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Potential model for nuclear astrophysical fusion reactions with a square-well potential
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The potential model for nuclear astrophysical reactions requires a considerably shallow nuclear potential when
a square-well potential is employed to fit experimental data. We discuss the origin of this apparently different
behavior from that obtained with a smooth Woods-Saxon potential, for which a deep potential is often employed.
We argue that due to the sharp change of the potential at the boundary the radius parameter tends to be large in
the square-well model, which results in a large absorption radius. The wave function then needs to be suppressed
in the absorption region, which can eventually be achieved by using a shallow potential. We thus clarify the
reason why the square-well potential has been able to reproduce a large amount of fusion data.
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I. INTRODUCTION

Heavy-ion fusion reactions, such as 12C + 12C and 16O +
16O reactions, play an important role in nuclear astrophysics
[1–4]. These reactions take place at extremely low energies,
and a direct measurement of the reaction cross sections to
obtain the astrophysical fusion rates is almost impossible. It
is therefore indispensable to extrapolate experimental data
at higher energies down to the region which is relevant to
nuclear astrophysics. For this purpose, the potential model
with a Woods-Saxon potential has often been used. Alterna-
tively, one can also use a square-well potential, as has been
advocated very successfully by Michaud and Fowler [5]. The
fusion probability can be evaluated analytically with such a
square-well potential, and the calculation becomes consider-
ably simplified. See, e.g., Refs. [6,7] for recent applications
of the square-well model to the 12C + 12C and 12C + 13C
reactions.

Despite its simple nature, a square-well potential accounts
for a large amount of experimental data, sometimes even bet-
ter than a fit with a Woods-Saxon potential [1]. However, it has
been recognized that the resultant square-well potential, that
is used for a total (the nuclear plus the Coulomb) potential,
has to be repulsive [8,9]. For instance, for the 12C + 12C reac-
tion, the best fit was obtained with the square-well potential,
V (r) = V0 θ (R − r) (r � R), with V0 = +5.8 MeV and R =
7.50 fm [8]. Even though the value of V0 is somewhat smaller
than the Coulomb energy at r = R, that is, Vc = 6.9 MeV,
and thus the nuclear interaction is still attractive, the potential
depth for the nuclear potential, V0 − Vc, is only 1.1 MeV,
which is unusually small. The same tendency has been found
also for the 12C + 16O and the 16O + 16O reactions [8].

The purpose of this paper is to clarify the origin of a shal-
low depth of a square-well potential for nuclear astrophysical
reactions. To this end, we shall study the sensitivity of fusion
cross sections to the parameters of the square-well potential,

such as the range of the imaginary part and the depth of the
real part.

II. SQUARE-WELL POTENTIAL MODEL

In the square-well potential model, one considers the fol-
lowing radial wave function for the relative motion between
two nuclei [1]:

ul (r) = Tle
−iKr (r < R), (1)

= H (−)
l (kr) − SlH

(+)
l (kr) (r � R), (2)

with K =
√

2μ[E − (V0 − iW0)]/h̄2 and k =
√

2μE/h̄2, μ

and E being the reduced mass and the incident energy in
the center of mass frame, respectively. Here, Tl and Sl are
the transmission and reflection coefficients, respectively, and
l is the partial wave. H (+)

l and H (−)
l are the outgoing and the

incoming Coulomb wave functions, respectively, which are
given in terms of the regular and the irregular Coulomb wave
functions as H (±)

l = Gl ± iFl . The form of the wave function
for r < R is nothing but the incoming wave boundary condi-
tion [10,11], which assumes a strong absorption in the region
r < R. The imaginary part of the square-well potential, −iW0,
allows an absorption even for E < V0. From the matching
condition of the wave function at r = R, one obtains [12]

1 − |Sl |2 = 4 Pl
KR(

1 + Pl
KR

)2 + ( sl
KR

)2
, (3)

with

Pl = kR

F 2
l + G2

l

, (4)

sl = kR
FlF ′

l + GlG′
l

F 2
l + G2

l

, (5)
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FIG. 1. (a) The astrophysical S factor for the 16O + 16O reaction.
The solid and the dashed lines are obtained with a square-well and
a Woods-Saxon potential, respectively. The experimental data are
taken from Ref. [14]. (b) The radial dependence of the total potentials
used in the calculations shown in (a).

where the right hand sides of Eqs. (4) and (5) are evaluated at
kR. Fusion cross sections are then computed as [10]

σfus(E ) = π

k2

∑

l

(2l + 1)(1 − |Sl |2). (6)

With those fusion cross sections, the astrophysical S factor is
defined as

S(E ) = Eσfus(E ) e2πη(E ), (7)

where η(E ) = ZPZT e2/(h̄v) is the Sommerfeld parameter.
Here, ZP and ZT are the charge number of the projectile and
the target nuclei, respectively, and v = √

2E/μ is the velocity
for the relative motion.

For fusion of two identical bosons, such as 12C + 12C and
16O + 16O, one has to symmetrize the wave function with
respect to the interchange of the two nuclei. The fusion cross
sections are then evaluated as [13]

σfus(E ) = π

k2

∑

l

(1 + (−1)l )(2l + 1)(1 − |Sl |2). (8)

In this case, only even partial waves contribute to fusion cross
sections.

Figure 1(a) shows the astrophysical S factor for the 16O +
16O reaction. The solid line is obtained with a square-well
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FIG. 2. Same as Fig. 1, but for two different depths of the Woods-
Saxon potential as indicated in the figure.

potential with V0 = 9.4 MeV, R = 8.13 fm, and W0 =
2.1 MeV. The reduced mass is taken to be μ = m(16O)/2,
where m(16O) is the experimental mass for the 16O nucleus.
For comparison, the figure also shows the result of the
Woods-Saxon potential with the depth, the range, and the
diffuseness parameters for the real part of V0 = −54.5 MeV,
R = 6.5 fm, and a = 0.45 fm, respectively (the dashed line).
The parameters for the imaginary part are taken to be W0 =
10.0 MeV, Rw = 5 fm, and aw = 0.1 fm. Those calculations
are compared with the experimental data [14]. One can see
that both calculations reproduce the data equally well.

Figure 1(b) shows the radial dependence of the two poten-
tials employed. Evidently, the square-well potential is much
shallower than the Woods-Saxon potential. One can also see
that the range of the nuclear potential is much larger in
the square-well potential as compared to the Woods-Saxon
potential. We have confirmed that these features remain the
same even if we replace e−iKr in Eq. (1) with H (−)

l (Kr) by
taking into account the centrifugal and the Coulomb potentials
in the inner region.

Because of continuous and discrete ambiguities of optical
potentials [1,15–17], the parameters of the Woods-Saxon po-
tential may not be determined uniquely. For instance, Fig. 2
shows the result with V0 = −4.3 MeV, R = 8.13 fm, a =
0.45 fm, W0 = 10 MeV, Rw = 7.55 fm, and aw = 0.1 fm
(solid line). Similar to the square-well potential shown in
Fig. 1, this potential is much shallower than the Woods-Saxon
potential adopted in Fig. 1 (dashed line), but still yields a
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FIG. 3. (a) Comparison of the astrophysical S factor for the
16O + 16O system obtained with two different depth parameters of
the square-well potential. The solid line is the same as that in Fig. 1
and is obtained with V0 = 9.4 MeV, while the dot-dashed line is
obtained with V0 = 0 MeV. The range parameter of the square-well
potential is set to be R = 8.13 fm for both cases. The experimental
data are taken from Ref. [14]. (b) The radial dependence of the
square-well potentials used to compute the S factors shown in (a).
The radial wave functions (in arbitrary units) at E = 7 MeV for l = 0
are also shown by the thin solid (for V0 = 9.4 MeV) and the thin
dashed (for V0 = 0 MeV) lines.

comparable fit to the experimental data. That is, one can repro-
duce the data equally well by using either a deep potential with
a small value of R or a shallow potential with a larger value
of R.

For a Woods-Saxon potential, a change in the radius pa-
rameter can be compensated with a change in the depth pa-
rameter so that the height of the Coulomb barrier remains the
same. In contrast, for the square-well potential, the potential
changes abruptly at r = R, and the height of the Coulomb bar-
rier is determined only by R. That is, the height is independent
of V0. The value of R then cannot be too small, otherwise
the Coulomb barrier is too high, considerably suppressing the
astrophysical S factor at E � 10 MeV.

In the square-well model of Michaud and Fowler, the range
parameters for the real and the imaginary parts are set to be the
same as each other [1,5,8]. A large value of R then implies that
the flux is absorbed from relatively large distances. In order to
see this effect, Fig. 3(a) compares the results of the square-
well potential with V0 = 9.4 MeV (the solid line) to those
with V0 = 0 MeV (dashed line). For V0 = 9.4 MeV, the wave
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FIG. 4. Same as Fig. 3, but for the case where the range pa-
rameter of the imaginary part of the square-well potential is set
independently to that for the real part. Those are taken to be 8.13 and
6.5 fm for the real and the imaginary parts, respectively. The solid
line is obtained with V0 = 9.4 MeV, while the dotted line is obtained
with V0 = 7.0 MeV. The experimental data are taken from Ref. [14].

function in the inner region is largely damped if the incident
energy is below V0 (see Fig. 3(b)). If the value of V0 is changed
to V0 = 0 MeV, the inner region of the potential becomes
classically allowed, and the wave function has an oscillatory
nature in this region. The amplitude of the wave function
is then larger than that for V0 = 9.4 MeV, leading to larger
fusion cross sections, thus, the S factors. The combination of
a large value of R and the incoming wave boundary condition
(applying with the imaginary potential, −iW0, even when
E < V0) together leads to a shallow potential, that is necessary
to reproduce the data.

One would then expect that the depth of the square-well
potential becomes deeper if the absorption range is shorter.
This is indeed the case as is shown in Fig. 4, which is obtained
by setting the range parameters for the real and the imaginary
parts to be 8.13 and 6.5 fm, respectively. Notice that, in this
case, the absorption does not start even if the relative motion
penetrates through the barrier and reaches at r = R. To draw
Fig. 4, we employ the boundary conditions of

ul (r) = Tle
−iKr (r < Rim ), (9)

= Ale
−iK̃r + Ble

iK̃r (Rim � r < R), (10)

with K̃ =
√

2μ(E − V0)/h̄2. The boundary condition for the
outer region, r � R, remains the same as in Eq. (2). The solid
line in the figure is obtained with the same value of V0 as in
Fig. 3. Since the relative motion has further to penetrate the
barrier before the absorption is effective, the astrophysical S
factor is largely underestimated. This is cured to some extent
by deepening the potential depth, as is shown by the dotted
line, which is obtained with V0 = 7.0 MeV. The reproduction
of the experimental data, however, is less satisfactory as
compared to the solid line in Fig. 3. If the depth of the
potential is further deepened, the astrophysical S factors are
overestimated as in the dot-dashed line in Fig. 3. Therefore,
the choice of Rim �= R for the square-well model does not
seem to be preferred, at least for the 16O + 16O system.
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III. SUMMARY

We have investigated the origin of a shallow depth of
a square-well potential for nuclear astrophysical reactions.
We have argued that this is caused by the following two
effects. First, the square-well potential changes abruptly at
the boundary, leading to a large radius parameter. Because
of this, the absorption of the flux starts from relatively large
distances. The potential depth then becomes shallow, so that
the amplitude of the radial wave function is damped, in order
to hinder the absorption effect. It is important to notice that
these are artifacts of a square-well potential, and a shallow
depth has nothing to do with microscopic origins of a repul-
sive core in internuclear potentials, such as the Pauli principle
effect [18,19]. Indeed, if one uses a Woods-Saxon potential,

one can employ a more reasonable value for the radius and
the depth parameters. This would imply that care must be
taken in interpreting the results of a square-well model and
in extrapolating the results down to astrophysically relevant
energies, even though the model is simple and convenient, and
often provides a good fit to experimental data.
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