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How to extract the electromagnetic response of 6He in relativistic collisions
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I investigate the difficulties in obtaining the electromagnetic response of light, halolike nuclei using reactions
at radioactive beam facilities. A relativistic coupled-channels theory for the calculation of dissociation cross
sections of halo nuclei is compared to first-order perturbation theory. A comparison with semiclassical models
frequently used in experimental analysis is also performed. It is shown that the effects of relativity and of the
nuclear interaction lead to sizable effects in the extraction of the electromagnetic response of 6He projectiles.
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I. INTRODUCTION

The investigation of nuclear reactions induced by unstable
nuclei is important for both nuclear physics and nuclear as-
trophysics [1]. Measurements of nuclear reactions involving
unstable nuclei as targets is not feasible, and the most viable
method to experimentally study their nuclear properties is
to resort to indirect methods using the unstable nuclei as
projectiles [2]. Among the methods that have been used for
this purpose in radioactive beam facilities, I cite the Coulomb
dissociation of radioactive projectiles. The pioneer work in
Ref. [3] showed that this method can be used to extract
radiative capture cross sections of the types (n, γ ), (p, γ ),
and (α, γ ) of interest for nuclear astrophysics using detailed
balance. Subsequent experiments have demonstrated the use-
fulness of the Coulomb dissociation method for this purpose
(see, e.g., Refs. [4–11]) as well as for various other studies of
nuclear structure and nuclear astrophysics such as the electro-
magnetic response of radioactive nuclei and the excitation of
pygmy resonances and its connection to the physics of neutron
stars (see, e.g., Refs. [12–20]).

Coulomb breakup reactions are carried out at radioactive
beam facilities with projectile bombarding energies of a few
hundred MeV/nucleon impinging on stable targets A such as
9Be, 12C, or 208Pb. It is the purpose of this article to report
a study of various reaction mechanisms and to guide experi-
mental analysis for a proper extraction of the electromagnetic
response of radioactive nuclei. I will discuss reactions of the
type a + A → c + N1 + N2 + A, i.e., when the projectile is
dissociated into a core nucleus, c, and two nucleons, Ni (i =
1, 2). In particular, I will apply the results to 6He dissociation,
which has been studied experimentally [21]. Recently, highly
accurate data were obtained and experimental analysis is in
progress [22].

*carlos.bertulani@tamuc.edu

Besides dissociation via the Coulomb interaction, the nu-
clear interaction also contributes appreciably to projectile
dissociation. That poses a hurdle to the experimental anal-
ysis because the strong interaction between nuclei is not as
well known as its Coulomb counterpart. It has been a chal-
lenge for theorists and experimentalists alike during many
decades to determine which interaction is dominant when
distinct kinematic conditions are selected. Additionally, the
modeling of direct reactions with relativistic projectiles in-
volves formidable challenges: (1) Because reactions carried
out at few hundred MeV/nucleon involve a sizable increase
of the projectile rest mass, a relativistic covariant reaction
theory is desirable. (2) An optical model potential for direct
reactions with relativistic nuclei is not considered properly in
most theoretical studies published so far. (3) The inclusion of
couplings to, from, and within the nuclear structure continuum
is important for reactions involving weakly bound nuclei.
Various theoretical publications have addressed items 1 and 2,
for example Refs. [23–34] and many others. Item 3 has been
considered in many publications, although the calculations
have mostly been performed ignoring the effects of items 1
and 2 (see, e.g., [27,35–44]).

In this article I revisit the theoretical challenges in describ-
ing breakup reactions at few hundred MeV/nucleon. I include
new theoretical developments. My goal is to show how one
can extract the electromagnetic response of halo nuclei. I ap-
ply my theory to the dissociation of 6He projectiles incident on
carbon, tin, and lead targets. I discuss the challenges encoun-
tered to develop a covariant theory for breakup reactions at
relativistic energies and propose additional methods to tackle
the problem. Medium corrections are included by the con-
struction of optical potentials using effective nucleon-nucleon
interactions and nucleon-nucleon scattering observables as
building blocks. This last assumption is justified because the
collision is sudden and nucleons tend to be involved individ-
ually in a frozen configuration during the reaction. The most
relevant part of the optical potential in high energy collisions
is the imaginary part, which emerges from absorption due
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to binary nuclear collisions. The increase of the rest mass
of the nuclei and the effects of relativistic dynamics on the
optical and Coulomb potentials is studied using minimal and
transparent approximations that will help to clarify the main
challenges of the reaction mechanism.

In Secs. II–V I discuss the modifications in the dynamic
equations for the breakup process to include relativistic cor-
rections and couplings with the continuum. In Sec. VI I make
use of a simplified three-body model to test the effects of re-
action dynamics on the breakup of 6He. Numerical results for
the dissociation of 6He are shown in Sec. VII. My conclusions
are presented in Sec. VIII. Whenever possible, I will use a
simplified notation to focus on where improvements could be
done in future works.

II. EXCITATION AMPLITUDES

I adopt the relativistic eikonal CDCC (continuum dis-
cretized coupled-channels) method proposed in Ref. [28]. The
coupled channels equation reads

ih̄v
d

dz
Sc(b, z) =

∑
c′

〈�c|Hint (b, z)|�c′ 〉Sc′ (b, z) ei
Ecc′ z

h̄v ,

(1)

where Sc(b, z) is the reaction S matrix for a collision at
the impact parameter b, v is the (supposedly) undisturbed
projectile velocity, a good approximation for high-energy
collisions, Hint is the interaction hamiltonian, and c are the
channel indices {i, �, m}. The index i > 0 (i = 0) denotes
the ith discretized-continuum (ground) state, and � and m
are, respectively, the orbital angular momentum and its pro-
jection along the z axis taken to be parallel to the incident
beam. Ecc′ = Ec′ − Ec is the excitation energy, and �c are
the internal wave functions of the projectile. By solving these
equations with the initial condition Sc(b,−∞) = δc0, one can
obtain the probability that a channel c is populated in the
reaction, namely, |Sc(b,∞)|2.

Equation (1) were obtained from the Klein-Gordon equa-
tion applied to the wave function of the projectile, neglecting
terms of the type ∇2Sc′ (b, z) compared to ik∂Sc′ (b, z)/∂z,
where k2 = E2 − Mc2, with E being the total energy of
the projectile including its rest mass M. Equation (1) is
Lorentz invariant if the interaction Hamiltonian Hint is a scalar
potential U transforming as the timelike component of a four-
vector. The scattering amplitude for the transition from the
ground state to the continuum 0 → c, including higher-order
c′c′′ couplings, is given by

fc(q) = − ik

2π

∫
db exp[iq · b][Sc(b,∞) − δ0c], (2)

where q = k′ − k is the momentum transfer in the reaction.
Most cases of interest involve momentum transfers much
smaller than the momentum of the impinging projectile. Thus,
one can use the expression valid for elastic scattering, q =
2k sin(θ/2), where θ is the scattering angle.

The equations above include transitions in the continuum
if a discretization procedure in the continuum is adopted.
In my calculations, a continuum wave function in channel c

with energy Ec can be discretized by using the simple bin
discretizaton method [45]

|Ec〉 =
∫

dE ′
c 
(E ′

c)|E ′
c〉, (3)

where 
(E ′
c) is an appropriately orthonormalized function

peaked at energy Ec and with a width �Ec. I employ the
simplest discretization method,


(Ej ) =
{

1
�E if ( j − 1)�E < Ec < j�E ,

0 otherwise.
(4)

The inelastic cross section is obtained as dσc/d =
| fc(q, Ec)|2. For simplicity, the angular momentum and other
quantum numbers are not displayed explicitly. This formalism
is known as relativistic continuum discretized coupled chan-
nels, with acronym RCDCC [28]. It is an improvement over
the nonrelativistic coupled channels procedures, with a better
description of experiments for bombarding energies around
and above 100 MeV/nucleon.

To include absorption at small impact parameters, the S
matrix Sc(b,∞) obtained by solving Eq. (2) is corrected by
the modification

Sc(b,∞) → Sc(b,∞) exp{iχ (b)},

χ (b) =
∫

ρP(q)
(q)ρT (q)J0(qb)q dq, (5)

where J0 is the ordinary Bessel function of zeroth or-
der, and the nucleon-nucleon scattering profile function is
parametrized as [46]


(q) = i

4π
σNN e−βNN q2

. (6)

In the equation above, σNN is the total nucleon-nucleon cross
section, and βNN is the momentum dependence parameter. ρP

(ρT ) is the Fourier transform of the ground state density of the
projectile (target). Tables with the energy dependence of these
parameters are found in Refs. [1,47]. I add to the imaginary
part of Eq. (5) corrections due to Coulomb scattering at large
impact parameters. They are properly accounted for by using
the simple expression χ → χ + χc with χc(b) = 2η ln(kb),
where η = ZPZT e2/h̄v is the Sommerfeld parameter [48].

The coupled channels method described above can be
used with any nuclear structure model: either a two-body,
three-body, or many-body model to calculate the matrix el-
ements 〈�c|Hint (b, z)|�c′ 〉 in Eq. (1). First order excitation
amplitudes can be obtained by using Sc(b, z) = δc0 on the
right-hand side of Eq. (1), yielding

Sc(b,∞) = − i

h̄v

∫ ∞

−∞
dz〈�c|Hint (b, z)|�0〉ei E0cz

h̄v

× exp{iχ (b)}. (7)

In the next sections, I describe how the RDCC equa-
tions reduce to results obtained with eikonal scattering waves
and first-order perturbation theory. It is also worthwhile to
compare them to semiclassical methods extensively used in
the analysis of nucleus-nucleus inelastic scattering. One ma-
jor task is the treatment of relativistic corrections in the
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interaction Hamiltonian Hint. While this can be achieved
straightforwardly in the case of the Coulomb interaction, in
the nuclear case it can only be done in an approximate way
by mimicking the Lorentz transformations of the Coulomb
field [31].

III. QUANTUM AND SEMICLASSICAL
ANGULAR DISTRIBUTIONS

A. Exact scattering amplitudes

I will assume that the nuclei possess spherical symmetry,
leading to a simplification of the integration in Eq. (2). The
angular distribution of the inelastically scattered particles is
obtained from the amplitudes Sc(b,∞). The excitation of the
channel state c �= 0 becomes

f μ
c (θ ) = ik

∫ ∞

0
dbbJμ(qb)Sc(b,∞). (8)

The index μ = Mc − M0 denotes the change of the magnetic
quantum number Mi associated with the total angular momen-
tum Ji of the excited nucleus. The inelastic scattering cross
section is obtained by an average over the initial spin and a
sum over the final spins:

dσc

d
= 1

2J0 + 1

∑
M0,Mc

∣∣ f μ
c (θ, Ec)

∣∣2
. (9)

For large bombarding energies q = 2k sin θ/2 	 kθ and
d = 2πqdq/k2, leading to

σ = 2π

2J0 + 1

∑
M0,Mc

∫
db b

∫
db′ b′

∫
dq qJμ(qb)Jμ(qb′)

×S (b,∞)S∗(b′,∞)

= 1

2J0 + 1

∫
db b|Sc(b,∞)|2, (10)

where, in the last step, the completeness relation of the Bessel
functions, ∫

dq qJμ(qb)Jμ(qb′) = 1

b
δ(b − b′), (11)

was used. Equations (8)–(10) describe the angular distri-
butions and total cross sections with the inclusion of any
desired number of channel couplings after solving Eq. (1) for
S (b,∞).

B. First-order perturbation theory

In first-order perturbation theory, one inserts Sc′ (b,∞) =
δc0 on the right-hand side of Eq. (1). As shown in Ref. [48]
[their Eqs. (11)–(15)], for large impact parameters the am-
plitudes Sc(b,∞) can be calculated analytically and Eqs. (8)
and (9) yield the same results as those already obtained in
Refs. [48,49], where the differential Coulomb excitation cross
sections are given by

d2σ

d dE
= 1

E

∑
πL

dnπL

d
(E , θ )σπL

γ (E ) (12)

and
dσ

dE
= 1

E

∑
πL

nπL(E )σπL
γ (E ). (13)

The photonuclear cross section for multipolarity πL is related
to the response functions as [49],

σπL
γ (E ) = (2π )3(L + 1)

L[(2L + 1)!!]2

(
E

h̄c

)2L−1 dB(πL, E )

dE
. (14)

The equivalent photon numbers are given by [49]

dnπL

d
(E , θ ) = Z2

T α

(
Ek

γ h̄v

)2 L[(2L + 1)!!]2

(2π )3(L + 1)

×
∑

M

|GπLM (c/v)|2|M (q)|2, (15)

where the functions Gπλm(c/v) are defined in Ref. [50]. The
function M (q) is given by [48]

M (q) =
∫ ∞

0
db bJM (qb)KM

(
Eb

γ h̄v

)
exp[iχ (b)], (16)

where JM and KM are the Bessel and modified Bessel func-
tions. The virtual photon numbers entering Eqs. (13) are

nπL(E ) = Z2
T α

L[(2L + 1)!!]2

(2π )3(L + 1)

∑
M

|GπLM (c/v)|2gM (E ),

(17)

where

gM (E ) = 2π

(
E

γ h̄v

)2 ∫ ∞

0
db bK2

M

(
Eb

γ h̄v

)
exp[−2χI (b)],

(18)

with χI being the imaginary part of the eikonal phase in
Eq. (5).

A common misconception found in the literature is to
assume that in a “pure” Coulomb excitation the angular dis-
tributions should not display a diffraction pattern because no
nuclear interaction is considered. This is not true in quan-
tum mechanics because even without nuclear excitation the
scattering waves are still modified by absorption at small
impact parameters. The angular distribution depends on the
integral in Eq. (16) which induces diffraction patterns in the
angular distribution. The misconception arises because in the
frequently used semiclassical model the quantum scattering
is replaced by classical trajectories and a smooth angular
distribution emerges. I will show how the angular distribution
in the semiclassical picture emerges from the quantum me-
chanical method described above, but only when the Coulomb
interaction is overwhelmingly dominant.

C. Semiclassical approximation at large impact parameters

Using the same approximations as in Ref. [48], I can show
that when χI = 0, i.e., χ = χc, the following result holds at
large impact parameters:

|M |2 = 1

k2

(
dσ

d

)
Ruth

KM

(
ωb0

γ v

)
(19)
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where

b0 = ZPZT e2

2Ecm sin(θ/2)
. (20)

Inserting this approximation into Eq. (15) yields smooth angu-
lar distributions for Coulomb excitation. The total cross sec-
tions are also simplified because the integral in Eq. (18) can be
done analytically if one restricts to a minimum impact param-
eter above which the Coulomb interaction is dominant [49].

So far, I did not discuss the form of the Coulomb and
nuclear interactions entering Eq. (1) as well as the model to
calculate the projectile transition matrix elements. I show this
in the next Section, with emphasis on the Lorentz transforma-
tion properties.

IV. RELATIVISTIC COULOMB INTERACTION

Because the continuum wave functions extend to large dis-
tances, the continuum-continuum transition matrix elements
may diverge if the Coulomb potential is not properly regular-
ized. The covariant Coulomb interaction Hamiltonian for the
breakup of a projectile is given by

HC
int = jνAν =

∑
i

[
qi�(ri ) − 1

c
ji · A(ri )

]
, (21)

where the index i denotes the individual charges. �(ri ) and
A(ri ) are the electric and vector potentials due to the target at
the location of the charges within the projectile. ji is the charge
current within the projectile. I include convective currents
only. For a projectile moving at high speeds, the Coulomb
deflection is small and one can resort to the approximation
A(ri ) = (v/c)�(ri ), where v is the projectile velocity. A
proper description of “close” versus “distant” collisions for
relativistic Coulomb excitation was developed in Ref. [51]. I
will consider electric excitations only and cast the Coulomb
potentials in an adequate form. For E1 Coulomb excitations,
correcting for the center-of-mass motion of the projectile, the
analytical form is

HE1μ = 4πγ ZT e1e

3

r<

r2
>

Y1μ(r̂<)Y ∗
1μ(r̂>), (22)

where r< (r>) is the smallest (largest) value of r, the internal
coordinate of the wave function of the projectile; the rela-
tivistic distance to the target r′ =

√
y2 + γ 2z2; e1 = Za/ma −

Zb/mb is the effective charge for the projectile with a clus-
terlike structure AP = a + b; and γ is the Lorentz factor.
These potentials are amenable to a separation of close and
distant collisions. In the former case the wave functions of
the bound and continuum states extend beyond the “relativis-
tic distance” between the projectile and target, i.e., beyond
r′ =

√
y2 + γ 2z2.

For E2 excitations the Coulomb potential is given by

HE2μ = 4πγ ZT e2e

5

r2
<

r3
>

Y1μ(r̂<)Y ∗
1μ(r̂>), (23)

where e2 = Za(mb/mP )2 + Zb(ma/mP )2.
The expressions above reduce to the usual Coulomb excita-

tion expansion at low energies. The inclusion of the convective

current, i.e., the second term in Eq. (21), is omitted in these
equations. An exact account of the contributions from the
convective current is presented in Ref. [51]. Convective cur-
rents are found to be negligible by a factor (Exr/h̄v)2 for
the cases discussed in this work, where Ex is the excitation
energy and r is a distance from the projectile center of mass.
This conclusion also holds for continuum-continuum tran-
sitions for which r can reach large values. Convergence in
continuum-continuum transitions is guaranteed because the
integrand in the matrix elements (discussed below) changes
the role of r and r′ when one becomes larger than the other.
The discretization of the continuum states according to the
procedure described in Eqs. (3) and (4) also helps the quick
convergence of the transition matrix elements.

When inserted into Eq. (1), one will need the ma-
trix elements 〈�c|rLYLμ(r̂)|�c′ 〉 for distant collisions and
〈�c|Y ∗

Lμ(r̂)/rL+1|�c′ 〉 for close collisions. In both cases, one
can separate the geometric coefficients from the radial inte-
grals by using

〈�c|rLYLμ(r̂)|�c′ 〉 = 〈JcMcLμ|Jc′Mc′ 〉〈�c||rLYL||�c′ 〉, (24)

and similarly for the matrix elements of Y ∗
Lμ(r̂)/rL+1.

For first-order excitations, I will only use the distant form
of the Coulomb potential because the ground-state wave func-
tions are well localized. Using Eqs. (22) and (23) in Eq. (7) it
is straightforward to show that the Coulomb excitation cross
sections are directly proportional to the electric dipole and
quadrupole response functions, defined as

dB(EL)

dEx
= |〈�(Ec, J )||rLYL||�0〉|2

2J0 + 1
, (25)

with Ex ≡ Ec − E0. The final state is labeled in terms of its
energy Ec, and angular momentum J , i.e., �(Ec, J ) ≡ �c.
If the response function is not available from a theoretical
model but can be extracted from an experiment, the matrix
elements needed for the Coulomb excitation cross section can
be approximated as

〈�(Ec, J )||rLYL||�0〉 = eiδ[(2J0 + 1)dB(EL)/dEx]1/2,

(26)

where δ is a phase, which I conveniently choose to be equal
to zero.1 This procedure is also useful to obtain the excitation
amplitudes for couplings between the ground and continuum
states using the coupled-channels equations Eq. (1).

The matrix elements for continuum-continuum coupling
cannot be extracted from an analysis of Coulomb breakup
experiments. One has to rely on a theoretical model. For sim-
plicity I will use continuum waves generated from a standard
two-body Woods-Saxon potential. This is a departure from
the three-body model adopted for the ground-state to con-
tinuum transition. Using these two assumptions I assess the
effects of ground-state–continuum and continuum-continuum
transitions, including all couplings between the states. It is

1The effects of the nuclear phases δ can be studied by generating
random complex values and identifying their impact on the reaction
observables.
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worth mentioning that employing two-body continuum wave
functions to obtain matrix elements for continuum-continuum
transitions is inconsistent with the three-body wave functions
used to calculate ground-state to continuum transitions. This
might be a source of uncertainties to account for the effects of
continuum-continuum couplings. The sensitivity of the results
on the parameters of the Woods-Saxon potential were found
to be minor, except if the range of the potential is increased
by about three times beyond typical nuclear potential ranges,
which are close to the sum of the root-mean-square radii of
the ground-state densities.

V. RELATIVISTIC NUCLEAR INTERACTION

A. Real part of the nucleus-nucleus interaction

At low energies (Elab � 50 MeV/nucleon), there are nu-
merous methods used in the literature to describe optical
potentials for nucleus-nucleus collisions. These potentials
consist of a real and an imaginary part accounting for all
processes leading to energy loss from the elastic scattering
channel. However, the extension of this approach to direct
nuclear reactions is not well justified for relativistic colli-
sions. Lorentz invariance implies that potentials should be
four-vectors. Moreover, due to retardation, a microscopic
ab initio formalism aimed at building a nucleus-nucleus
potential from nucleon-nucleon interactions becomes cum-
bersome and unrealistic. A rather successful method, known
as “Dirac phenomenology,” has been developed for nucleon-
nucleus scattering [55]. This phenomenological method
captures the essence of the spin-orbit interaction in proton-
nucleus scattering. It is based on the use of the Dirac
equation with two nuclear potentials. The first is a potential
U0(r) transforming as the timelike component of a Lorentz
four-vector. The second potential, US (r), is a Lorentz scalar.
These potentials are viewed as effective interactions due to
nucleon-nucleon scattering via meson exchange, folded with
proton and neutron densities. The potentials depend on the
masses and coupling constants of one-boson exchange of the
neutral vector ω and scalar σ mesons [55].

One could try to generalize this procedure from proton-
nucleus to nucleus-nucleus scattering. However, additional
complications arise because the projectile is now a composite
object and the distance between projectile and target nucle-
ons is affected by retardation. Unless an unjustified folding
procedure is adopted, such a method is not better than adopt-
ing the same kind of phenomenology used for low energy
nucleus-nucleus scattering. The challenges for the formula-
tion of retardation effects in the nucleus-nucleus potential
was pointed out in Ref. [29] using a relativistic mean field
approach. This pioneer study has not been explored further.
It was shown in Ref. [29] that, with the inclusion of retarda-
tion, the nucleus-nucleus potential is substantially modified at
the nuclear surface. The nuclear surface is the most relevant
interaction region in direct nuclear reactions at high energies.

The usual formalism adopted for low energy reactions
resorts to a nuclear potential for the projectile dissociation
given by U = (

∑
i UiT ) − UPT . This is a sum of the inter-

actions between the core (i = C) and the projectile clusters
with the target T , minus the projectile-target interaction to

eliminate the center-of-mass motion. In my present context,
this amounts to find a relativistic optical potential UiT , which
is a daunting task. Here I adopt a basic approach to the (real)
nuclear potential that captures the essence of low-energy re-
actions and includes a modification due to relativity. At high
energies the collision is peripheral in nature, due to absorption
at small impact parameters. The nucleon-nucleon interactions
are also short range. Therefore, I expect that only the tails
of the nuclear potentials are effective and only the region
around the nuclear surface of the projectile is substantially
probed. This justifies adopting a Taylor expansion of the po-
tential around the surface region of the projectile, a procedure
similar to the one introduced in Ref. [56]. For isovector exci-
tations the potential is proportional to the neutron skin, �Rnp,
namely U ∼ �RnpdU/dr, where U is the nucleus-nucleus
optical potential. The physics justification is that the strong
interaction tends acts differently on protons and neutrons and
tends to pull them apart. I propose without a rigorous proof
that a similar dependence for the breakup potential arises
due to its tendency to separate the core from the neutrons,
and the following equation ensues for the nuclear breakup
potential:

U (r) = −β
(〈

r2
HeC

〉1/2 − 〈
r2

He2n

〉1/2)dU

dr
, (27)

where 〈r2
HeC

〉1/2 (〈r2
He2n

〉1/2) is the root-mean-square radius of
the core (valence nucleons) in 6He. I have introduced a pa-
rameter β to account for small deviations from the surface
approximation. The averages above depend on the core and
valence neutrons density distribution in 6He, which will be
discussed below.

The scalar nuclear potential U entering Eq. (27) is calcu-
lated with a double-folding approximation,

U (r) =
∫

ρP(r′)v0(s)ρT (r′′)d3r′d3r′′, (28)

where v0(s) is the effective nucleon-nucleon potential, with
s = r′ + r − r′′. For simplicity, I use the M3Y interaction
[57], parametrized to reproduce inelastic nucleus-nucleus
scattering at intermediate energies,

v0(r) = 7999
exp(−4r)

4r
− 2134

exp(−2.5r)

2.5r

+ 276

(
1 − 0.005

E

AP

)
δ(r), (29)

in MeV and fm units. The potential U (r) is peaked at the
surface of the projectile due to the derivative in Eq. (27).

To account for the effect of retardation, the nuclear inter-
action is modified so that

U (b, z) → γU (b, γ z),

mimicking the Lorentz effects in the Coulomb interaction.
Although this prescription is not based on first principles,
it captures again the essence of nuclear-induced breakup at
high energies. A variant of this procedure has been used with
success at low energies to describe collective excitations in
nucleus-nucleus collisions [56].
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B. Imaginary part of the nucleus-nucleus interaction

The inclusion of the absorption channel due to an imagi-
nary part of the interaction is taken into account with Eq. (5)
and the profile function in Eq. (6). It is well known that the ab-
sorption caused by the imaginary part of the optical potential
can also lead to the breakup of the projectile, a process known
as diffraction dissociation. The process leads to low energy-
momentum transfer above the threshold of fragmentation. If
the momentum transfer is small enough (q  1/R), where R
is the nuclear radius, the diffraction around the target couples
coherently to nucleons and clusters inside the projectile. The
word nuclear elastic interaction, frequently found in the liter-
ature for this kind of process, is misleading because the real
part of the potential can also induce the fragmentation of the
projectile without changing the state of the target. This phe-
nomenon is also part of the so-called nuclear elastic breakup.
Diffraction dissociation is a purely wave-mechanical process
caused by the diffraction of the projectile around an opaque
matter distribution of the target, and is therefore an “elastic”
process. I prefer to use the notation diffraction dissociation
specifically for the breakup occurring due to the imaginary
part of the nuclear potential, stemming from absorption at
small impact parameters.

The diffraction dissociation formalism was introduced by
Akhiezer and Sitenko to describe the dissociation of the
deuterons by a “black nucleus” [58]. A similar formalism was
also developed independently by Glauber [59]. An extension
of the formalism to the dissociation of a generic weakly bound
nuclear projectile was formulated by Bertulani and Baur [60].
It has been shown that a proper consideration of the binding
energy of the projectile decreases considerably the magnitude
of the diffraction dissociation cross section in contrast to the
original estimates published in Refs. [58,59].

The diffraction dissociation of 6He for a momentum trans-
fer q in a collision with the target depends on the “survival
probability” of the core, SC , and of the two neutrons, S2n,
weighted with the probability amplitude to find the system
initially at a distance r,

dσd

d3q
= η

(2π )4

∫
d2bC

∣∣∣∣∫ d3rSC (bC )S2n(b2n)

× e−ηr

r

[
eiq·r + 1

iq − η

e−iqr

r

]∣∣∣∣2

, (30)

where b2n can be written in terms of the impact parameter of
the core bC and the relative distance between the α core and
the two neutrons, r = (ρ, z) ≡ (r, θ, φ), in the form

b2n = |ρ − b2n| =
√

r2 sin2 θ + b2
C − 2bCr sin θ cos φ.

For the purposes of calculating the S matrices for the
neutrons+target, I assume that the two neutrons are treated
as a dineutron particle.

The expression inside the brackets in Eq. (30) is the
asymptotic wave function of the α−2n system with η =
(2μS/h̄2)1/2, with S being the separation energy. The second
term inside the brackets accounts for the completeness of
continuum and bound-state wave functions. μ = 4mN/3 is
the reduced mass of the α + 2n system. In contrast to the

previous equations for S matrices to account for absorption,
as in Eq. (5), the formalism described above requires SC

for the core-target interaction and S2n for the neutron-target
interaction separately. The same Eq. (5) is used, but with ρP

replaced by ρC and by ρ2n, respectively. For ρC (alpha core in
6He) I use ρC (r) = ρ0 exp(−r2/a2), with a = 1.325 fm, im-
plying a rms radius

√
〈r2〉α = 1.62 fm with ρ0 adjusted so that∫

ρC (r)d3r = 4. The valence neutrons density is described by
ρ2n(r) = ρ0r2 exp(−r2/b2), with b = 2.045 fm, implying a
rms radius for the valence neutrons

√
〈r2〉n = 3.23 fm. These

values are in accordance with the results presented in Ref. [61]
for the 6He density assumed to be a properly normalized sum
of the core and neutron distributions (see also Ref. [62]). The
neutron distribution is normalized to 2 before inserting in
Eq. (5) to calculate S2n.

In the sharp-cutoff approximation used in Ref. [60],
SCS2n 	 �(r − R), where R is the sum of the projectile and
target rms radii, R ∼ 〈r2〉1/2

6He + 〈r2〉1/2
208Pb. In this approxima-

tion, the integrals in Eq. (30) can be done analytically, and
the diffraction dissociation cross section for the excitation to a
channel with energy E is obtained as a sum of the independent
scattering of the clusters by the target minus a term corre-
sponding to the interference scattering of the clusters, also
called the eclipse, or shadowing, term. The shadowing term
tends to interfere destructively with the first two terms. For
strongly bound nuclei, S/E → ∞, and one can show [60] that
dσd/dE → 0. On the other hand, for loosely bound nuclei,
S/E → 0, and

dσd

dE
∼ 2πR2

E
J2

1

(√
2μE

h̄
R

)
, (31)

meaning that the diffraction dissociation cross section in the
very low biding regime is nearly equal to the sum of the elastic
diffraction cross section of each cluster by the target. It also
reveals the diffraction scattering pattern emerging from the
Bessel function J1. The angular distribution dips occur at mul-
tiples of θ 	 1/kR, and for excitation energies multiples of
E ∼ h̄2/2μR2. Because diffraction dissociation only involves
coordinates transverse to the incident projectile direction, it is
also Lorentz invariant.

It is important to mention that Eq. (31) is not applicable
to the problem studied here. In the case of 6He, the nucleon
separation energy is not negligible (≈1 MeV) compared to the
dissociation energies E , and the full diffraction dissociation
equation, Eq. (30), is used with the S matrices obtained
from the folding of nuclear densities, indicated in Eq. (5).
The diffraction dissociation is roughly independent of the
projectile incident energy for the range of energies considered
in this work.

VI. HALO EFFECTIVE THEORY
FOR THE RESPONSE FUNCTION OF 6He

The purpose of this work is to report a study of reaction
mechanisms in extracting the electromagnetic response of
halo nuclei, such as 6He, in reactions at intermediate and
high bombarding energies. The formalism described in the
previous sections requires knowledge of matrix elements for
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the various transitions. I use a simplified three-body model
for 6He as a n + n + α system based on halo effective theory
(HET).2 In this model, the bound-state wave function in the
center-of-mass system is written as an expansion over hyper-
spherical harmonics (HH) (see, e.g., Refs. [52–54,64–68]),

�(x, y) = 1

ρ5/2

∑
KLSlxly

�
lx ly
KLS (ρ)

[J lx ly
KL (5) ⊗ χS

]
JM . (32)

In this equation, x and y are the Jacobi coordinate vectors

x = 1√
2
(r1 − r2) and y =

√
2(A−2)

A ( r1+r2
2 − rc), where A is the

nuclear mass, r1 and r2 are the positions of the valence neu-
trons, and rc is the position of the core. The hyperradius ρ

determines the size of a three-body state: ρ2 = x2 + y2. The
five angles {5} include usual angles (θx, φx ), (θy, φy) which
parametrize the direction of the unit vectors x̂ and ŷ and the
hyperangle θ , related by x = ρ sin θ and y = ρ cos θ , where
0 � θ � π/2.

The insertion of the three-body wave function, Eq. (32),
into the Schrödinger equation yields a set of coupled differ-
ential equations for the hyperradial wave function �

lx ly
KLS (ρ).

Assuming that the nuclear potentials between the three par-
ticles are known, this method delivers the bound-state wave
function for a three-body system with angular momentum J .
To simplify calculations, I will follow here a simpler HET
procedure using the asymptotic part of the bound-state wave
function and a set of final states which include the proper
coordinate space and energy dependence. For weakly bound
systems (the two-neutron separation energy in 6He is 0.975
MeV) the hyperradial functions entering the expansion (32)
behave asymptotically as �a(ρ) → const × exp(−ηρ) when
ρ → ∞, where the two-neutron separation energy is related to
η by S2n = h̄2η2/(2mN ). This wave function has similarities
with the two-body case, if ρ is interpreted as the distance r
between the core and the two nucleons, treated as one single
particle. But the mass mN would have to be replaced by 2mN if
a simple two-body model were used for 6He. A full three-body
model is superior in accuracy because it includes interactions
between the three particles without further approximations.
But due to the uncertainty in the two- and three-body po-
tentials as well as the Pauli-blocking procedure used in the
calculations, the effort does not justify the benefits. The HET
model used here, based on the asymptotic behavior of the
three-body wave function, includes the main features of the
three-body phase space and is enough for my purposes.

Because only the core carries charge, in a three-body
model, the E1 transition operator is given by O ∝ yY1M (ŷ).
The E1 transition matrix element is obtained by a sandwich of
this operator between �a(ρ)/ρ5/2 and scattering wave func-
tions. I will use distorted scattering states, and the expression
for the radial matrix element is

M(E1) =
∫

dx dy
�a(ρ)

ρ5/2
y2xup(y)uq(x), (33)

2Not to be confused with halo effective field theory, or halo-EFT,
which uses concepts of field theory [63]. HET uses the traditional
Schrödinger mechanics.

FIG. 1. Comparisons between theoretical predictions for the
response function dB(E1)/dE , Eq. (25), with experimental data
extracted from the Coulomb breakup of 6He projectiles incident on
Sn and Pb targets [21]. Dashed and dotted curves are the results
obtained with three-body calculations reported in Refs. [52–54]. The
model explained in the text is shown as a solid line.

where up(y) = j1(py) cos δnc − n1(py) cos δnc is the core-
neutron asymptotic continuum wave function, assumed to
be a p wave, and uq(x) = j0(qx) cos δnn − n0(qx) cos δnn is
the neutron-neutron asymptotic continuum wave function, as-
sumed to be an s wave. The relative momenta are given by

q = 1√
2
(q1 − q2) and p =

√
2(A−2)

A ( k1+k2
2 − kc).

The E1 strength function is proportional to the square of
the matrix element in Eq. (33) integrated over all momen-
tum variables, except for the total continuum energy Erel =
h̄2(q2 + p2)/2mN . This procedure gives

dB(E1)

dE
= C

∫
|M(E1)|2E2 cos2 � sin2 � d� dqdp,

(34)

where � = tan−1(q/p).
The 1S0 phase shift in neutron-neutron scattering is remark-

ably well reproduced up to center-of-mass energy of order of
5 MeV by the first two terms in the effective-range expansion
k cot δnn 	 −1/ann + rnnk2/2. Experimentally these parame-
ters are determined to be ann = −18.6 fm and rnn = 2.7 fm
[69–71]. The dominant p3/2-wave scattering in the n− 4He
(5He) system shows a resonance at low energies [72]. I assume
that this phase shift can be described by the resonance relation

sin δnc = (
/2)/
√

(Er − ER)2 + 
2/4, with ER = 0.8 MeV
and 
 = 0.65 MeV [63,72]. Most integrals in Eqs. (33) and
(34) can be done analytically (see, e.g., [66,67], leaving two
remaining integrals which can only be performed numerically.

The result of the calculation is shown as a solid curve
in Fig. 1. In the same figure I show a comparison with the
experimental data from Ref. [22]. Dashed and dotted curves
are the results obtained with three-body calculations reported
in Refs. [52–54]. The solid line is the response calculated with
the HET model described above. It is clear that the models
described in Refs. [52–54] do not reproduce the experimental
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FIG. 2. Coulomb breakup cross section, dσ/dE , of 6He projec-
tiles incident on Pb targets [22]. Also shown by means of dashed
and dotted curves are the theoretical results for first-order Coulomb
breakup using the response functions obtained with three-body cal-
culations [52–54] presented in Fig. 1.

response function in a reasonable way. The HET model de-
scribed above does not do much better, but it roughly peaks
around the same region as the data and has a similar shape. I
have adjusted the normalization constant in Eq. (34) to best fit
the experimental data.

VII. APPLICATION TO THE BREAKUP OF 6He

A. Effects of channel coupling and nuclear breakup

Coulomb excitation to first order, with Eq. (25) to deter-
mine the reduced matrix elements, yields the same results as
the virtual photon method described in Ref. [49]. If channel
coupling is relevant, the phases of the reduced matrix elements
in Eq. (26) should be considered. But, as I will show later,
first-order calculations account for the bulk of the Coulomb
breakup cross sections. Therefore, precise values of phases in
the reduced matrix elements of Eq. (26) should not be of major
importance for the breakup of 6He.

To assess the impact of channel coupling including transi-
tions in the continuum I will use the HET model described in
Sec. VI for the response functions. This is shown in Figs. 2
and 3 for the Coulomb breakup cross section, dσ/dE , of 6He
projectiles incident on Pb and Sn targets [22]. One observes
a small modification of the cross section around its peak
values due to stronger transitions to states with large response.
The first-order calculations are very close to RCDCC calcu-
lations, especially for low-Z targets. The small enhancement
of the differential cross sections at small energies is partially
compensated by a small increase at larger energies. In Ta-
ble I I show the different contributions of Coulomb, nuclear,
and diffraction dissociation cross sections for 6He + 208Pb,
6He + 120Sn, and 6He + 12C at 200 and 1000 MeV/nucleon.
I separate Coulomb from nuclear excitations by switching off
in the calculations either the nuclear potential of Eq. (27) or
setting to zero the Coulomb matrix elements in Eq. (24). The
diffraction dissociation cross section is calculated separately,
using Eq. (30).

FIG. 3. Comparison between first-order and coupled-channels
calculations of the Coulomb breakup cross sections, dσ/dE , of
6He projectiles incident on Pb (upper panel) and Sn (lower panel)
targets [22].

As shown in Table I, the inclusion of channel coupling
slightly increases (� 4%) the total cross sections, mainly due
to second-order transitions around the peak region, where the
strength is concentrated. It also shows that the Coulomb dis-
sociation cross sections decrease with increasing bombarding
energy, at least in the energy interval considered here. The
physics reason is that, as the bombarding energy increases,
more (virtual) photons with energy higher than 2 MeV and
fewer photons at lower energies become available. The re-
sponse function (Fig. 1) is smaller at large energies, thus
explaining the reduction of the cross section.

TABLE I. Total Coulomb breakup cross sections for 6He + 208Pb,
6He + 120Sn, and 6He + 12C. First-order Coulomb dissociation cross
sections are denoted by σ 1st

C and CDCC calculations are denoted by
σ cc

C . Breakup due to the real part of the nuclear interaction and due to
diffraction dissociation are labeled by σnuc and σdd, respectively.

Elab σ 1st
C σ cc

C σnuc σdd

Reaction (MeV/nucleon) (mb) (mb) (mb) (mb)

6He + 208Pb 200 635.79 661.97 36.76 26.59
1000 410.71 412.64 53.07 16.59

6He + 120Sn 200 269.53 274.55 23.81 15.25
1000 164.72 165.82 48.24 11.25

6He + 12C 200 5.54 5.54 12.46 8.96
1000 3.05 3.05 28.13 8.96
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FIG. 4. Comparison between Coulomb breakup (dashed line) of
6He projectiles incident on Pb targets at 200 MeV/nucleon with the
nuclear dissociation, including diffraction dissociation (dotted line).

Figure 4 shows a comparison between Coulomb breakup
(dashed line) of 6He projectiles incident on Pb targets at
200 MeV/nucleon with the nuclear dissociation (dotted line)
including real and imaginary parts (diffraction dissociation).
It is evident that the nuclear contribution to the breakup
is smaller (� 10% of the total cross section) in the region
where the E1 response is of relevance. Also Coulomb-
nuclear interference is found to be much smaller (by a factor
10−4) than both Coulomb and nuclear cross sections in the
energy range explored here. I also calculated the electric
quadrupole (E2) response dB(E2)/dE and the correspond-
ing Coulomb breakup cross sections, dσ E2

C /dE , using the
three-body model described above. I found that the cross
sections for the E2 breakup model are a factor 104 smaller
than the corresponding E1 breakup and can therefore be
ignored.

One of the main difficulties in using breakup reactions to
extract the response functions of radioactive projectiles lies in
the fact that the corrections due to the nuclear interaction are
not well known. My discussion in Sec. V clearly highlights
the difficulties in handling the nuclear interaction in high
energy collisions. One commonly uses the strategy to scale
the Coulomb breakup cross sections with the square of the
target charge, Z2

T , and use a light target such as carbon to
eliminate, at least partially, the corrections due to the breakup
induced by the nuclear interaction. My calculations displayed
in Table I indicate that at 200 MeV/nucleon the ratios of the
cross sections are σPb/σSn = 2.36 and σSn/σC = 48.6 whereas
Z2

Pb/Z2
Sn = 2.67 and Z2

Sn/Z2
C = 69.4, respectively. At 1000

MeV/nucleon, I get σPb/σSn = 2.49 and σSn/σC = 50.0. This
points to a non-negligible dependence of the cross sections on
the geometry of the reacting nuclei.

In Fig. 5 I show the E1 Coulomb breakup cross section of
6He projectiles as a function of the bombarding energy in
the range 200–1000 MeV/nucleon. One sees that at 200
MeV/nucleon the cross section is largest. This seems to be
the ideal bombarding energy region for experimental mea-
surements, a fact explored in a recent experiment performed
at the GSI, Germany [22].

FIG. 5. Coulomb breakup cross sections of 6He projectiles inci-
dent on Pb targets as a function of the laboratory bombarding energy.

B. Angular distributions

I checked how the angular distributions are affected by
the different treatments of Coulomb scattering described in
Sec. III. In Fig. 6 I show a comparison between first-order and
coupled-channels calculations for the Coulomb breakup angu-
lar distribution, dσ/θ , of 6He projectiles incident on Pb (upper
panel) and Sn (lower panel) targets at 200 MeV/nucleon. The
dashed line is an RCDCC calculation including continuum-
continuum coupling, using the formalism developed in Sec. II.
The RCDCC calculations display a diffraction pattern due
the nuclear absorption at small impact parameters. The solid
(red) line is the result of first-order transitions only, using
Eqs. (12)–(18). One sees that calculations in first-order per-
turbation theory are also affected by a diffraction pattern due
to absorption. The dotted line is a semiclassical calculation,
based on Eqs. (15), (19), and (20).

The semiclassical angular distribution is smooth, starting
from zero due to the inability of the Coulomb field to dissoci-
ate the projectiles in collisions at large impact parameters and
dropping to zero again at large angles due to the absorption
at small impact parameters. The maximum occurs around an
angle dictated by the adiabaticy parameter being close to the
unity, i.e., when ξ = Eb0/γ h̄v ∼ 1 [b0 is defined in Eq. (20)].
When ξ is much larger than unity (small angles), the dynamic
Coulomb field is not strong enough to break up the projectile.
On the other hand, when ξ is much smaller than 1 (larger
angles), absorption sets in [49]. I also notice that the angular
distributions are mildly sensitive to higher-order couplings.
The integrated cross sections remain nearly unchanged, in
accordance with my previous findings (see Fig. 3). Significant
modifications due to higher-order couplings are seen around
the maximum of the angular distribution, consistent with ex-
pectations. I also notice that the simple semiclassical method
is not appropriate to describe the angular distributions.

VIII. CONCLUSIONS

Relativistic Coulomb excitation of fast projectiles has long
been a useful tool to unveil the properties of rare nuclear iso-
topes with applications to nuclear astrophysics. In this work
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FIG. 6. Comparison between first-order and coupled-channels
calculations for the Coulomb breakup angular distribution, dσ/dθ ,
of 6He projectiles incident on Pb (upper panel) and Sn (lower
panel) targets at 200 MeV/nucleon. The dashed line is an RCDCC
calculation including continuum-continuum couplings. It displays a
diffraction pattern due the nuclear absorption at small impact param-
eters. The solid (red) line is the result of first-order transitions only,
using Eqs. (7)–(9). The dotted line is a semiclassical calculation,
based on Eqs. (15), (19), and (20).

I have studied the contributions of higher-order continuum-
continuum couplings to the breakup of 6He projectiles in the
bombarding energy range of 200–1000 MeV/nucleon. These
effects were found to be small. In general, I found that the best

energy regime to extract the electric dipole (E1) response of
6He is around 200 MeV/nucleon.

More critical is the contribution of the nuclear interaction
to the breakup. I have shown that this is a nontrivial task if
the effects of retardation are of relevance. And in fact they are
because the nuclear mass increases by 20–100% in the bom-
barding energy regime studied here. The relativistic effects of
the strong nucleus-nucleus interaction are manifest not only
in the relativistic kinematics used in experimental analysis,
but also in the relativistic dynamics used in the theoretical
framework to analyze the data. At present, no widely accepted
theory exists to treat this often ignored problem. I have shown
that one can include some ingredients of relativity by small
modifications in the traditional nonrelativistic methods. De-
spite these issues being of relevance in Coulomb and nuclear
excitation at intermediate energies, the nuclear breakup con-
tributes � 10% to the cross sections involving 6He projectiles
at 200 MeV/nucleon.

I have also shown that the angular distribution of the center
of mass of the 6He fragments is slightly modified by the inclu-
sion of higher-order terms. But one has to include absorption
properly, otherwise it does not reflect the diffraction patterns
characteristic of angular distributions. The total breakup cross
section remains approximately unchanged from the one ob-
tained in first-order perturbation theory. This is good news
because first-order perturbation is much easier to handle than
coupled-channels calculations. CDCC calculations are also
strongly dependent on the theoretical model adopted for the
transition matrix elements. Here I have used simplifying mod-
els, to achieve practical results. Finally, I have proved that
semiclassical methods, frequently included in experimental
analysis, are not appropriate to study angular distribution of
the fragments.
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