum
indicated by the red cross. Meanwhile, the vertical dashed and solid
lines indicate, respectively, relative energies of 1 and 3 MeV. The
estimated numerical uncertainty of the YM2 result is indicated by the
green band, while the one of the YM1 result is smaller than the line
width. The uncertainty bands are estimated by varying the three-body
cutoff from 1500 MeV to 2250 MeV and by varying the number
mesh points by a factor of 2. The light blue error band for the Halo
EFT result shows the expected size of the NLO correction.

and is similar to those of Refs. [50–52]. We chose separa-
ble t-matrices with Yamaguchi form factors, with interaction
parameters adjusted to reproduce effective-range-expansion
parameters. This yields reasonable phase shifts. In a first step,
we compared the Yamaguchi model (YM) results with our
EFT and LGM results. We found that the YM results for the
ground-state momentum distribution are much more similar
to the results from LGM2 (LGM with the reduced set of
interaction channels) than to the EFT results. This implies that
if we understand the discrepancy between YM and EFT we
also understand the discrepancy between LGM and EFT.

Figure 3 shows the standard LGM and YM calculations,
labeled LGM1 and YM1. The LGM calculation with a re-
duced set of channels (LGM2) is also shown. In addition, we
perform a YM calculation with the unitarity term of the nc
t-matrix removed, while other higher-order terms which are
part of the YM but are not in the LO Halo EFT calculation are
retained (YM2). The YM2 calculation comes out quite close
to the LO Halo EFT result, indicating that the unitarity term in
the nc t-matrix, which is an NLO effect in the EFT, has a sig-
nificant influence on the ground-state momentum distribution
and causes a large fraction of the YM-EFT difference. This
implies that the NLO Halo EFT calculation will likely agree
much better with a YM or LGM calculation than the LO Halo
EFT does.

To conclude this subsection, the comparison between EFT
and LGM1 yields agreement at the expected level: the EFT
uncertainty bands are indeed robust. We expect the NLO Halo
EFT result to be closer to this model that includes additional
effects, and we tracked down the specific NLO term that
should most improve agreement. Comparisons with additional
model calculations indicate that the unitarity term of the nc
interaction plays a significant role in this distribution. A more
detailed analysis of the differences and additional plots can be
found in the Supplemental Material [33].

B. Influence of the nn scattering length on the ground-state
momentum distribution

Up to this point, we have compared different ground-state
nn relative-momentum distributions. In the next section, we
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FIG. 4. Ground-state nn relative-energy distributions for differ-
ent nn scattering lengths. The definitions a(+)

nn = −16.7 fm, a(0)
nn =

−18.7 fm, and a(−)
nn = −20.7 fm hold. All results are based on

�c(p, q). � = 1500 MeV was used. Based on a comparison with a
calculation with half as many mesh points and � = 1000 MeV the
numerical uncertainty is negligible. In order to be independent of
the normalization the distribution is divided by its value at a certain
position, which is indicated by a red cross.

will show nn relative-energy distributions after taking nn
final-state interactions into account. Before we do that, we
want to show what an intermediate step of this procedure
looks like.5 We show the ground-state nn relative-energy dis-
tribution ρ(Enn) with Enn = p2

nn/(2μnn). Especially, we want
to investigate the influence of ann on this distribution. The
relation between the momentum and the energy distribution
is

ρ(Enn) =
√

μnn

2Enn
ρ(

√
2μnnEnn), (22)

where we use the common style to distinguish the different
variants of the function, i.e., the different functions differ only
by their arguments. The necessity of the additional factor can
be seen from dimensional analysis. The factor follows from
a substitution in the normalization integral of the distribution.
The normalization condition reads

∫
dEnnρ(Enn) = 1. We plot

the distribution obtained with different nn scattering lengths in
Fig. 4.

It can be seen that the shape of the relative-energy distribu-
tion is different from the one of the momentum distribution.
Additionally, we observe that the influence of the nn scattering
length on the ground-state distribution is negligible. In con-
trast, we will see that, after taking the nn FSI into account,
the distribution is sensitive to the scattering length. Thus, 6He

5Note that strictly speaking the ground-state relative momentum or
energy distribution is only an intermediate step in an enhancement
factor based FSI approach. If the t-matrix itself is used, it has to
be applied at the wave-function level. Before and after its usage
the respective distributions can be calculated, but in this approach
one cannot get directly from the ground-state momentum or energy
distribution to the one after nn FSI. The details can be found in the
next section.

serves in the proposed experiment as a source of low-energy
neutrons. Its structure is not sensitive to ann. It is the final-state
nn interaction that enables the measurement of the scattering
length.

Quantitative information on the negligible influence of the
scattering length on the ground-state distribution can be found
in the Supplemental Material [33]. This plot shows the ratios
of the distributions obtained with different scattering lengths.
They agree to better than 1%.

IV. nn RELATIVE-ENERGY DISTRIBUTION
AFTER KNOCKOUT

The next step is to calculate the nn relative-energy distri-
bution after the knockout reaction, in which the α core of 6He
is removed via a collision with a proton. In the experiment
under discussion in this paper the knockout takes place in
inverse kinematics, with a beam of 6He nuclei impinging on a
hydrogen target [22]. We employ the sudden approximation,
i.e., we assume that the reaction mechanism is rapid and
quasifree knockout of the α. Subsequent interactions between
neutrons and the α or the proton that struck the α can be
neglected. Therefore, in our analysis it is sufficient to treat
the potential causing the knockout as an external potential.
The Hilbert space for our problem is then a three-body αnn
Hilbert space. Note that as an alternative to this effective
three-body treatment a four-body description of this reaction
is possible. The proton, which causes the knockout, would
then be explicitly included in the Hilbert space. But, in our
three-body treatment, that proton merely generates a potential
that enables the production of the final state. We therefore
refer to this as the production potential V . The quantitative
properties of the final state are influenced by the nn poten-
tial, so that we face a two-potential scattering problem. A
comprehensive discussion of such problems can be found in
Refs. [31,53].

Before going into the details of that two-potential formal-
ism and its application to α-particle knockout in 6He, we
want to discuss some fundamental aspects of the 6He(p, pα)
reaction. The initial state is the ground state of 6He denoted
by |�〉. It fulfills the Schrödinger equation

(Knn + K(nn)c + Vnn + Vnc + V3B)|�〉 = −B(0)
3 |�〉, (23)

where the kinetic energy operators are denoted by K and Vnc

represents the interaction of the core with each of the two
neutrons. In this experiment the final state is measured by
a setup which detects a free nn state with definite relative
momentum. Meanwhile, the α particle is detected at a very
different angle where it is not interacting with the nn pair.
Because of the high initial velocity of 6He the neutrons will
leave the α particle and proton after their interaction quickly
behind, as in the laboratory frame the nn pair travels at almost
the initial velocity of the 6He beam.

Accordingly, we consider final states parametrized by the
momenta p and q, that fulfill the free Schrödinger equation

(Knn + K(nn)c)|p, q〉c = (−B(0)
3 + EKO

)|p, q〉c, (24)
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where the energy transfer from the knockout EKO, which is
delivered by the proton, obeys

−B(0)
3 + EKO = p2

2μnn
+ q2

2μ(nn)c
. (25)

In order for the final state to be a scattering state, the condition
EKO > B(0)

3 must be fulfilled. Note that energy is still con-
served in the four-body (pαnn) system. But the energy EKO

describes a transfer of energy into the internal (not center-of-
mass) energy of the three-body system. EKO < Elab, 6He then
holds, where Elab, 6He is the initial kinetic energy of the 6He
projectile in the laboratory frame.

Since we assume the proton interacts only with the α par-
ticle we adopt a production potential V that does not change
the relative momentum of the nn pair:

c〈p, q|V |�〉 =
∫

d p′ p′2
∫

dq′q′2〈p|p′〉〈q|Ṽ |q′〉c〈p′, q′|�〉

=
∫

dq′q′2〈q|Ṽ |q′〉c〈p, q′|�〉. (26)

In other words, we assume a factorization of the production
potential into a nn part and a (nn)c part with the nn part being
an identity operator: V = 1 ⊗ Ṽ .

We now make use of the formalism of Ref. [31] for scat-
tering from two potentials. A more detailed summary of this
formalism can be found in the Supplemental Material [33].
The two potentials are taken to be the production potential
V and the potential U causing the final-state interactions. We
make use of a helpful identity of two-potential scattering the-
ory for calculating the probability amplitude of the transition
from a state |α〉 to a state |β〉:

Tβα = 〈β|T (+)
U+V |α〉. (27)

These states satisfy the equations H0|α〉 = Eα|α〉 and H0|β〉 =
Eβ |β〉 with Eα = Eβ = E . H0 should be thought of as the
part of the Hamiltonian that does not include the interac-
tions U and V . The operator T (+)

U+V is then the t-matrix
for scattering involving U and V . It satisfies the standard
Lippmann-Schwinger equation, where the potential is given
by U + V . It is possible to dissect this transition amplitude
(as well as this overall t-matrix itself) into two terms by
using Møller operators [31]. One of the two terms contributes
for elastic scattering reactions because V , which causes the
production of the final state, is missing there. We are not
interested in elastic scattering here and so focus on the other
term. We consider the situation in which the production po-
tential produces a transition from a bound state to a scattering
state in a subsystem. In this case V induces a transition to an
eigenstate of H0 that is orthogonal to the initial eigenstate |α〉.
While this discussed relation is generally a suitable starting
point for the calculations, for our application we have to mod-
ify it to accommodate the case that the final-state interaction
U is part of the Hamiltonian that describes the initial state.
In such a case the stationary Schrödinger equation for the
initial state becomes (H0 + U )|α〉 = Eα|α〉. We continue to
assume a free final state, so H0|β〉 = Eβ |β〉 stays unchanged.
Goldberger and Watson show in Ref. [31] that under these

assumptions we have

Tβα = 〈β|(�(−)
U )†V (1 + (E − K − U − V + iε)−1V )|α〉,

(28)

where the Møller operator corresponding to the potential U is
denoted by �

(−)
U .

Now we have to evaluate Eq. (28). While we can (and will)
evaluate it directly using the already mentioned assumption
about V , this expression has also often been evaluated via FSI
enhancement factors. In the next subsection we give a brief
overview of this approach.

A. FSI enhancement factors

The FSI enhancement factors are a technique for approx-
imately calculating the effect of the final-state interaction
on the transition probability. The production potential is not
explicitly taken into account. These enhancement factors as
a generic tool were introduced by Watson [28] as well as
by Migdal [29]. Watson used the approach of two-potential
scattering theory to derive a relation similar to Eq. (28) and
from it the enhancement factor. A detailed explanation of
this way of establishing enhancement factors can be found in
Ref. [31].

In this context, it is important to note that enhancement
factors were introduced for describing reactions such as π− +
d → n + n + γ [54]. Here the nn enhancement factor enters
in a fundamentally different way than it does in 6He. In the
radiative pion capture reaction the production potential and
the final-state interaction both affect the same subsystem, i.e.,
the nn system in this case. In contrast when a high-momentum
6He impinges on a proton target the production potential acts
in a different subsystem than does the final-state interaction.
Here we first discuss the original use case, where both V and
U act on the same subsystem. We then discuss the implica-
tions for how these factors should be computed in the case of
the reaction we are interested in.

The enhancement factors can be derived from Eq. (28)
by using a state of definite momentum as the final state and
the bound state as the initial state: |β〉 = |p〉 and |α〉 = |�〉.
During this derivation it is assumed that the production po-
tential is weak and so the operator given by the expression
in the brackets to the right of the first V in Eq. (28) can be
approximated by 1. Additionally, it is assumed that produc-
tion potential is local and only s-wave interactions are taken
into account. Furthermore, it is required that the initial-state
wave function and/or the production potential peak at short
distances. If these conditions are satisfied one arrives at the
following expression for the final momentum distribution:

ρ (Gi )(p) ∝ Gi(p)ρ(p), (29)

where Gi(p) is the enhancement factor and ρ(p) is the
momentum-space probability distribution from the initial
(bound) state. Note that to obtain this expression we assumed
that the production potential does not alter the momentum
p. For the application we have in mind here this assumption
holds, because the production potential and FSI potential act
in different subsystems.
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Different enhancement factors can be derived depending
on the particular assumptions made, especially in regard to
the short-distance behavior of the production potential and/or
initial-state wave function. This is why we added the index i
to the enhancement factor Gi(p). A common variant of this
enhancement factor, derived in Ref. [31], is6

G1(p) = ((p2 + α2)rnn/2)2(− 1
ann

+ rnn
2 p2

)2 + p2
, (30)

where α = 1/rnn(1 + √
1 − 2rnn/ann). This enhancement fac-

tor is based on the assumption that V |�〉 peaks at r = 0. It
is also possible to derive enhancement factors for the case
that V |�〉 peaks at some other radius r̃. Further discussion
regarding the derivation of the enhancement factor and how
to obtain it for a general r̃ can be found in the Supplemental
Material [33]. It contains also a discussion of the factor from
Ref. [55].

So far this discussion of enhancement factors focused on
two-body systems. To close this section we point out that this
formalism can also be used in n-body systems. That extension
assumes that the FSI is a two-body interaction within one spe-
cific particle pair; the requirement regarding the short-distance
behavior then applies to the corresponding two-body subsys-
tem of the n-body state. For a system with n > 2 the ρ(p)
in Eq. (29) is the momentum-space probability distribution
of the bound state after all other momenta are integrated out.
Furthermore, since the FSI enhancement factor factorizes the
FSI from the action of the production potential, it can be used
not only in the case where the production potential acts in the
same subsystem as the FSI potential, but also in cases where
the two act on different subsystems of the overall n-body
system.

B. Explicit calculation of rescattering

Having discussed the FSI enhancement factors in the pre-
vious subsection, we now turn our attention to the direct
calculation of the wave function after FSI. Our starting point
is again Eq. (28) except that now we consider it in the context
of the breakup of a three-particle state into an nn pair and
a residual cluster, like an α particle. For concreteness we
consider the final state 〈β| to be the free state of the nn
pair and the α particle and specify that state via the relative
momentum within the nn pair, p, and the momentum of the α

particle relative to the nn pair, q, as well as the partial-wave
quantum numbers �. The state is c〈p, q; �|. The initial state
|α〉 is given by the 6He bound state |�〉. Using the notation
of Eq. (23), this implies that the final state is an eigenstate of
H0 = Knn + K(nn)c, while the initial state is an eigenstate of
H0 + Vnn + Vnc + V3B. That implies that the FSI potential U is
given by Vnn + Vnc + V3B. This reflects the fact that in addition
to nn interactions also nc interactions as well as three-body in-
teractions are possible final-state interactions happening after

6Note that in Ref. [31] the enhancement factor has 1/ann instead
of −1/ann in the denominator. This is rooted in a different sign con-
vention for the scattering length. We define k cot (δ0(k)) = −1/a0 +
r0k2/2 + O(k4).

the knockout. However, due to the kinematics of the reaction
and the halo structure of 6He, final-state nc or three-body
interactions should be strongly suppressed. Accordingly, in
the context of this calculation we approximate �

(−)
U by �

(−)
Vnn

.
We obtain

T�(p, q) = c〈p, q; �|(�(−)
U )†V

×(1 + (E − K − U − V + iε)−1V )|�〉, (31)

where U is to be approximated by the nn potential. For the
energy E of the Møller operator we have to insert the energy
of the final state p2/(2μnn) + q2/(2μ(nn)c). Since the FSI po-
tential U is approximated by Vnn and thereby acts only in the
nn subsystem, we can make use of the identity

�
(±)
U |p, q; �〉c

= [1 + (p2/(2μnn) + q2/(2μ(nn)c)

− Knn − K(nn)c − U ± iε)−1U ]|p, q; �〉c

= [1 + (p2/(2μnn) − Knn −U ± iε)−1U ]|p, q; �〉c, (32)

i.e., we use the fact that Vnn commutes with K(nn)c, and so
K(nn)c can be replaced by its eigenvalue for the state |p, q; �〉c.
Next, since the production potential is assumed to be weak, in
Eq. (31) we use only the lowest order of the operators next
to (�(−)

U )†, i.e., retain only the identity operator in the round
brackets to the right of V in Eq. (31). Furthermore, we assume
that V decouples as formulated in Eq. (26). It is then useful to
express the Møller operator in terms of the t-matrix according
to7

(�(−)
U )† = 1 + (G(−)

0 t (−)
U )†. (33)

We set Ṽ to 1, which implies that the momentum q in T�(p, q)
is the α(nn) relative momentum before the reaction. We there-
fore calculate the probability amplitude as a function of the nn
relative momentum after the reaction and the α(nn) relative
momentum before the reaction. Another implication of not
using an explicit expression for Ṽ is that we do not take into
account that the overall probability of the knockout is smaller
than 1. The implications of this on the analysis are discussed
in Sec. IV C, and will be accounted for by not trying to
compute the absolute number of nn pairs produced, but only
the shape of the distribution.

Under these assumptions the probability amplitude
T�(p, q), which can also be seen as a final-state wave function
in an arbitrary partial wave � after knockout and FSI, is given
by

� (wFSI;�)
c (p, q)

= c〈p, q; �|(1 + tnn,(�)nn (Ep)G(nn)
0 (Ep))|�〉

=
∫

d p′ p′2
c〈p, q; �|(1 + tnn,(�)nn

(Ep)G(nn)
0 (Ep)

)
× |p′, q; �〉cc〈p′, q; �|�〉, (34)

7We use here that �
(−)
U acts on an eigenstate of H0. For the general

form of the Møller operator see Refs. [33,56].
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where the multi-index (�)nn is the nn part of the multi-index
�.

The nn FSI is only significant in the 1S0 partial wave,
so we use only the wave-function component �c(p, q) :=
c〈p, q; �c|�〉 for calculating the wave function after FSI. The

nn part of this wave function’s multi-index is l = 0, s = 0 cor-
responding to the 1S0 channel. Accordingly, to obtain results
for � (wFSI)

c (p, q) a version of Eq. (34) specific to FSI in this
nn partial wave is used:

� (wFSI)
c (p, q) = �c(p, q) + 2

π
g0(p)

1

a−1
nn − rnn

2 p2 + ip

∫
d p′ p′2g0(p′)(p2 − p′2 + iε)−1�c(p′, q) (35)

= �c(p, q) + 2

π
g0(p)

1

a−1
nn − rnn

2 p2 + ip

[∫ �

0
d p′ p′2�c(p′, q) − p2�c(p, q)

p2 − p′2

−
(

iπ

2
− 1

2
ln

(
� + p

� − p

))
g0(p)p�c(p, q)

]
. (36)

Note that �c(p, q) is the wave function corresponding to the
momentum distribution computed in the previous section. The
last equality holds in the case of Heaviside functions as regu-
lators using the cutoff �: gl (p) = pl�(� − p). An auxiliary
calculation can be found in the Supplemental Material [33].
Note that in the calculation leading to Eq. (36) we included the
effective-range term in the nn t-matrix in order to check its in-
fluence. The nn relative-energy distribution below Enn = 1.0
MeV that is obtained with the choice rnn = 0 in the FSI nn
t-matrix differs only slightly from the distribution obtained
when the nominal effective range of rnn = 2.73fm is used
there. (See Fig. 7 in Appendix B.)

This procedure for calculating the FSI is common and
inter alia used for pion capture reactions with deuterium; see,
e.g., Ref. [57]. It is also similar to the coherent FSI three-
body model for the sudden breakup of two-neutron halos in
collisions with heavy targets developed in Ref. [58]. This
model was compared to experimental data on the nn corre-
lation in the breakup of 11Li [59,60], 14Be [59,61], and 6He
[59]. Within our discussion we were able to show the close
connection of this method to two-potential scattering theory.
Additionally, we reviewed the specific approximations which
were made.

It is interesting to note that certain FSI enhancement factors
can be derived from Eq. (35) by approximating the integral
that appears there. This is not really surprising, since en-
hancement factors and this more exact calculation are both
based on the findings of two-potential scattering theory. Nev-
ertheless, the derivation elucidates the relationship of the
enhancement-factor and explicit-calculation approaches to nn
FSI and provides a different perspective on the enhance-
ment factors. It is discussed in the Supplemental Material
[33].

After applying the FSI, the absolute value of the wave
function can be calculated, the integral measure can be ap-
plied, and the q momentum can be integrated out in order to
obtain the probability density distribution as a function of the
nn relative momentum, p. Note that taking Ṽ into account in
Eq. (26) could distort the probability distribution in p, even
though Ṽ acts only in the q subspace of the Hilbert space.
However, such effects are expected to be small, due to the
kinematics of the proposed knockout reaction. The formula

for the probability density ρ (t )(p) in this approach (where the
superscript denotes that the FSI is computed via the t-matrix)
reads

ρ (t )(p) =
∫

dq p2q2
∣∣� (wFSI)

c (p, q)
∣∣2

. (37)

The relative-energy distribution can then be calculated from
the momentum distribution by using Eq. (22).

The density ρ (t )(p) obeys the normalization condition∫
d pρ (t )(p) = 1. However, we remind the reader that the

existence of other channels than this one is not taken into
account in our calculation. Thus, this normalization condi-
tion does not represent the actual probability of knockout,
which in reality will be <1. Additionally, this normalization
condition requires that the wave-function component in use,
i.e., �c(p, q) := c〈p, q; �c|�〉, be normalized to 1, which is
another approximation.

C. Comparison of results

In Fig. 5 we compare results for the nn relative-energy
distribution obtained with the enhancement factor G1 and with
the t-matrix treatment of FSI. We do this for three different nn
scattering lengths, for which we use the following shorthand
notation:

a(+)
nn = −16.7 fm, a(0)

nn = −18.7 fm, a(−)
nn = −20.7 fm.

(38)

As mentioned before, we do not calculate the absolute
value of the distribution, but its shape. Therefore we normalize
the distribution to a certain value at a certain position. Here we
normalized to 1 at Enn ≈ 0.8 MeV. Not knowing the absolute
value is no problem for determining the scattering length;
the distribution will be fitted to the experimental data on the
spectrum and the scattering length extracted from the shape.

It can be seen that the scattering length has a significant
influence on that shape. When using distributions normalized
to an arbitrary value at Enn ≈ 0.8 MeV, the main effect of
the scattering length is to change the height of the peak lo-
cated at relative energies of roughly 100 keV. Additionally,
one can see that the two different procedures to include FSI
yield curves of similar shape, but they are not quantitatively

024001-12



NEUTRON-NEUTRON SCATTERING LENGTH FROM THE … PHYSICAL REVIEW C 104, 024001 (2021)

FIG. 5. Comparison of nn relative-energy distributions for differ-
ent nn scattering lengths obtained with different FSI schemes. The
calculation using the nn t-matrix is labeled as “t.” rnn = 2.73 fm is
used. All results are computed using the projection �c(p, q) and � =
1500 MeV. Uncertainty bands based on comparison with calculation
with half as many mesh points and � = 1000 MeV are negligible.
In order to be independent of the normalization the distribution is
divided by its value at the energy indicated by the red cross. The
solid and dashed vertical lines indicate the approximate positions
of the maxima in the t-matrix based FSI scheme for a(−)

nn and a(+)
nn ,

respectively.

in agreement. At a given ann the different FSI treatments
produce different peak heights in the nn distribution. The
enhancement-factor approach makes additional approxima-
tions beyond those involved when the nn FSI is fully
calculated from the nn t-matrix. Therefore we trust the latter
approach—with its full inclusion of the nn FSI—more.

We also calculated the distribution with the nn subsystem
in the 3P1 partial wave by applying Eq. (34) to the �(1,1,1)

c
ground-state wave-function component obtained with FaCE in
setting LGM1. We found that this distribution is suppressed
by a factor of at least 30 compared to the 1S0 distribution (in
the Enn < 1 MeV region). We compared the ground-state dis-
tributions as well and found that FSI increased the suppression
as anticipated at the beginning of Sec. III.

V. FROM THE nn RELATIVE-ENERGY DISTRIBUTION
TO THE nn SCATTERING LENGTH

After showing results for the nn relative-energy distribu-
tion, we want to discuss in more detail how the scattering
length can be extracted. Also, we want to discuss the role
of the nn effective range. First, we quantify the influence
of changing the scattering length by 2 fm. Figure 6 shows
quotients of the relative-energy distributions obtained with
different scattering lengths.

It can be seen that, if our normalization scheme is used,
a change of the scattering length by 2 fm changes the peak
height by approximately 10%. This change is almost com-
pletely independent of the method used to calculate the FSI.
Additional calculations show that a change in the scattering
length of 0.2 fm changes the peak height by about 1%.

FIG. 6. Ratios of nn relative-energy distributions obtained with
different scattering lengths for different FSI schemes in comparison.
The calculation using the nn t-matrix is labeled as “t,” and rnn =
2.73 fm is used. All results are based on �c(p, q). � = 1500 MeV
was used. Uncertainty bands based on comparisons with calculation
with half as many mesh points and � = 1000 MeV are shown. Due
to a normalization of the distributions to a value of 1 at Enn ≈
0.8 MeV, the quotients are at this point 1. The vertical lines indicate
the approximate positions of the maxima in the t-matrix based FSI
scheme for the lower and upper value of the scattering length.

In order to determine the scattering length at high preci-
sion it is necessary to know the influence of the nn effective
range on the distribution. As with the scattering length, the
effective range can enter the calculation at two stages. The
first is the calculation of the ground-state wave function of
6He. At this level, the influence of the scattering length is
low. As the scattering length is a leading-order parameter
and the effective range is a next-to-leading-order parameter,
we expect its influence on the 6He wave function to be very
small. The second stage is taking the FSI into account. In this
step, the scattering length plays a significant role. Therefore,
we cannot exclude a non-negligible influence of the range in
this step. We investigate the influence of the effective range
in the t-matrix based FSI approach and in the approach em-
ploying the enhancement factor G1 by using the following
values:

r (+)
nn = 3.0 fm, r (0)

nn = 2.73 fm, r (−)
nn = 2.0 fm, (39)

which is a rather large variation around the common litera-
ture value of rnp( 1S0) = 2.73(3) fm ≈ rnn [62]. Note that we
included rnn only in the calculation of the FSI but not in the
calculation of the ground-state wave function, as its influence
there should be negligible. While the effective range is varied
from r (−)

nn to r (+)
nn the change in the distribution is small: less

than 1% at peak position. Details can be seen from Fig. 7 in
Appendix B.

As a conclusion, these results show that the scattering
length has a significant influence on the nn relative-energy
distribution and that the effective range does not. Thus, the
distribution is suitable for extracting the scattering length.
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VI. OUTLOOK

Already at its present accuracy our calculation will be
able to provide a precise determination of the nn scattering
length using data from the measurement of the 6He(p, pα)nn
reaction that has been approved at RIKEN [22]. We also plan
to increase the accuracy of the EFT calculation, i.e., make
the uncertainty band narrower. First, we will move to NLO
Halo EFT calculations of the ground-state wave function.
While at Enn = 1 MeV the LO uncertainty is approximately
20%, the NLO uncertainty at this position will be around
5%. Second, we also want to improve the treatment of the
final-state interaction in EFT. For this purpose we will de-
velop an EFT framework for knockout reactions like the one
considered here. This will enable the inclusion of both the nα

interaction after knockout and corrections to the assumption
that the α particle removal does not affect the nn relative-
energy distribution—or at least it will allow us to constrain
such effects as occurring at a high order in a small expan-
sion parameter. The resulting EFT approach to the entire
6He(p, pα)nn reaction will allow us to rigorously assess the
full uncertainty of the two-step calculation we have carried
out here.

The reaction t (p, 2p)2n would also facilitate a measure-
ment of the nn scattering length along the same lines as those
discussed in this paper. This would be a valuable reaction
to examine: using two different nuclei as neutron sources
checks the reliability of the result for the scattering length.
As in the case of 6He the ground-state wave function of the
triton can be calculated in an EFT. In the case of the triton
it is the well-established pionless EFT, in which the neutron
and proton are the low-energy degrees of freedom [63]. This
EFT has the advantage that there is no relevant p-wave in-
teraction, but the triton has a two-neutron separation energy
of 8.48 MeV and so is more strongly bound than 6He. The
treatment of its proton-induced breakup would thus involve
a bigger expansion parameter and larger uncertainties at the
same order as in the case of the EFT for 6He. This, though, is
compensated by the fact that the pionless EFT for the triton is
established up to N2LO [64].
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APPENDIX A: CALCULATION OF WAVE
FUNCTIONS IN HALO EFT

Here we describe, how wave functions of the type

�i(p, q) := i〈p, q; �i|�〉 (A1)

can be calculated starting from the Fi(q) that are the solu-
tions of the integral equations obtained using the Faddeev
formalism in our Halo EFT approach. The procedure is not
specific to Halo EFT; it is a general procedure for Faddeev
equations in momentum space. However, in the course of this
description we use identities specific to 6He, mainly affecting
the partial-wave states. In this context, �i is the multi-index
specifying the quantum numbers of the three-body system
with particle i as a spectator under the condition that the total
quantum numbers are the ones of the 6He ground state and
the numbers for the jk subsystem characterize the interaction
channel. The basics of the Faddeev equations are described,
e.g., in Ref. [46]. Additionally, we use results and notation of
Ref. [24].

Making use of the decomposition of the total state |�〉
described in Eq. (13), we can write

�i(p, q) := i〈p, q; �i|�〉 =
∑

j
i〈p, q; �i|ψ j〉, (A2)

whereby |ψi〉 := G0ti|Fi〉 holds. In an intermediate step, we
calculate

ψi(p, q) := i〈p, q; �i|ψi〉 = 4πG(i)
0

(
p, q; −B(0)

3

)
× gli (p)τi

(
q; −B(0)

3

)
Fi(q), (A3)

where Eqs. (14)–(16) as well as the definition τi(q; E3) :=
τ jk (E3 − q2

2μi( jk)
) were used. Additionally, G(i)

0 (p, q; E3) :=
(E3 − p2/(2μ jk ) − q2/(2μi( jk) ))−1 holds. Consequently we
have a relation between ψi(p, q) and the numerically deter-
mined Fi(q). We use this result to continue the calculation of
the wave function of the total state:8

8Note that there might be additional nonvanishing wave functions
�

(�)
i (p, q) := i〈p, q; �|�〉 where � is a fixed multi-index not con-

tained in the set of �i, which are the quantum numbers of the
interaction channels. These �

(�)
i (p, q) are calculated as described

in Eq. (A4) with the modification that the �i (not the � j) has
to be replaced by the � of interest. Since this multi-index � has
no index naming it, we would call fi j now f�i j . (The κ functions
are independent of �.) We calculated such wave functions, e.g., a
� (�)

c (p, q) for � = �(0,2,2)
c and one for � = �(1,1,1)

c (notation from
Sec. II).
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�i(p, q) =
∑

j
i〈p, q; �i|ψ j〉 =

∑
j

∫
d p′ p′2

∫
dq′q′2

i〈p, q; �i|p′, q′; � j〉 j︸ ︷︷ ︸
=∫

dx fi j (p,q,x)δ(p′−κi j p(p,q,x))δ(q′−κi jq (p,q,x))/(p′2q′2 )

ψ j (p′, q′)

=
∑

j

∫
dx fi j (p, q, x)ψ j (κi j p(p, q, x), κi jq(p, q, x)), (A4)

where we used j〈p, q; �|ψ j〉 = δ�,� j ψ j (p, q), which follows from the properties of the used t-matrices and denoted cos θp,q as x.
For the momenta κi jk (k ∈ {p, q}) we use the notation of Appendix B.1 from Ref. [24]. Formulas for the overlaps and therefore
implicitly also for the fi j (p, q, x) are given in Appendix B.4 of that reference. We evaluate the angular integral numerically;
the formula is based on simplifications described in Appendix B.2 of Ref. [24]. Note that the antisymmetrization under nn
permutation causes some complications, but is just a special case of the more general structure described before.

The specific expression for �c(p, q) we are using then reads

�c(p, q) = 2π

∫ 1

−1
dcos θp,q

(
ac

√
2

4π
(κ̂cnp · κ̂cnq) + ãc

√
2

4π
(κ̂′

cnp · κ̂′
cnq) + dc

4π

)
. (A5)

We use the following definitions:

ac := ψn(κcnp, κcnq), ãc := ψn(κ ′
cnp, κ

′
cnq), dc := ψc(p, q). (A6)

Note that κ̂cnp, κ̂cnq, κ̂′
cnp, κ̂′

cnq and thereby also the
“coefficients” a, ã, and d depend on the momenta p
and q and in general also on x = cos θp,q. E.g., ac =
ψn(κcnp(p, q, x), κcnq(p, q, x)) holds.

APPENDIX B: INFLUENCE OF THE nn EFFECTIVE
RANGE ON THE nn RELATIVE-ENERGY DISTRIBUTION

For the planned experiment, also the dependency of the
nn relative-energy distribution on the nn effective range is
relevant. Ideally, this dependency would be small in order
not to complicate extraction of the scattering length from the
measured spectrum. Figure 7 shows ratios of final-state nn

FIG. 7. Ratios of nn relative-energy distributions obtained with
different effective ranges for different FSI schemes in comparison.
The definitions r (+)

nn = 3.0 fm, r (0)
nn = 2.73 fm, and r (−)

nn = 2.0 fm
hold. All results are based on �c(p, q). � = 1500 MeV was used.
Uncertainty bands based on comparisons with calculation with half
as many mesh points and � = 1000 MeV are shown. Due to a
normalization of the distributions to a value of 1 at Enn ≈ 0.8 MeV,
the quotients are at this point 1. The vertical lines indicate the ap-
proximate positions of the maxima in the t-matrix based FSI scheme
for the lower and upper value of the scattering length.

relative-energy distributions obtained with different values for
the nn effective range. The influence of the effective range
variations at the level of the ground state was neglected in
these calculations; up to this point only rnn = 2.73 fm was
used there. What is shown is therefore the effect on the FSI
when rnn is varied by 1 fm.

The overall variation of the effective range by 1 fm has
only a small influence on the distribution. The changes caused
by this variation are less than 1% at the peak position. The
bands showing the numerical uncertainty may appear large,
but their absolute size is of the same order as in Fig. 6.
However, they cover large parts of the plot because of the
small influence of the effective range.

Finally, we explain how these numerical uncertainties of
ratios of distributions were estimated in Figs. 6 and 7: The
numerical uncertainty of the ratio r of distributions ρ (1) and
ρ (2) given by

r(Enn) := ρ (1)(Enn)/ρ (2)(Enn) (B1)

was estimated according to

�r(Enn) =
√(

�ρ (1)(Enn)

ρ (2)(Enn)

)2

+
( −ρ (1)(Enn)

(ρ (2)(Enn))2 �ρ (2)(Enn)

)2

(B2)

by using the uncertainties of the distributions denoted by
�ρ (1) and �ρ (2). That is the standard formula for the propaga-
tion of uncertainties based on the linearization of the functions
under the assumption that the two distributions are not cor-
related. If we would assume a correlation of 1 between the
distributions (for all energies), the uncertainty bands would
get much smaller. While this might be a reasonable approxi-
mation, we chose to draw more pessimistic uncertainty bands
by not using it.
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