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Microscopic in-medium nucleon-nucleon cross sections with improved Pauli blocking effects
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We present updated predictions of effective elastic nucleon-nucleon cross sections intended for use in
nucleus-nucleus reactions. A novel characteristic of the present approach combines all microscopic medium
effects included in the Dirac-Brueckner-Hartree-Fock G-matrix with a Pauli blocking mechanism which is more
appropriate for applications in ion-ion reaction models as compared to a previous approach. The effective
in-medium cross section is found to be quite sensitive to the description of Pauli blocking in the final
configurations.
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I. INTRODUCTION

The investigation of the effective nucleon-nucleon (NN )
interaction in dense hadronic matter is a topic of fundamental
importance for nuclear reactions at intermediate energies
(20 � Elab � 300 MeV/nucleon) and for nuclear structure in
general. The relevant literature is very vast. Reference [1] is
just a representative example of the traditional microscopic ap-
proach where two-nucleon correlations in nuclear systems are
introduced through the G-matrix. Moreover, the effective NN
interaction is the main ingredient of microscopic predictions
of the nuclear equation of state (EOS) and thus impacts the
properties of compact stars. Dense hadronic matter can also be
created in the laboratory in energetic heavy-ion (HI) collisions.
Simulations of HI collisions are typically based on transport
equations and describe the evolution of a nonequilibrium
system of strongly interacting hadrons undergoing two-body
collisions in the presence of a mean field. The Boltzmann-
Uehling-Uhlenbeck equation [2,3] and quantum molecular
dynamics [4], along with their relativistic counterparts [5–7],
have been typically employed to describe intermediate-energy
HI reactions. In-medium two-body cross sections are therefore
an important component of such simulations.

In direct reactions at intermediate energies the NN cross
sections are often used as input to obtain quantum refractive
and diffractive effects, replacing the role of optical potentials
commonly used in low energy reactions [8]. Examples such
as knockout (stripping and diffraction dissociation) reactions,
elastic scattering, charge exchange, and excitation of giant
resonances are often carried out using reaction mechanisms
based on the construction of scattering matrices built from
the underlying NN scattering. Reaction calculations at
intermediate to high energy are often conducted within the
framework of the Glauber approximation [9] and have been
a frequent tool for testing nuclear models and constraining
nuclear sizes. In fact, the description of complex nuclear
reactions at intermediate energies based on individual NN
collisions has a long tradition. In the framework of the Glauber
model, the reaction cross section is written in terms of the
“thickness function,” which is the product of the averaged
NN cross section and the overlap integral of the target and
projectile local densities.

In-medium NN cross sections have been calculated with
a variety of methods. In semiphenomenological approaches,
one makes the assumption that the transition matrix in the
medium is approximately the same as the one in vacuum
and that medium effects come in only through the use of
effective masses in the phase-space factor [10–12]. Then, the
in-medium cross section is scaled (relative to its value in
vacuum) as the square of the ratio of the (reduced) masses.
Phenomenological formulas, such as the one in Ref. [13],
have been developed for practical purposes and combine
the energy dependence of empirical free-space NN cross
sections with the density dependence of some microscopic
models.

Microscopic predictions based on a medium-modified
collision matrix were reported, for instance, in Ref. [14], where
Dirac-Brueckner-Hartree-Fock (DBHF) medium effects were
applied to obtain a medium-modified K-matrix, and in
Ref. [15], where the predictions are based on the Brueckner-
Hartree-Fock scheme together with the Paris potential. More
recent microscopic calculations applied DBHF medium effects
to produce a complex G-matrix including consideration of
isospin dependence in asymmetric nuclear matter [16].

It is the purpose of this paper to present our updated
predictions of microscopic in-medium elastic NN cross
sections with an improved description of Pauli blocking. The
main objective is to produce two-body cross sections which
include, microscopically, all important medium effects and are
suitable for realistic applications in nucleus-nucleus scattering
at intermediate energies including direct and central collisions.
As explained in Sec. II, we start from a one-boson-exchange
NN potential, which describes well the elastic part of the
NN interaction up to high energy. Thus, as long as we are
not interested in pion production, which is negligible up to,
at least, several hundreds of MeV, it is reasonable to use NN

elastic cross sections as input to the reaction model. Of course,
the elastic part of the NN interaction can and does generate
inelastic nucleus-nucleus scattering.

In Sec. II, we describe the details of the calculation and
highlight the differences with our previous approach. We
then present a selection of results (Sec. III) followed by our
conclusions and outlook (Sec. IV).
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II. DESCRIPTION OF THE CALCULATION

A. The Dirac-Brueckner-Hartree-Fock G-matrix

The starting point of our calculation is a realistic NN
interaction which is applied in the nuclear medium without any
additional free parameters. We use relativistic meson theory,
which we find to be an appropriate framework to deal with the
high momenta encountered in dense matter. In particular, the
one-boson-exchange (OBE) model has proven very successful
in describing NN data in free space and has a good theoretical
foundation.

The OBE potential is defined as a sum of one-particle-
exchange amplitudes of certain bosons with given mass and
coupling. In general, six non-strange bosons with masses
below 1 GeV/c2 are used. Thus,

V =
∑

α=π,η,ρ,ω,δ,σ

V OBE
α , (1)

with π and η pseudoscalar, σ and δ scalar, and ρ and ω
vector particles. For more details, see Ref. [17]. Among
the many available OBE potentials, some being part of the
“high-precision generation” [18,19], we seek a momentum-
space potential developed within a relativistic scattering
equation, such as the one obtained through the Thompson [20]
three-dimensional reduction of the Bethe-Salpeter equation
[21].

First, a self-consistent calculation of (symmetric or asym-
metric) nuclear matter is performed within the DBHF approach
[22]. This step yields, along with the EOS, the self-consistent
nuclear matter potential, which is conveniently parametrized
in terms of nucleon effective masses (see Ref. [22] for details).
Then, the Thompson equation is solved for two nucleons
scattering at some positive energy in the presence of a mean
field due to the medium. The presence of the medium is
accounted for through the (previously calculated) effective
masses (applied in the two-nucleon propagator and also in the
Dirac spinors representing the nucleons, consistent with the
DBHF philosophy) and the presence of the (angle-averaged)
Pauli operator to account for Pauli blocking of the intermediate
states.

In the usual free-space scattering scenario, the two-body
cross section is typically represented as a function of the
incident laboratory energy, uniquely related to the nucleon
momentum in the two-body center-of-mass frame, q, through
relativistic invariants which yield the well-known relation
Elab = 2q2/m. In nuclear matter, though, the Pauli operator
depends also on the total momentum of the two nucleons in
the nuclear matter rest frame. For simplicity, in the past we
have used in-vacuum kinematics to define the total momentum
of the two-nucleon system (that is, we assumed that the
target nucleon is at rest, on the average). Schematically, the
effect of the Pauli principle on intermediate states arises
in the G-matrix through the in-medium scattering equation
[23]:

〈q|G(p)|q0〉 = 〈q|V|q0〉 −
∫

d3q ′

(2π )3

× 〈q|V|q′〉Q(q′, p)〈q′|G(p)|q0〉
E(p, q′) − E0 − iε

, (2)

with q0, q, and q′ the initial, final, and intermediate relative
momenta of the NN pair in their center of mass, and p their
total momentum. E is the energy of the two-nucleon system
in the center-of-mass, and E0 is the same quantity on-shell.

The medium effects we include in the G-matrix are
Pauli blocking of the intermediate (virtual) states via the
angle-averaged Pauli operator; modification of the single-
particle energies to include the presence of the nuclear matter
potential; and density-dependent nucleon spinors in the OBE
potential through the use of nucleon effective masses. The
first two effects are typically applied in all conventional
Brueckner-Hartree-Fock calculations, whereas the third one
is characteristic of the Dirac-Brueckner approach.

To account for Pauli blocking of the final state, we define
the total elastic cross section as

σ̄NN (q) =
∫ (

dσ

d


)DBHF

Q(q, p, θ, ρ) d
, (3)

where (dσ/d
)DBHF is the elastic differential cross section
obtained from the G-matrix amplitudes as described above.
θ is the scattering angle and kF the Fermi momentum. The
presence of the Pauli operator in Eq. (3) signifies that the
integration domain is restricted by [16]

k2
F − p2 − q2

2pq
� cos θ � p2 + q2 − k2

F

2pq
. (4)

Setting Q = 1 in Eq. (3) amounts to ignoring Pauli blocking
of the final state. [The virtual intermediate states are always
subjected to Pauli blocking during the G-matrix calculation
which produces the amplitudes contained in (dσ/d
)DBHF.]
Additional simplifications result from the assumption that the
differential cross section is isotropic.

B. The average in-medium cross section
and Pauli blocking effects

The cross section defined in Eq. (3) refers to an idealized
scenario where a projectile nucleon, with some momentum
above the bottom of the Fermi sea, strikes a target nucleon
while both embedded in an infinite medium. For application
to a realistic nucleus-nucleus scattering scenario, it is best
to consider the situation depicted in Fig. 1, where the two
Fermi spheres represent the local densities of the target and
projectile ions. k is the incident momentum (the momentum
of the colliding nuclei relative to each other), whereas k1 and
k2 are the momenta of any two nucleons. That is, k1 and
k2 + k are the momenta of the two nucleons with respect to
the same point. Then, the relative momentum 2q and the total
momentum 2p are given by 2q = k2 + k − k1, and 2p = k1 +
k2 + k, respectively. The larger circle in the figure is centered
at p while |q| is the radius of the scattering sphere. The vector
2q can rotate around the scattering sphere while maintaining
constant magnitude due to energy-momentum conservation.

Notice that, with the definitions given above, relative
momenta which are off the symmetry axis of the two Fermi
spheres (the k direction) are allowed, which is not the case with
the assumptions made in Eq. (3). That is, the two interacting
nucleons can have momenta in arbitrary directions. In turn, this
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FIG. 1. Geometrical representation of Pauli blocking.

impacts the solid angle allowed by Pauli blocking, as shown
below. (For completeness, we provide a detailed derivation of
the allowed solid angle in the next subsection.)

In preparation for the nucleus-nucleus calculation, it is
shown in Refs. [24,25] that the average NN cross section
(assuming isotropy of the NN differential cross section) can
be written as

σ̄NN (k) = 1

VF1VF2

∫
dk1dk2

2q

k
σNN (q)

∫
Pauli

d
, (5)

where k1 and k2 are smaller than kF1 and kF2, respectively,
and the angular integrations extend over all possible directions
of k1 and k2 allowed by Pauli blocking. Often, the empirical
free-space NN cross section is used in the integral. In our case,
σNN (q) = σ DBHF(q) is the (microscopic) NN cross section
which contains additional medium effects as described in the
previous section. VF1 and VF2 are the volumes of the two
(in general different) Fermi spheres. Because of azimuthal
asymmetry, Eq. (5) can be reduced to a fivefold integration.
Notice that the “symmetric” choice q = p = k/2 [26] amounts
to making the approximations we adopted when writing
Eq. (3).

Finally, for an actual nucleus-nucleus scattering with given
E/A, the average cross section given above becomes a function
of the laboratory energy E(k) and the local densities of the
colliding nuclei, ρi = 2k3

Fi/(3π2), and are ready to be used
in typical high-energy calculations. This is usually done by
defining the average nucleon-nucleon cross section at the
distance of closest approach b between the projectile and the
target as

〈σNN (E, b)〉 =
∫

d3r1 ρ1(r1)ρ2(r1 + b) σNN (E, ρ1, ρ2)∫
d3r1ρ1(r1)ρ2(r1 + b)

,

(6)

where ρi is the local density (at point r) inside nucleus i and
σNN (E, ρ1, ρ2) is the in-medium NN cross section.

The calculation of reaction cross sections in high-energy
collisions is best described in the eikonal formalism. The “sur-
vival amplitudes” (or S matrices) in the eikonal approximation
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Θ ΘB
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Χb

Χp
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i
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b

a

ΘA

FIG. 2. (Color online) Two-dimensional projection of the geom-
etry of Pauli blocking.

are given by [9,24]

S(E, b) = exp

[
−〈σNN (E, b)〉

4π

∫ ∞

0
dq q ρ1(q)ρ2(q)J0(qb)

]
,

(7)

where ρ1,2(q) is the Fourier transform of the nuclear densities
of the projectile and target, and the reaction cross sections are

σR = 2π

∫
db b[1 − |S(b)|2]. (8)

Applications to stable and unstable nuclei using Eqs. (6)–(8)
and our new prescription of Pauli blocking effects will be the
subject of a future work.

C. Derivation of the Pauli-allowed solid angle

As mentioned in the previous section, the relative mo-
mentum 2q and the total momentum 2p are given as 2q =
k2 + k − k1, and 2p = k1 + k2 + k. We also define a vector
2b as 2b = k2 + k1 − k. Assuming that the collision is elastic,
conservation of energy and momentum requires

2p = k′
1 + k′

2 + k, 2q′ = k′
2 − k′

1 + k, 2b = k′
1 + k′

2 − k.

(9)

FIG. 3. (Color online) Pauli blocking of two nucleons in three
dimensions.
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FIG. 4. (Color online) A different view of Pauli blocking of two
nucleons in three dimensions.

The quantities k′
1 and k′

2 are the momenta of two nucleons
after the collision, whereas q′ is the relative momentum
after collision, with |q′| = |q|. Because of the Pauli exclusion
principle, the following restrictions apply:

|k′
1| = |p − q′| > kF1, |k′

2| = |b + q′| > kF2, (10)

or

p2 + q2 − 2pq cos α1 > k2
F1,

b2 + q2 + 2bq cos α2 > k2
F2.

(11)

In the equations above, α1 is the angle between p and q′,
and α2 the angle between b and q′. As illustrated in Fig. 2, we
have

cos θA = p2 + q2 − k2
F1

2pq
, cos θB = b2 + q2 − k2

F2

2bq
, (12)

with θA and θB the excluded polar angles. The excluded solid
angles for each nucleon are then given by


a = 2π (1 − cos θA), 
b = 2π (1 − cos θB), (13)

and therefore the total allowed solid angle can be obtained
from


Pauli = 4π − 2(
a + 
b − 
̄), (14)

where 
̄ represents the intersection of the two conical sections

a and 
b. The full calculation has already been done in
Ref. [25]; however, in this paper we will use a slightly different
approach to calculate 
̄. Figure 3 shows how 
a and 
b

are projected on the surface of a unit sphere. If 
i is the
intersection of 
a and 
b, it is obvious that


i =

⎧⎪⎨
⎪⎩

0 if θ > θA + θB ;


b if θB < θA, θ < |θB − θA|;

a if θA < θB, θ < |θB − θA|.

(15)

The case |θB − θA| < θ < θA + θB is more complex than the
other three cases and a more detailed study is needed. As shown
in Fig. 4, P and B are the centers of the two circular projections

a and 
b. The two circular contours intersect at R and L.
α/2, β/2, and γ are the internal angles of the spherical triangle
PRB. The circular sectors of 
a and 
b have areas equal to
α
a/(2π ) and β
b/(2π ), respectively. The intersection area
of 
a and 
b is given by


i = α

2π

a + β

2π

b − 2�PRB. (16)

Here, �PRB is the area of the spherical triangle PRB. To
obtain an expression for α/2, first we define the center of the
unit sphere, O, as the origin of the system, and χp along the
z axis. Point B is at location (1, θ, α/2), while point L has
coordinates (1, θA, 0). We can then write

OB · OL = cos θB = cos θA cos θ + sin θA sin θ cos(α/2),

(17)

from which α/2 can be readily obtained as

α/2 = arccos

(
cos θB − cos θ cos θA

sin θ sin θA

)
. (18)
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FIG. 5. (Color online) In-medium pp cross section calculated as in Eq. (5) for a variety of (a) symmetric (kF1 = kF2) and (b) asymmetric
(kF1 �= kF2) situations.
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FIG. 6. (Color online) As in Fig. 5, but for np scattering.

In a similar fashion we find β/2 to be given by

β/2 = arccos

(
cos θA − cos θ cos θB

sin θ sin θB

)
. (19)

Applying the law of cosines of spherical trigonometry,

cos γ = − cos(α/2) cos(β/2) + sin(α/2) sin(β/2) cos θ,

(20)

we obtain

γ = arccos[− cos(α/2) cos(β/2) + sin(α/2) sin(β/2) cos θ ].

(21)

From Girard’s theorem of spherical trigonometry, we have

�PRB = α/2 + β/2 + γ − π. (22)

Inserting Eqs. (21) and (22) into Eq. (16), the solid angle 
i

is found to have the following value:


i = 2
{
π − cos θA cos−1(δAB) − cos θB cos−1(δBA)

− cos−1
[

cos θ

√(
1 − δ2

AB

)(
1 − δ2

BA

)− δABδBA

]}
, (23)

where

δij = cos θi − cos θ cos θj

sin θ sin θj

. (24)

Noticing that while θ + θA + θB > π , 
a and 
b have two
intersections on the hemisphere, we have


̄ = 
i(θ, θA, θB ) + 
i(π − θ, θA, θB). (25)

III. RESULTS

A. Effective N N cross sections

We begin by showing in Fig. 5 the average in-medium
pp cross section calculated as in Eq. (5). On the left, we
display a variety of cases with equal Fermi momenta, whereas
asymmetric cases are shown on the right. Figure 6 contains the
same information for the np cross section. After “overcoming”
complete Pauli blocking, the cross section generally rises with
increasing incident momentum. In the np case, we observe,
at least at the lower densities, a tendency to reach a broad
maximum. In all cases, the cross sections become nearly flat
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FIG. 7. (Color online) (a) pp and (b) np in-medium cross sections calculated from Eq. (5) with kF1 = kF2 = 1.0 fm−1. Solid red: predictions
as in Figs. 5 and 6; dashed blue: the input NN cross section is evaluated in free space. See text for details.
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FIG. 8. (Color online) (a) pp and (b) np in-medium cross sections with kF1 = kF2 = 1.0 fm−1. Solid red: predictions as in Figs. 5 and 6;
dashed blue: predictions obtained with Eq. (3).

at the larger momenta and begin to approach the free-space
predictions.

Figures 5 and 6 are more insightful when compared with
Fig. 7. There, the pp and np cross sections shown by the
dashed blue line are also calculated with Eq. (5), but the
input NN cross sections in the integrand are evaluated in
free space. Thus, comparing the two curves on the left-hand
side (or on the right for np) shows the impact of the additional
medium effects [besides those coming from the

∫
Pauli d
 factor

in Eq. (5)] originating from the G-matrix calculation and
included in σNN in the case of the solid curves. (These effects
were described in Sec. II A.) The impact is noticeable, with
the microscopic medium effects further suppressing the cross
section and shifting the position of the peak. We have chosen
a particular case (kF1 = kF2 = 1.0 fm−1) for the purpose of
demonstration, but the trend is similar for other densities.

Figure 8 is crucial for the point that we wish to make.
There, for pp and np (on the left and right, respectively),
we compare the cross sections calculated from Eq. (5) to
the corresponding ones evaluated with Eq. (3) instead. The
predictions from Eq. (3) have a sharper rise from zero and a
more pronounced peak structure. As is reasonable, differences
are large at low momenta, where the scattering is most sensitive
to the description of Pauli blocking, particularly near the onset
of the cross section. Again, we have taken a representative case,
but this pattern is common to all densities. It will be interesting
to explore the impact of such differences on reaction cross
sections, our next objective.

IV. CONCLUSIONS

Pauli blocking is perhaps the most important mechanism
impacting the collision of two fermions in the medium. It is
known to have a substantial effect on the scattering probability,
that is, the in-medium cross section. In this paper, we predict in-
medium effective NN cross sections suitable for applications
to nucleus-nucleus scattering. The microscopic NN elastic
cross sections, modified by all medium effects implied by
the Dirac-Brueckner-Hartree-Fock theory of nuclear matter,
are properly averaged so as to account for all possible
directions of the relative momentum of two nucleons in the
two colliding Fermi spheres. The more realistic description of
the collision geometry amounts to an improved description of
Pauli blocking as compared to a previous approach [16]. We
find the effective NN cross sections to be very sensitive to the
description of the Pauli blocking geometry.

Our future plans include the application of these cross
sections in Glauber reaction calculations with stable and
unstable nuclei. In closing, we also note that in-medium cross
sections are related to the mean-free path of a nucleon, a
fundamental quantity in the description of nucleon propagation
in nuclear matter.
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