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Relativistic effects in heavy-ion Coulomb scattering
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The role of relativistic corrections in heavy-ion Coulomb scattering at intermediate energies (Epb 2
50 MeV /nucleon) is investigated by numerically solving a full set of coupled equations. We compare two
methods: (a) one involving an exact account of interaction retardation and (b) a method based on the expansion
of effective Lagrangians in powers of the ion velocities, v/c. Our study makes it possible to infer the relevance of
kinematic corrections, retardation, and magnetic interactions such as the Darwin force. We show that analytical
formulas are able to describe all aspects of experimental interest in relativistic effects in heavy-ion Coulomb
scattering at intermediate energies without having to solve numerically the coupled equations.
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I. INTRODUCTION

Properties of nuclei far from stability are not known at the
level needed for an accurate description of several processes
of interest for nuclear science. Therefore, much of the experi-
mental effort in nuclear physics at present is dedicated to new
radioactive-beam facilities, the most expensive of them using
secondary beams with high-energy fragments obtained from
primary collisions. By “high energy” here we mean energies of
the order of 50 MeV /nucleon and above, such as those in use at
Rikagaku Kenkyusho (RIKEN, The Institute of Physical and
Chemical Research) of Japan, Grand Accelerateur National
d’Tons Lourds in France, GSI/Germany, and National Super-
conducting Cyclotron Laboratory at Michigan State University
in the United States. New facilities are under construction,
e.g., the GSI Facility for Antiproton and Ion Research facility
in Germany and the National Superconducting Cyclotron
Laboratory at Michigan State University facility in the United
States. High-energy radioactive beams have fostered the use
of indirect techniques using reactions of rare nuclear isotopes
with the purpose of studying the structure of exotic nuclei [1,2]
and nuclear astrophysics [3,4].

Coulomb excitation is one of the main indirect tech-
niques used in radioactive-beam facilities mainly because the
Coulomb interaction is well understood and also because
it is intimately related to processes involving real photons
like photoabsorption and y decay of interest for studying
nuclear structure and many processes of astrophysical interest
[2]. Recent experiments with Coulomb excitation have been
used to unravel the physics of pigmy dipole resonances,
dipole polarizability, energy density functionals, neutron skins,
equation of state of nuclear matter, etc. [S—14]. Experimental
analyses assume that Coulomb scattering dominates the reac-
tion process at forward angles, which is supported by theory
for the scattering of heavy ions and of light nuclei with small
binding energies [1,2]. In particular, elastic scattering of heavy
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ions is dominated by the Coulomb interaction up to the rainbow
angle which reflects the onset of the nuclear interaction [15].
Because the analysis of Coulomb excitation experiments is
based on the same premises, and because such reactions are
carried out with kinetic energies consisting of a sizable fraction
of the projectile’s rest mass, it is imperative to account for
relativistic effects not only in the kinematics (which is usually
done in the experimental analysis), but also in the reaction
dynamics. This has often been overlooked both in theory and
in experiments, except for a few theoretical studies [16,17].
It is the goal of this work to make a detailed assessment of
this problem and propose best ways to account for relativistic
effects in Coulomb scattering of nuclei at intermediate and
high-energy collisions (E},, 2 50 MeV /nucleon).

At low energies when the velocity of the projectile is
much smaller than the speed of light, v < ¢, heavy-ion
collisions are well described by Rutherford scattering formulas
except for minor corrections caused by Coulomb excita-
tion, electron screening, or vacuum polarization. However,
at intermediate and high energies when the speed of the
projectile is comparable to the speed of light, relativistic effects
play a significant role. Therefore, an accurate knowledge of
elastic Coulomb scattering at intermediate- and high-energy
collisions is of great relevance for calibration of nuclear
reaction experiments and extraction of excitation amplitudes
induced by the Coulomb interaction. Coulomb excitation at
intermediate- and high-energy collisions of heavy ions is
a very important tool in experimental nuclear physics, and
experimental analyses depend on a good understanding of
dynamical relativistic effects [15].

An early work on the effects of retardation in Coulomb
scattering has been carried out by Matzdorf et al. [16] using
classical trajectories which are well justified for heavy-ion
collisions. Another publication by Aguiar et al. [17] tackled the
same problem using a perturbation expansion of the relativistic
Lagrangian for the two-body Coulomb scattering. In Ref. [16]
retardation effects on the trajectory of one particle upon
another via their mutual time-dependent electromagnetic fields
were accounted for in a covariant way, accompanied by simpli-
fying approximations to make the problem more manageable.
They have investigated deflection angles, differential cross
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sections, and the deviations of the time-dependent trajectory
from nonrelativistic Rutherford scattering. They also reported
that the actions of mutual magnetic fields are rather small
in the velocity range from 0.1c to 0.99¢. This was shown
specifically for the Xe + U reaction. However, the relativistic
mass correction effect was reported to be quite significant.
Analytic formulas for light projectiles colliding with heavy
targets have been obtained which are quite useful for a quick
estimate of relativistic corrections in elastic differential cross
sections. We show that such formulas also work exceptionally
well for more symmetric systems.

Aguiar et al. [17] have also studied relativistic effects in
Coulomb scattering at intermediate energies. They have used
an effective theory approach based on the expansion of the
classical electromagnetic Lagrangian in powers of v/c, where
v is the projectile velocity and c the speed of light. They
have considered corrections of the classical Lagrangian up to
order (v/c)?. However, for particles with equal charge-to-mass
ratios they have extended the formalism to include corrections
up to (v/c)*. Analytical formulas have also been proposed to
estimate the relativistic corrections and their contribution to
differential cross sections.

In view of the great experimental interest in reactions in
radioactive-beam facilities and the relevance of the Coulomb
interaction for experiments, we have studied in this work the
relativistic effects in Coulomb scattering of nuclei. Much of
our analysis is based on a comparison of the two different
approaches to relativistic corrections in Coulomb scattering
presented in Refs. [16] and [17] for elastic collisions at inter-
mediate and high beam energies. We have made qualitative
and quantitative predictions for reactions with symmetric and
asymmetric systems. Most importantly, we have shown that
the problem is treatable with basic analytical methods. In
the next section we present a summary of the theoretical
methods involving a full account of retardation and another
using effective Lagrangians.

II. THEORETICAL FORMALISM
A. Covariant formulation

In the following, the target is assumed to be located at the
center of the coordinate system, and the projectile is assumed
to move towards the target parallel to the x axis. The covariant
equation of motion for a charged particle moving in an external
electromagnetic field of another charged particle is given by
(18]

dp* ¢ op

i F*Ug, 1)
where p® and Up are the 4-momentum and the 4-velocity,
respectively. g is the charge of one of the particles, t is the
proper time of the considered particle, and F*# is field strength
tensor, which can be written in terms of the components of the
electric and magnetic fields E and B owing to the other particle.
To solve this equation of motion for the two-body scattering,
it is assumed that a projectile with charge g, moves in the
external field generated by the target and vice versa. In terms
of electric, E®, and magnetic, B®), fields of the target acting
on the projectile, the coupled set of equations of motion for
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the projectile can be written as [18]

y4(u . u) — yq_pE(l) -u,
mpyc

ay? + ylu-n) = y 2B +uxBY), (2
mpc

where u = (u,uz,u3) = X/c is the projectile velocity, X is its
position, m , its rest mass, and y = 1/4/1 — 82 is the Lorentz
factor, with B = u/c representing the projectile velocity in
units of c. The electric and magnetic fields are calculated at
the retarded time T defined in the text after Eq. (3). Because
the motion is restricted to a scattering plane, only two of the
coordinates, e.g., x and y, need to be considered.

In Ref. [16] it was shown that the above equations, together
with similar equations for the target motion, lead to a full set
of coupled equations for the motion of the projectile and the
target. Numerically, one first looks at the effect of the retarded
E® and B® fields generated by the target at the position of
the projectile and then, after a time step, one corrects for the
position of the target by reversing the roles of the target and the
projectile in the equations above. This procedure is repeated
from the initial position of the system until the effects of the
fields at large distances become negligible. It was also shown
that if one neglects the magnetic field in the equations above
one obtains a much simpler set of coupled equations for the
projectile and target motion in the x-y plane. A full and detailed
derivation of these equations is provided in Ref. [16], where
it was also shown that the inclusion of the magnetic field B
amounts to a less than 1% change for the scattering deflection
angle and cross sections.

For the projectile motion, these simplifications lead to the
equations of motion

iy = q(;p,)q, ()/72 + u%)nl — UiUrNy ’
my3 R2[(y =2 +ui) (y =2 +u3) — uju3]

= r Wt e
my3 R[(y=2 +u) (y =2 + u3) — uju3]

where R =x —r(T) is the radius vector of the projectile
location with respect to the target at position r(7) at the
retarded time T, satisfying the retardation condition (¢ — 7)) —
R/c = 0. R is magnitude of the radius vector and n, n, are
the x and y components of the unit vector n along the R
direction. A set of equations similar to those in Eq. (3) is
solved for the target motion with the roles of the projectile and
target reversed. This yields four coupled equations to be solved
simultaneously. The Lienard-Wiechert acceleration terms are
not included in these equations because the modifications of
Coulomb trajectories in heavy-ion collisions owing to the
emission of radiation are extremely small. It is worthwhile
noticing that for u <« 1 and y — 1, these equations reduce
to the well-known nonrelativistic equations for the motion of
a charged particle in the electromagnetic field generated by
another charged particle.
Numerically, the scattering angle is obtained as

d
O®(t — +00) = arctan d—y(t) )
X
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by starting monitoring the scattering at a very large negative
time for a collision with impact parameter b. Repeating
the procedure for several impact parameters, the differential
scattering cross section can be calculated from

do  b(©®)|db
dQ  sin®|dO |
A simplified analytical formula was presented in Ref. [16],
valid when one collision partner remains nearly at rest, i.e.,
when the mass of the projectile is much smaller than the mass
of target. In this case, the analytical approximations for the
scattering angle and the differential cross section are given by

©—x— 2arccot(k) ©)

V1= b)p*

®

where here 8 = v, /c, and

do b [1+K*(b)]5>
dQ  sin©|2[1 + k2(b)IkX(b)B*(%52) — 26k(b) |

@)

with k(b) = (d/2b)\/1 — B2, d = 2q,q;/(m,v2,), and &(b) =
V1 —Kk*(b)B2.

Contrary to what was stated in Ref. [16], we will show that
these equations reproduce with high precision the numerical
results obtained with Eqs. (3) even for symmetric systems,
i.e., when the masses of the particles are comparable. This is
achieved by replacing the projectile mass in the definition of
the variable d by the reduced mass of the system. There is
no ab initio justification for this step, except that we know
that Eq. (2) reduces to the usual Coulomb scattering when
y — 1 and u — 0, as can be readily verified. Solving these
equations numerically for the projectile motion and for the
target motion simultaneously yields the practical net result of
a one-body motion with a reduced mass, as is well known in
nonrelativistic classical mechanics.

B. Effective Lagrangian method

Reference [17] has also studied the influence of relativistic
corrections in Coulomb scattering at intermediate and high
energies by means of an expansion of the classical Lagrangian
to leading-order (LO), next-to-leading order (NLO), and
next-to-next-to-leading-order (NNLO) in powers of v/c, L =
L£@O) 4 L(NLO) 4 ,(NNLO) yith

£LO) _ 1 V2 — M’
2 r
4 2
LN — % [m%) m%]v4 - —2;;3;?:2r (v + 1)),
[(NNLO) _ % + %[é(v“ — 30?4 2020?)
+ q,:i” (302 —v?) + 4:5;12’2’ } ®)

with p equal to the reduced mass, v, = v-r/r and v(¢) is
relative velocity. The £LNNMO) Lagrangian is valid only for
symmetric systems with m, = m; = m.
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The NLO Lagrangian is obtained by neglecting radiation
and assuming instantaneous interactions between the particles
[18]. The first term accounts for the increase of masses
owing to relativity and the second term arises from the
magnetic interaction between the particles. It is known as the
Darwin interaction. When particles have the same charge-to-
mass ratio, as in the case of identical particles, the dipole
radiation vanishes and it is possible to derive the above NNLO
Lagrangian from the Lagrangian of the two-particle classical
electrodynamics [18]. The first term is again another correction
to the relativistic mass and the following one is attributable to
the corrections to the Darwing interaction.

Inserting Egs. (8) into Euler-Lagrangian equations one
gets a set of coupled equations for the relative position
and momentum (velocity) of the particles as a function of
time, as discussed in detail in Ref. [17]. Numerically, the
scattering angle and differential cross sections are determined
by making use of Eqs. (4) and (5). It is worthwhile mentioning
that the modifications of Coulomb trajectories of heavy-ion
collisions owing to the emission of radiation are extremely
small [19]. This justifies the use of both methods employed in
Refs. [16,17] without the inclusion of radiation.

Reference [17] has also proposed analytic formulas when
the mass of the projectile is much smaller than the mass
of the target, i.e.,, m, < m;. They obtained an analytical
formula for the scattering angle given by the same equation
as Eq. (6). Their analytical approximation for the differential
cross section is given by

do(v/c,®)
aQ [

2 2

qpq: v

1+ 8@

2uv25in2(®/2)i| [ T8O

U4
+o<c—4)}, ©)

where here v =vwv, is a short notation for the pro-
jectile velocity in the laboratory system at large dis-
tances, p is reduced mass of the system, and g(®) =3 —
2+ {1 4+ (w — ®)cot ®} tan*(© /2)].

III. RESULTS AND DISCUSSION

The coupled equations of motion, Egs. (3), have been solved
numerically by using an adaptive step-size control Runge-
Kutta method [20]. As an initial condition it is assumed that
the target is at rest at the origin of the coordinate system and
at time t = —oo the impact parameter is b(t — —o00) = y(¢),
with the projectile moving towards the target along the x axis
with velocity vy. As the projectile approaches the target the
Coulomb interaction deflects it to a scattering angle at time ¢ =
+o00. Throughout the calculations the total trajectory length is
kept around 80 000 fm to account for the long range of the
Coulomb interaction. The calculation is repeated for several
impact parameters b varied from the sum of the nuclear radii

Rp + Ry, with R; = 1.2} fm, to 100 fm in very small,
Ab = 0.1 fm, interval steps. The precision of the computed
differential cross section using Eqs. (4) and (5) is checked by
comparison with the well-known nonrelativistic domain, the
Rutherford differential cross section. In each case the relative

error was found to be less than 1 part in 10,
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FIG. 1. Absolute value of the relative difference (in per-
cent) between the methods of Matzdorf et al. [16] and Aguiar
et al. [17], with the nonrelativistic scattering angle ONR =
2 arctan (q,q, /v, b) for 208pp 4 208pp collisions at the laboratory
energy of 100 MeV/nucleon. The dashed line is a numerical
calculation following the method of Aguiar et al. [17] considering
relativistic corrections up to order (v/c)*, and the solid line is a
numerical calculation for the corresponding method of Matzdorf et al.
[16]. The horizontal axis represents the impact parameter b (in fm).

In Fig. 1 we plot the relative difference (in percent) between
the numerical calculations following the methods of Matzdorf
etal. [16] and of Aguiar et al. [17] with the nonrelativistic scat-
tering angle @R = 2 arctan (q,q,/pv2.b) for ***Pb + 2®Pb
collisions at the laboratory energy of 100 MeV /nucleon. The
dashed line is a numerical calculation following the method
of Aguiar et al. [17] considering relativistic corrections up to
order (v/ ¢)*, and the solid line is the numerical result for the
corresponding model of Matzdorf et al. [16]. The horizontal
axis represents the impact parameter b (in fm). We observe
that the method adopted by Matzdorf et al. yields a reduced
correction for the nonrelativistic scattering angle as compared
to the method adopted by Aguiar ef al. Because magnetic
interactions are known to be small, the difference can be
ascribed to the correct account of retardation implicit in the
method adopted by Ref. [16]. Itis also worthwhile noticing that
the deviation from the classical Rutherford scattering angle is
smaller at smaller impact parameters, though not negligible
either. The relativistic corrections increase and reach a nearly
constant value of ~ 6.5%—7% at larger impact parameters, i.e.,
at very forward scattering.

The deviations from the classical Rutherford scattering
increase with the bombarding energy, as expected. This is
shown explicitly in Fig. 2 for a collision at grazing impact
parameter b = Rp + Ry, as afunction of the laboratory energy
E\p (in MeV /nucleon). Not only do the relativistic corrections
become more important as the energy increases, the effects
of retardation also modify these corrections appreciably. The
consideration of the relativistic mass increase without a cor-
responding account of retardation, overshoots the corrections
owing to relativity, as displayed by the dashed line obtained
with the method of Ref. [17].
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FIG. 2. Same as Fig. 1, but for a collision at grazing impact
parameter b = Rp + Ry, as a function of the laboratory energy Ey,;,
(in MeV /nucleon).

The deviations from the nonrelativistic predictions are
more evident for the elastic differential cross sections. This
is visible in Fig. 3, where we show the relative difference
(in percent) between the numerical solutions following the
methods of Matzdorf et al. [16] and Aguiar et al. [17] with the
nonrelativistic Rutherford scattering cross section, do ™} /d<2,
for 2%Pb 4 2%Pb collisions at the laboratory energy of
100 MeV /nucleon. The dashed line follows the method of
Aguiar et al. [17] considering relativistic corrections up to
order (v/c)*, and the solid line is for the corresponding method
of Matzdorf et al. [16]. The horizontal axis represents the
center-of-mass scattering angle ® (in degrees). The deviations
from the classical Rutherford formula clearly increase with

15 T T T T T
T~ Matzdorf
14+ T~ — —-Aguiar |1
S Tt~-l
= 13t ~ - _
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9l i
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FIG. 3. Relative difference (in percent) between the methods of
Matzdorf et al. [16] and of Aguiar et al. [17] with the nonrelativistic
Rutherford scattering cross section, do™}/d2, for 2®Pb + 2%Pb
collisions at the laboratory energy of 100 MeV /nucleon. The dashed
line is a numerical calculation following the method of Aguiar et al.
[17] considering relativistic corrections up to order (v/c)*, and the
solid line is a numerical calculation for the corresponding method of
Matzdorf et al. [16]. The horizontal axis represents the center-of-mass
scattering angle ® (in degrees).
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FIG. 4. Same as in Fig. 3, but for a collision at grazing impact
parameter b = Rp + Ry, as a function of laboratory energy Ej
(in MeV /nucleon).

the laboratory energy, as seen in Fig. 4 for a collision at the
grazing impact parameter. The corrections are large, almost as
large as the relative change in the mass of the particles.

Now we turn to the precision of the analytical formulations
described in the previous section that allows one to save
time with numerical computations. In Fig. 5 we plot the
relative difference (in percent) between the analytical formulas
proposed by Matzdorf ef al. [16] and Aguiar et al. [17]
with the nonrelativistic Rutherford scattering cross section,
do™R /dQ, for 70 + 2%8Pb collisions at the laboratory energy
of 100 MeV /nucleon. The dashed line is for the analytical
equation (9) and the solid line is for a numerical calculation

11.5 . , , : :
| 170 + 208Pb
11.0} E_,= 100 MeV/nucleon _
S
- — Aguiar
g 10.5 [ — — - Aguiar Analyt.
I N Matzdorf Analyt.
=100F e
s T
s [ T
D95k T
° ~.'~
z C T,
90F T
8.5 ! L L 1 I
0 2 4 6 8 10 12

® (degree)

FIG. 5. Relative difference (in percent) between the analytical
formulas proposed by Matzdorf et al. [16] and by Aguiar et al.
[17] with the nonrelativistic Rutherford scattering cross section,
do™NR/dQ, for 70 4 2®Pb collisions at the laboratory energy of
100 MeV /nucleon. The dashed line uses the analytical equation
(9) and the solid line is for a numerical calculation of the coupled
equations following Ref. [17] considering relativistic corrections up
to order (v/c)>. The dotted line is for the analytical formula (7)
predicted by Matzdorf et al. [16], which agrees within less than 0.1%
with the exact results (not shown).

PHYSICAL REVIEW C 96, 034605 (2017)

—p+ 2085
1 - -0 +py |4
< .. g+ 2P
— N
i N . 8py 2085
Q0
= N\
ST0AEN N 0.1
5 O N
“a N, s
' \~ \\.
a° \-\~ ==~ ~s
— ~. =L
0.01} S~ o001
50 100 150 200 250

E__(MeV/nucleon)

lab

FIG. 6. Relative difference (in percent) of the distance of closest
approach b, for a given impact parameter b obtained with the full
relativistic calculations and with the analytical formula (10), as a
function of laboratory energy in MeV /nucleon and for different
projectile target systems. We use the grazing impact parameter
b=R,+R,.

following Ref. [17] considering relativistic corrections up
to order (v/c)?, respectively. We find that they are nearly
identical. The dotted line is the analytical formula (7) predicted
by Matzdorf et al. [16], which agrees within less than 0.1%
with the exact results (not shown). Two clear conclusions from
these calculations are worth mentioning: (a) the differences
between the methods of Refs. [17] and [16] decrease for
asymmetric systems, and (b) both analytical formulations are
in excellent agreement with the corresponding models, within
the range of validity of each of the two methods. The same
conclusion is reached for symmetric systems.

The discussion above shows that there is no need to per-
form numerical calculations and solve the coupled equations
proposed in Ref. [16] as well as in Ref. [17] because their
proposed analytical formulations, i.e., Eqs. (6) and (7) and
Eq. (9), yield results very close to the “exact” numerical values.
Moreover, following our numerical investigations, the method
developed in Ref. [16] is superior than that of Ref. [17] because
it includes the full effects of retardation, which, apart from the
relativistic mass correction, is the largest relativistic correction
for the scattering of two charged particles. We have verified
that the analytical formulas proposed in Ref. [16] both for the
scattering angle and for the differential cross sections agree
with numerical solutions of Egs. (3) to within 1 part in 10°.

We have also studied the effects of relativity in determining
the distance of closest approach between two charged particles.
In Fig. 6 we show the relative difference between the distance
of closest approach for a given impact parameter b by solving
Egs. (2) and (3) and comparing it with the equation

be=a+Va+0, with a=kb=-2% " (1)
y v,

which is a proposed generalization of the nonrelativistic rela-
tion where we replace ay = qpq,/uvgo bya =kb=ay/y.In
the figure we use the grazing impact parameter b = R, + R;.
We see that Eq. (10) reproduces the exact values very well at
the level of 1% or less.
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Finally, we have determined the deviation of the actual
time-dependent trajectory R(#) for the distance between the
two charged particles from an analytical parametrization. Our
parametrization is based on the same argument leading to
Eq. (10) and reads

x = alcoshw + €], y=aye?— Isinhw,
2 [w + e sinhw]. a1

Voo

t

This is the same parametrization used in nonrelativistic
collisions [21], but with the distance of closest approach ay
replaced by a = kb = ay/y. We have compared the difference
between this approximation and the exact solution for several
reaction partner combinations and energies in the range
of 50-250 MeV /nucleon. For large times of the order of
80000 fm/c we find deviations at the level of 3% or less. How-
ever, for collision times up to 5a /v, after passing the distance
of closest approach Egs. (11) work at a much better level of 1%
or better. This explains why the distance of closest approach
is so well described by the relation (10). This is also relevant
for Coulomb excitation experiments as the Coulomb field is
strongest when the trajectory is nearest to the closest approach
distance, being more effective to induce nuclear transitions.

IV. CONCLUSIONS

In this work we have studied relativistic effects such as
retardation, relativistic mass change, and the inclusion of
magnetic interactions in the Coulomb scattering of nuclei
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at intermediate and high energies (Ep, 2 50 MeV /nucleon).
Several conclusions have been drawn from this work. We
have shown that the formalism developed in Ref. [16]
provides a concise way to obtain Coulomb scattering deflection
angles and elastic differential cross sections. Their method is
superior than the one proposed in Ref. [17], with an effective
Lagrangian expansion in orders of v/c.

Most importantly, we have found that analytical equations
are able to describe the exact results obtained with the
numerical solutions of Egs. (3). The deflection angle is well
described by Eq. (6) while the differential cross section is well
described by Eq. (7). Finally, the distance of closest approach
for a given impact parameter b, as well as the time dependence
of the trajectory are in good agreement with the Egs. (10) and
(11), respectively.

These findings are timely and of importance for the
experimental analysis of numerous data being acquired in
radioactive-beam facilities with laboratory energies in the
range of Ej, = 50 MeV/nucleon. The determination of
Coulomb scattering angles and differential cross sections are
a crucial part of the simulations and the extraction of reaction
variables.
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