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Odd-even mass staggering with Skyrme-Hartree-Fock-Bogoliubov theory
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We have studied nuclear odd-even mass staggering with the Skyrme-Hartree-Fock-Bogoliubov theory by
employing isoscalar and isovector contact pairing interactions. By reproducing the empirical odd-even mass
differences of the Sn isotopic chain, the strengths of pairing interactions are determined. The optimal strengths
adjusted in this work can give better description of odd-even mass differences than that fitted by reproducing the
experimental neutron pairing gap of 120Sn.
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One of the interesting phenomena in nuclei is the odd-even
staggering (OES) of binding energies. It is believed that OES is
attributed to the pairing correlation, which plays an important
role in nuclear structure [1,2]. Numerous microscopic calcula-
tions, such as Hartree-Fock + BCS (HF + BCS) or Hartree-
Fock-Bogoliubov (HFB) theories, have been performed to
investigate the relationship between pairing interaction and
OES [3–13]. The strength V0 of the pairing interaction is
a crucial parameter to understand the nuclear properties of
short-range correlations.

Conventionally, the value of pairing strength is obtained
by adjusting the average HFB pairing gap (�̄ = Tr�ρ

Trρ [14])
of even-even nuclei to reproduce the experimental odd-even
mass difference. Such a choice implies the assumption that
the odd-even mass difference only reflects pairing properties.
However, it was pointed out that the energy of the odd nuclei
involved in the odd-even mass difference depends significantly
on the polarization of the nuclear shape and the single-particle
structure induced by the blocking of a quasiparticle [3,4].
In order to take into account these polarization effects, the
most natural solution is to compare the experimental odd-even
mass difference not with the average value of the pairing
gap, but with the odd-even mass difference computed from
theoretical binding energies [4]. It was found that the standard
pairing strengths adjusted to the average pairing gap in
120Sn [15] were too small to make a global comparison to
the experimental OES data [8]. Hence, it is useful to refit
the pairing strengths by adjusting the theoretical odd-even
staggering to the experimental one so as to examine the whole
system of the OES data.

In the literatures, there are several measures of the empirical
OES, such as three-point, four-point, and five-point formulas
[2,3,5]. Here we use the three-point formula �(3) defined as
follows:

�(3) = πA+1

2
[B(N + 1,Z) − 2B(N,Z) + B(N − 1,Z)], (1)

where B(N,Z) is the binding energy of the (N,Z) nucleus
and πA = (−1)A is the number parity with A = N + Z. This
second-order difference of binding energies is centered at an
odd nucleus, i.e., odd-N nucleus for neutron OES. The �(3)

formula can reduce the mean-field contributions to the gap

energy [3,4]. For even-N nuclei, the OES is more sensitive
to single-particle energies [3], which is not discussed in this
work.

Our investigations are based on the self-consistent Hartree-
Fock-Bogoliubov (HFB) calculations with Skyrme energy
functionals in the particle-hole channel. We adopt the most
commonly used Skyrme parameter sets, SLy4 [16], SkP [17],
SkM* [18], SkO [19], and SV-min [20]. In the particle-
particle channel, we employ both isoscalar and isovector
density-dependent delta pairing interactions. The isoscalar δ
interaction is of the form

V (r1,r2) = V0

[
1 − η

(
ρ

ρ0

)γ ]
δ(r1 − r2), (2)

where V0 is the pairing strength, η and γ are parameters, and
ρ is the total density, while ρ0 is the saturation density, which
equals to 0.16 fm−3. According to the choice of η, one can
obtain different types of pairing, usually called volume, mixed,
surface pairings. The volume interaction corresponds to η = 0,
which means that there is no explicit density dependence.
It mainly acts inside the nuclear volume, while the surface
pairing (η = 1) is sensitive to the nuclear surface, and the
mixed pairing (η = 0.5) is a mix in these two pairings. In our
calculations γ = 1 and we use η = 0.5 for mixed pairing.

The isospin-dependent pairing interactions have been pro-
posed to reproduce better pairing gap in nuclei. One kind of
isovector pairing, denoted by MSH pairing [6], is written as
follows:

V MSH
pair (r1,r2) = V0

[
1 − (1 − β)ηs

(
ρ

ρ0

)αs

− βηn

(
ρ

ρ0

)αn
]

× δ(r1 − r2), (3)

where ρ = ρn + ρp, β = (ρn − ρp)/ρ. In the original litera-
ture [6], the parameters ηs,αs,ηn, and αn are adjusted in the
HFB framework to reproduce the pairing gaps in symmetric
matter and neutron matter, while the pairing strength V0 is
fitted by the low-energy scattering phase shift. Here, we take
the pairing strength V0 as a free parameter and adopt the best
parametrization with ηs = 0.598, αs = 0.551, ηn = 0.947,
and αn = 0.554 [6].
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Another different isovector pairing, denoted by YS pairing
[9], is parametrized like this:

V YS
pair(r1,r2) = V0

[
1 − (η0 + η1τ3β)

(
ρ

ρ0

)
− η2

(
β

ρ

ρ0

)2 ]

× δ(r1 − r2), (4)

where the proposed parameter set is η0 = 0.5, η1 = 0.2, η2 =
2.5, and τ3 = −1 for protons and 1 for neutrons [9]. In this
work, the pairing strength V0 is optimized to reproduce the
odd-even mass differences of Sn isotopes.

We have carried out the HFB calculations with the latest
version of HFBTHO [21]. The HFB solver HFBTHO has been
developed by implementing the modified Broyden method and
shared memory parallelism to accelerate the calculation speed.

The even-even nuclei were first calculated in the HFB
framework. We used the orbital space of 20 major harmonic
oscillator shells, which is enough for the density functional
calculations. For all the three pairing interactions, we adopted
the cutoff energy of 60 MeV.

As for odd-A nuclei, we employed the equal filling
approximation (EFA) [22]. Starting from the HFB solution of
neighboring even-even nuclei, we select quasiparticle orbitals
for the blocking of the odd nucleon. The one-quasiparticle
configurations are determined within the blocking energy
window E1qp,win, which is smaller than 8 MeV for light nuclei
and bigger than 2 MeV for heavy nuclei. In present work, we
took E1qp,win = 25/

√
A. Finally, we performed unconstrained

self-consistent calculations for all candidate configurations
and took the minimum energy as the binding energy of the
odd-A nucleus. The spins and parities of the ground state of
the odd-A nuclei were examined. The EFA method can not
reproduce all of the experimental spins and parities. However,
in this work, we only focus on the binding energy and choose
the state with the lowest energy as the ground state of the odd
nucleus.

As mentioned before, the pairing strengths should be refit-
ted to examine the whole system of the OES data. In principle,
global calculations are needed. However, such calculations for
different Skyrme forces and pairing interactions are very time
consuming. We only adjust the pairing strengths to give the
best fit to the OES of the semimagic Sn isotopes with neutron
number ranging from 49 to 85. In fact, Sn isotopes are known
to be excellent laboratories for comparison with mean field
calculations and OES effects [10]. In present work, the proton
pairing strengths are identical to the neutron ones.

Table I lists the optimal pairing strengths for the five
different Skyrme forces with different pairing interactions. The
results for the root mean square deviation of our calculations
are shown in Fig. 1. The root mean square deviation σ of OES
between HFB calculations and experimental data is defined as

σ (OES) =
√√√√ Nt∑

i=1

∣∣�(3)
i (HFB) − �

(3)
i (Exp)

∣∣2
/Nt , (5)

where Nt (in this work, Nt = 17) is the total number of
data points. �

(3)
i (HFB) and �

(3)
i (Exp) are, respectively, the

theoretical and experimental odd-even mass difference of the
odd-N nucleus along the Sn isotopic chain. The experimental

TABLE I. The optimal pairing strengths V0 adjusted to give the
best fit to the neutron odd-even staggering of the Sn isotopic chain.
The word ‘standard’ means the pairing strengths fitted by the average
pairing gap of 120Sn with mixed pairing. The unit of the pairing
strengths is MeV fm3.

SLy4 SkP SkM* SkO SV-min

Standard 283.3 213.3 233.9 – –
Mixed 310 240 270 255 245
MSH 400 325 360 335 320
YS 325 260 290 270 260

FIG. 1. (Color online) Root mean square deviation σ between
HFB calculations and experimental data. The upper, middle, and
lower panels correspond to HFB calculations with mixed pairing,
MSH pairing, and YS pairing, respectively. Filled symbols stand for
the mean square deviation of binding energies of the Sn isotopic
chain, while open ones for the deviation of OES. The gray stars in the
upper panel represent the results calculated with the strength fitted by
the average pairing gap of 120Sn. See text for details.
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FIG. 2. (Color online) Calculated and experimental values of
�(3)

o for the semimagic Sn and Pb isotopic chains. The SLy4
interaction is adopted with mixed pairing in the HFB framework
for different pairing strengths. The dark cyan down triangles shows
the results with the standard pairing strength listed in Table I and the
blue up triangles stand for the results with the pairing strength fitted
by Bertsch et al. [8].

masses are taken from the 2012 Atomic Mass Evaluation by
Audi et al. [23]. The uncertainties of the experimental binding
energies are less than 100 keV except for that with neutron
number equal to 49, 50, 51. In fact, these uncertainties are
smoothed in the calculation of σ and they have no significant
influence on the fitting procedure.

In Fig. 1, we compare the results for the three commonly
used Skyrme parameter sets, SLy4, SkP, and SkM*. It seems
that the optimal pairing strength to obtain the best fit to binding
energies are different from that for OES. The minima of the
fitting curve of binding energies for SLy4 and SkM* forces
with mixed pairing are slightly bigger than that of OES, while
for the SkP force, it shows an opposite result. The small
differences of the minima for binding energies and OES come
from the definition of the root mean square deviation σ . From
Eqs. (1) and (5), we can see that the deviation σ of OES
contains the correlations between neighborhood nuclei, which
is not included in the deviation of binding energies.

Figure 2 shows the OESs of two semimagic isotopic chains
Sn and Pb with three pairing strengths fitted by different ways.
The overall trend is reproduced for all three treatments of
pairing. For Sn isptopes, the flatness up to the quenched gap
at N = 83 is well consistent to experimental data, and for Pb
isotopes, the downsloping trend up to gap at N = 125 is also

FIG. 3. (Color online) Calculated and experimental values of
�(3)

o for neutrons in the Sn and Pb semimagic isotopic chains. SLy4
is adopted together with the mixed pairing [Eq. (2)] and two isospin
dependent pairing [MSH in Eq. (3) and YS in Eq. (4)] interactions in
the HFB model.

reproduced. The pairing strength fitted by overall systematics
by Bertsch et al. [8] gives higher average OES in both spherical
chains, while the strength adjusted by reproducing the pairing
gap of 120Sn gives too small values in the Sn isotopic chain.
Our results are between these two values.

We have also compared the results calculated by the
optimal strengths with three different pairing interactions,
shown in Fig. 3. The MSH and YS pairing interactions are
essentially the mixed-type contact pairing interactions with
isospin dependence. The overall trends for the three different
pairing interactions are similar. For nuclei with neutron excess,
the OESs with MSH and YS pairing interactions are smaller
than with mixed pairing interaction. The isospin dependent
pairing interactions flatten the odd-even mass differences as
a function of neutron number, which is consistent with the
results in Ref. [7].

In summary, we have investigated the neutron OESs of
Sn and Pb isotopes using self-consistent Skyrme-Hartree-
Fock-Bogoliubov theory with SLy4, SkP, SkM*, SkO, and
SV-min forces together with mixed pairing and two different
isospin dependent pairing interactions. The pairing strengths
are adjusted by reproducing the empirical OESs of Sn isotopes.
The pairing strengths necessary to obtain the best fit to
the binding energies are different from that for OES. We
reproduced the flatness of the OES due to the isospin effects
and compared to the results with isoscalar pairing interactions.
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