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Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here,
data from a Coulomb dissociation experiment on 20,21N are reported. Relativistic 20,21N ions impinged on a lead
target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using
the detailed balance theorem, the 19N(n,γ )20N and 20N(n,γ )21N excitation functions and thermonuclear reaction
rates have been determined. The 19N(n,γ )20N rate is up to a factor of 5 higher at T < 1 GK with respect to
previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.

DOI: 10.1103/PhysRevC.93.065807

I. INTRODUCTION

The astrophysical r process (rapid neutron capture process)
is an important process for the synthesis of heavy elements [1].
The path of the r process involves many neutron-rich nuclei.
One possible astrophysical site for the r process is supernovae
with a neutrino-driven wind scenario [2] where the neutrino
wind dissociates all previously formed nuclei into protons,
neutrons, and alpha particles [3,4]. Nuclear reaction network
calculations have shown that also light neutron-rich nuclei
have an important impact on the final elemental abundance of
the r-process nucleosynthesis [3,5]. As the half-lives of nuclei
close to the neutron drip line are very short, no target material
can be fabricated. Therefore, these nuclei have to be studied
in beam, e.g. by exploiting the virtual gamma field of a lead
target. The astrophysically important neutron capture reaction
may, then, be studied by time inversion applying the principle
of detailed balance [6].

In the S393 experiment at the LAND/R3B setup (Large
Area Neutron Detector; Reactions with Relativistic Radioac-
tive Beams) at GSI Darmstadt, Germany, many neutron-rich
nuclei were provided in a cocktail beam. In this article, ex-
perimental results on the Coulomb dissociation cross sections
of 20N and 21N are discussed. Data on neutron-rich boron,
carbon, and oxygen isotopes from the S393 experiment have
been presented elsewhere [7–10].

II. EXPERIMENTAL SETUP

A primary 40Ar beam with 490 MeV/u kinetic energy is
guided onto a 4 g/cm2 thick Be target placed at the entrance of
the FRS (Fragment Separator) [11] producing a large variety of
secondary ions in a cocktail beam. Thereafter, the secondary
ions pass a separation stage consisting of bending magnets
and a fixed beam line. As their beam trajectory is fixed by the
magnetic rigidity Bρ, the secondary ions are separated with
respect to their velocity according to their mass-to-charge ratio.

At the end of the FRS the secondary ions traverse a 3 mm
thick plastic scintillator (called S8) at a distance of 55 m from
the reaction target (mentioned later in detail). Additionally, the
POS detector, a 1 mm thick plastic scintillator at the entrance of

*d.bemmerer@hzdr.de
†Present address: LIP-Lisboa, 1000-149 Lisboa, Portugal.
‡Present address: Department of Physics, University of York, YO10

5DD York, United Kingdom.

the LAND/R3B cave, is placed 1.45 m in front of the reaction
target. Together, these detectors are used for time-of-flight
measurements to identify the mass-to-charge ratio A/Z of the
secondary ions.

Besides that, a PSP detector (position-sensitive silicon PIN
diode), placed 105 cm upstream of the reaction target, is used
to determine the charge of the secondary ions by an energy
loss measurement dE/dx, which completes the identification
of the particles impinging onto the LAND/R3B setup. After a
rough selection of the ion of interest, a Gaussian fit is applied
to A/Z and dE/dx separately for each nucleus under study
(20N and 21N). All events within 3σ of the Gaussian fit are
selected for further analysis (Fig. 1). Contamination due to
detector resolutions and cuts are studied in Sec. III F.

Furthermore, an active slit detector (called ROLU) consist-
ing of four movable plastic scintillator sheets (5 mm thickness),
defining an empty rectangular window in the center, is utilized
to define the accepted beam spot size. Ions that do not traverse
through the central window of ROLU but hit the active part of
the detector are not recorded.

Moreover, four DSSSDs (double sided silicon strip detec-
tors) [12] were placed in the beam line, two in front of and two
behind the reaction target, to measure the track of the imping-
ing particles and of the charged reaction products leaving the
target. A valid signal in all four DSSSDs is required for further
analysis (see Sec. III A). Four additional DSSSDs placed in a
box around the target to enable the detection of low energetic
charged particles are not used for the present analysis.

Reaction targets with an area of 3 × 3 cm2 and a spe-
cific thickness d [dPb = (0.176 ± 0.004) mm, dC = (5.08 ±
0.10) mm] are mounted in a remotely controllable target wheel.
The lead target is used to study the Coulomb dissociation,
while the data measured with the carbon target are used
to subtract the nuclear contribution. Measurements with no
target are used to quantify the background contribution of the
material in the beamline.

Around the reaction target, the Crystal Ball detector [13],
consisting of 162 sodium iodine crystals arranged in a shell, is
placed to detect γ rays stemming from the deexcitation of ex-
cited states of the outgoing ions. The proton detection capabil-
ity of the Crystal Ball was not needed for the present analysis.

Downstream at 260 cm from the reaction target, ALADIN
(A Large Dipole Magnet) deflects charged particles according
to their magnetic rigidity. At an angle of 15◦ from the nominal
beam axis, two GFI (Great Fibre) detectors [14,15] with
an active area of 50 × 50 cm2 measure the x position of
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FIG. 1. Incoming particle identification for the FRS setting used
in this work. The charge number Z is derived by energy loss
measurements in the PSP and the A/Z ratio by time-of-flight
measurements between S8 and POS (55 m distance). The red
rectangles indicate a 3σ cut for 20N (left) and 21N (right). For further
details, see text.

the outgoing particles in order to identify the mass of the
outgoing charged fragment. The scintillating fibers with a
cross section of 1 × 1 mm2 are coupled to a position sensitive
photomultiplier (PSPM) resulting in a spatial resolution of 1
mm. Finally, the charge, as well as the time-of-flight of the
outgoing charged fragments are measured at the TFW (Time-
of-Flight Wall), consisting of two crossing planes of plastic
scintillator paddles with an active area of 189 × 147 cm2.

The neutrons originating from Coulomb breakup reactions
are unaffected by the magnetic field of ALADIN and impinge
onto LAND (Large Area Neutron Detector) [16], a 2 m long,
2 m wide and 1 m thick device for detecting neutrons with
kinetic energies between Tn = 100 and 1000 MeV, placed
at a distance of 12.6 m from the reaction target. LAND
consists of 10 crossing planes of 20 paddles each. Each paddle
(10 cm thick) consists of consecutively 5 mm iron converter
(to convert the neutrons into detectable charged particles) and
5 mm plastic scintillator sheets. Further details can be found
elsewhere [16,17].

A sketch of the LAND/R3B setup as it was used for the
S393 experiment is shown in Fig. 2. Although not needed
for the present analysis, the proton detection capabilities are
shown for completeness.

III. DATA ANALYSIS

In this section, the analysis of the recorded events is
discussed. The identification of the incoming beam was
already described in the previous section.

A. Selection of the reaction channel

After selecting the nuclei of interest during the incoming
particle identification, we fix the charge number Z of the
outgoing heavy reaction fragment for the specific reaction
channel (Z = 7) by a cut on the energy loss in the TFW. Then
the deflection of the fragments in the magnetic field depends
only on their mass number A and their velocity.

In addition, the horizontal position measurement at the
GFIs, used to identify the mass number of the fragment,
is additionally correlated with the angle of emission and
the interaction position at the target. In order to convert the
horizontal position measurements of the charged fragments at

FIG. 2. Sketch (top view) of the detector setup at the LAND/R3B cave. Indicated are plastic scintillators (orange), the neutron flight path
(blue line), the flight path of heavy ions (magenta line), and that of protons (red line). Distances of the detectors are to scale, while the
thicknesses of the thin detectors are not to scale. See text for details.
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FIG. 3. Doppler corrected gamma sum spectra for outgoing nuclei (red solid line) after Coulomb breakup and a background estimation
(blue dashed line). Left panel for outgoing 19N and right panel for 20N. The black arrows indicate known excited states [18].

the GFIs into mass numbers, a mass reconstruction algorithm
using the trajectories and time-of-flight information is used.

A valid reaction event is defined for further analysis when
each of the following conditions are fulfilled. Exactly one
neutron is registered in LAND. Late neutron events, i.e., from
scattered neutrons, are rejected by a cut on the neutron velocity
vn > 20 cm/ns as this reflects the velocity of the incoming ion.
Exactly one outgoing 19N is detected in the fragment branch
(both GFIs, and TFW). In order to ensure the tracking of
the incoming and outgoing particle, at least one hit in both
planes of each of the four in-beam DSSSDs is required for
data analysis.

B. Study of emitted γ rays

Transitions of the impinging nucleus into an excited state
of the outgoing nucleus are identified by measuring the
gamma energy released during the deexcitation of the state.
As the particles are strongly forward boosted (β20N = 0.742
and β21N = 0.726, where β is the velocity divided by the
speed of light c), a correction for the Doppler shift is applied.
Furthermore, the segmentation of the Crystal Ball makes it
necessary to take care of hits in several crystals by using an
add-back algorithm which works as follows. Single crystals
with an energy Eγ,crystal > 0.3 MeV (to suppress background
due to Bremsstrahlung) are grouped to clusters which are
used to calculate the entire emitted gamma-energy during the
reaction of one impinging particle.

In the left panel of Fig. 3 (red, solid line) the summed
gamma energy (sum of all clusters) for incoming 20N and
outgoing 19N is shown. A clear peak at Eγ,sum = 1.15 MeV is
visible, corresponding to the first excited state of the outgoing
19N nuclei as previously measured by Sohler et al. [18]. The
blue dashed line indicates a background estimation by gating
on unreacted outgoing 20N (otherwise equal cuts as discussed

in Sec. III A). This shows that the peak at 1.15 MeV is not
caused by background events. Furthermore, there is a high-
energy tail with count rates half as large as that of the signal
peak. These might correspond to higher lying states of 19N.
But due to the limited statistics and energy resolution, they
cannot be unambiguously identified.

The gamma sum spectrum originating from deexcitations
of 20N is shown in the right panel of Fig. 3. A dominant
peak is visible at Eγ,sum = 0.85 MeV, again corresponding to
the first excited state [18]. Only a small additional structure
arises at 1.3 MeV and no significant structures are detected
at Eγ,sum � 1.5 MeV. As Sohler et al. [18] reported several
peaks in the close vicinity of 850 keV, and due to the limited
energy resolution of our gamma spectra, the observed peak
cannot unambiguously be used to gate on the first excited
state. Therefore, a gate on transitions into the first plus the
second excited state is given in the presented analysis.

C. Coulomb dissociation cross section

After applying the cuts for selecting the reaction channel,
the reaction probabilities are obtained by dividing the number
of reaction events (see Sec. III A) by the effective number of
nuclei impinging onto the target. The latter value is derived by
counting all outgoing nitrogen isotopes that are detected at the
fragment arm, including the unreacted 20N (resp. 21N) ions.
This automatically takes into account losses due to particles
scattered out of the beamline, detector inefficiencies in the
fragment arm, and applied cuts which together amount to 33%.

The Coulomb dissociation cross section follows as

σCD = preact
Pb FPb − preact

C αFC − preact
empty(FPb − αFC) (1)

with

Ftarget = Mtarget

dtargetNA
,
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where the indices Pb, C, and empty denote the specific targets
(lead, carbon, and no target), preact

target is the probability of
the impinging particle to react with the target, Mtarget is the
molar mass of the material of the target, dtarget is the areal
density of the target (measured by weighing), NA is Avogadro’s
number, α is the nuclear scaling factor derived in the following
paragraph.

The factor α is necessary to scale the nuclear contribution
measured with the carbon target to the much larger lead nuclei.
The black disk model is used to estimate

α20N = A
1/3
20N

+ A
1/3
Pb

A
1/3
20N

+ A
1/3
C

= 1.7. (2)

As preact
C < 0.1 preact

Pb , the choice of α has only a limited
influence on σCD.

D. Excitation energy

The excitation energy E∗ of the reaction is extracted by the
invariant mass method via

E∗ = c2
√

m2
frag + m2

n + Ex − mprojc
2 + Eγ,sum (3)

with

Ex = 2γfragγnmfragmn(1 − βfragβn cos θfrag,n),

where mproj is the rest mass of the incoming nucleus, mfrag is
the rest mass of the outgoing heavy reaction fragment, mn is
the rest mass of the outgoing neutron, βfrag is the velocity of
the outgoing heavy reaction fragment, βn is the velocity of the
outgoing neutron, γfrag = (1 − β2

frag)−1/2, γn = (1 − β2
n)−1/2,

θfrag,n is the angle between the outgoing heavy reaction
fragment and the neutron, while Eγ,sum is the energy of all
gamma quanta emitted during the reaction. Here, due to the
high photopeak efficiency (∼70%) of the crystal ball at the
relatively low γ -ray energies (∼1 MeV), Eγ,sum is simply taken
as the sum of the detected γ -ray energies. This approximation
entails a slight downward shift of the excitation function
for Coulomb dissociation into excited states of the product
nucleus, which is not significant here, because those states
contribute only negligibly to the reaction rate at the effective
astrophysical temperatures,; see below.

The mass of the incoming 20N (resp. 21N) and the
outgoing 19N (resp. 20N) were taken from the AME2003 mass
evaluation [19]. Differences to the updated mass evaluation
AME2012 [20] amount to only 10 keV, much less than the
experimental resolution.

An energy-dependent correction for the neutron detection
efficiency must be applied to the Coulomb dissociation cross
section. The total neutron efficiency of LAND is based
on a simulation which includes the acceptance due to the
kinematics of the specific reaction, the acceptance due to
deactivated/broken paddles and the nominal energy-dependent
neutron efficiency of the detector measured in an earlier
experiment [17].

For kinetic energies in the center of mass of T c.m.
n < 5 MeV,

the neutrons are strongly forward boosted, so that all neutrons
hit the active area of LAND. The efficiency drops dramatically
for T c.m.

n > 5 MeV as the transverse momentum component
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FIG. 4. One-neutron emission spectrum of 20N impinging onto
a Pb target measured with LAND (red dashed line) and corrected
for the LAND efficiency (blue solid line). The kinetic energy of the
neutron T c.m.

n is given in the center-of-mass frame.

becomes more dominant and, thus, many neutrons miss the
active area of LAND.

The kinetic energy of the neutrons in the center-of-mass
system for the 20N(γ,n)19N reaction is depicted in Fig. 4.

E. Differential Coulomb dissociation cross section

The differential reaction cross section of 20N impinging
onto the lead target as a function of the excitation energy E∗
is extracted from the yield formula

dσPb

dE∗ =
(∫ E∗+dE

E∗

dσPb(Ẽ)

dẼ
dẼ

)
1

�E∗

= N (19N)(E∗)

N (20N)ηLAND
FPb

1

�E∗ , (4)

where N (19N) is the number of outgoing 19N nuclei, N (20N)
is the number of incoming 20N nuclei, and ηLAND is the one-
neutron detection efficiency of LAND.

The differential Coulomb dissociation cross section as a
function of the excitation energy [Eq. (3)], then, is given by

dσCD

dE∗ = [pPb(E∗)FPb − pC(E∗)αFC

−pempty(E∗)Fempty]
1

�E∗ . (5)

The total differential Coulomb dissociation cross section
(including transitions into the ground state and any excited
state) as a function of the excitation energy for impinging 20N
is depicted in Fig. 5 (black line).

In order to separate transitions of 20N(γ ∗,n) into the
first excited state of 19N at 1141 keV, a cut on 0.70 <
Eγ,sum < 1.40 MeV is performed. Furthermore, the resulting
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FIG. 5. Coulomb dissociation cross section of 20N as a function of
the excitation energy for the total reaction (black line) and transitions
into the first excited state of 19N at 1141 keV (red line). The error
bars reflect statistical uncertainties only.

E∗ spectrum is corrected for the photopeak efficiency of the
Crystal Ball ε(Eγ,sum = 1.15 MeV) = 0.67 which is based on
simulations taking into account the kinematic boost. The result
is shown in Fig. 5 (red line).

Transitions into the ground state of 19N are explored by
subtracting transitions into any excited state (with a gate on
Eγ,sum > 0.7 MeV) from the total excitation energy spectrum
(see Fig. 5). Here, the excited state data are corrected for the
total γ efficiency of 0.85, which is constant within 3% for
Eγ,sum = 1–5 MeV.

The total differential Coulomb dissociation cross section
as a function of the excitation energy for impinging 21N is
shown in Fig. 6 (black line). Transitions of 21N(γ ∗,n) into the
first plus second excited state of 20N are deduced by gating on
0.40 < Eγ,sum < 1.00 MeV and correcting for the photopeak
efficiency of ε(Eγ,sum = 0.90 MeV).

In order to derive the transitions into the ground state
of 20N (Fig. 6, magenta line), the E∗ spectrum of the
transitions of 21N(γ ∗,n) into any excited state of 20N with
Eγ,sum > 0.40 MeV is corrected with the total γ efficiency
and subtracted from the total reaction.

F. Error budget

Systematic uncertainties from the identification of the
incoming particles are derived by varying the cuts on A/Z and
dE/dx of the incoming particle from 2σ to 3σ and calculating
the difference. As these uncertainties are very small (3%) in
contrast to the statistical uncertainties, these will be neglected
in the further analysis.

Moreover, the single neutron detection efficiency of LAND
is known with an uncertainty of 6%. The Crystal Ball efficiency
is determined with an uncertainty of 6%.
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FIG. 6. Coulomb dissociation cross section of 21N as a function of
the excitation energy for the total reaction (black line) and transitions
into the ground state of 20N (magenta line). The error bars reflect
statistical uncertainties only. For the ground state transitions, the
error bars were omitted for reasons of clarity as they are comparable
to the ones of the total reaction.

The uncertainty of the measurement of the areal density of
the target amounts to 2% and, thus, will be neglected in the
further analysis.

The results of the Coulomb dissociation cross sections and
the corresponding uncertainties are summarized in Table I.

IV. RESULTS

Most of the Coulomb dissociating 20N nuclei populate
excited states of 19N (Table I): 40% of the total Coulomb
dissociation cross section is caused by transitions into the
first excited state of 19N at 1141 keV, 44% to higher excited

TABLE I. Summary of the Coulomb dissociation cross sections
of 20N and 21N integrated over E∗ ∈ [0,20] MeV for the total reaction,
transitions into any excited state of the outgoing nucleus, transitions
into the ground state of the outgoing nucleus, and transitions into the
first excited state of the outgoing nucleus [only for th 20N(γ ∗,n)19N
reaction]. Only the statistical uncertainties are given here, as they are
much larger than the systematic ones (see text for details).

σCD(20N, total) = (90 ± 12stat) mb
σCD(20N, all excited states) = (76 ± 10stat) mb
σCD(20N, ground state) = (15 ± 16stat) mb
σCD(20N, 1st exc. state) = (36 ± 6stat) mb

σCD(21N, total) = (75 ± 13stat) mb
σCD(21N, all excited states) = (44 ± 9stat) mb
σCD(21N, ground state) = (31 ± 16stat) mb
σCD(21N, 1st + 2nd exc. state) = (47 ± 8stat) mb
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states. Only 17% of the reactions are caused by transitions
into the ground state, which is compatible with zero within the
statistical uncertainties.

The total excitation energy spectrum of the Coulomb
dissociation of 20N is shown in Fig. 5 (black line). While there
are no entries for energies from 0 to 2 MeV, the spectrum
notably increases at 2 MeV. The one-neutron separation
threshold of 20N is S1n(20N) = 2.16 MeV.

Some structures appear at 5.5, 7.0, 9.0, 10.2, and 11.5 MeV.
For E∗ > 17 MeV, the spectrum drops to values consistent
with zero within the statistical errors as the number of virtual
photons at 18 MeV drops to 15% of that at 3 MeV.

Transitions of 20N into the first excited state of 19N at
1143 keV are depicted in Fig. 5 (red line). Here, the spectrum
rises significantly above zero for energies E∗ = 3.5 MeV
which reflects the sum of S1n(20N) and the energy of the first
excited state. Some structure is visible for energies between
3.5 and 14 MeV.

A summary of the cross sections for the Coulomb dissocia-
tion of 21N is presented in Table I. Here, 59% of the Coulomb
dissociating 21N transit into excited states of 20N [less than for
the 20N(γ ∗,n)19N reaction]. 41% of the reactions pass into the
ground state of 20N [higher than for 20N(γ ∗,n)19N].

The total energy-dependent Coulomb dissociation cross
section of 21N is shown in Fig. 6 (black line). The spec-
trum does not show any entry between 0 and 4.5 MeV.
The one-neutron separation threshold of 21N is S1n(21N) =
4.60 MeV. The spectrum rises significantly above zero at
E∗ = 5.25 MeV. Subsequently, there is a structure between
5 and 14 MeV. Beyond 14 MeV the spectrum drops to values
consistent with zero.

The energy-dependent Coulomb dissociation cross section
of 21N, passing into the ground state of 20N, is depicted in
Fig. 6 (magenta line). The spectrum rises significantly above
zero for energies between 5 and 9 MeV with a plateau-like
structure. No significant peaks can be identified due to the
large statistical uncertainties.

V. PHOTOABSORPTION AND NEUTRON CAPTURE
CROSS SECTION

The differential photoabsorption cross section is calculated
via the virtual photon theorem [6]

dσCD

dEγ

= 1

Eγ

nE1(Eγ )σ photo
E1 . (6)

Here, dσCD
dEγ

is the differential Coulomb dissociation cross
section as a function of the excitation energy (where Eγ ≡ E∗),
calculated as in the previous section, nE1(Eγ ) is the number of
virtual photons and σ

photo
E1 is the photoabsorption cross section

for multipolarity E1 as a function of the excitation energy.
As the cross sections of higher multipolarities are found to

be three orders of magnitude lower than for E1 [21], higher
multipolarities are neglected.

Then, the photoabsorption cross section is calculated from

σγ,n ≡ σ
photo
E1 = dσCD

dE∗
1

nE1(E∗)
E∗. (7)

The virtual photon spectrum for the E1 multipolarity is
derived as described in detail in Ref. [6]:

nE1(E∗) = 2

π
Z2

Te2α

(
c

v

)2

[ξK0(ξ )K1(ξ ) − L(ξ )] (8)

with

L(ξ ) = v2ξ 2

2c2

[
K2

1 (ξ ) − K2
0 (ξ )

]
,

where Ki are the modified Bessel functions of order i, α is
the fine-structure constant, and ξ is the adiabaticity parameter
which reads ξ = E∗b/(�γβc) with b as the impact parameter.

Utilizing the fact that nuclear reactions are invariant under
time reversal, the neutron capture cross section is determined
via the theorem of detailed balance [6]:

σn,γ = 2(2IA + 1)

(2IB + 1)(2In + 1)

k2
γ

k2
c.m.

σγ,n, (9)

where σγ,n is the photoabsorption cross section [see
Eq. (7)], kγ = E∗/(�c), k2

c.m. = 2μ(E∗ − Q)/�
2 with Q =

S1n + Eγ,sum, and μ is the reduced mass of the system of
the outgoing fragment plus neutron [e.g., for the system
19N +n, μ = (M19NMn)/(M19N + Mn)]. IA,B are the spins of
the incoming and outgoing particle. With 20N as the incoming
nucleus, index A denotes 20N with IA = 2 for the ground
state, index B represents the outgoing 19N with IB = 1/2 for
the ground state and IB = 3/2 for the first excited state, and
index n indicates the neutron with In = 1/2. With 21N as the
incoming beam, IA = 2 for the ground state, index B represents
the outgoing 20N with IB = 2 for the ground state and IB = 3
for the first excited state.

Integrating over energies Ec.m. ∈ [0,15] MeV (where
Ec.m. = E∗ − Q), the neutron capture cross section of the
ground state of 19N amounts to σn,γ (19N,g.s.) = (0.003 ±
0.010stat) mb. As the statistical uncertainty is large, only an up-
per limit with 90% confidence level is given: σn,γ (19N,g.s.) �
0.016 mb. The neutron capture cross section of the first
excited state of 19N amounts to σn,γ (19N,1st) = (0.0057 ±
0.0014stat) mb. Similarly, the neutron capture cross section
of the ground state of 20N amounts to σn,γ (20N,g.s.) �
0.0091 mb.

The first and the second excited states of 20N cannot be
clearly separated due to the low resolution of our gamma
spectra. For further analysis of the stellar reaction rate and
its implementation into a reaction network we provide the
neutron capture cross section of the first and second excited
state of 20N σn,γ (20N,1st + 2nd) = (0.0041 ± 0.0010stat) mb.

A summary of the derived photoabsorption and neutron
capture cross sections is given in Table II.

VI. ASTROPHYSICAL REACTION RATE

From the derived neutron capture cross section, the
Maxwellian averaged reaction rate [22] is calculated,

NA〈σv〉 = NA
(8/π )1/2

μ1/2(kBT )3/2

∫ ∞

0
σn,γ E exp

(
− E

kBT

)
dE,

(10)
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TABLE II. Photoabsorption and neutron capture cross section
of the nitrogen isotopes under study. The errors reflect statistical
uncertainties only. Upper limits are given with 90% confidence
level.

σγ,n(20N), total = (1.15 ± 0.27) mb
ground state � 0.62 mb
1st excited state = (0.51 ± 0.12) mb

σγ,n(21N), total = (0.93 ± 0.30) mb
ground state � 0.74 mb
1st + 2nd exc. state = (0.69 ± 0.16) mb

σn,γ (19N), ground state � 0.016 mb
1st excited state) = (0.0057 ± 0.0014) mb

σn,γ (20N), ground state � 0.0091 mb
1st + 2nd exc. state) = (0.0041 ± 0.0010) mb

where NA is Avogadro’s number, μ the reduced mass of the
system under study (e.g., 19N +n), kB the Boltzmann constant,
and T the temperature of the stellar environment (assumed to
be in thermal equilibrium with the nuclei under study).

Due to the large, predominantly statistical uncertainty of
the neutron capture cross section of the ground state of 19N
and 20N, we applied a randomization technique. For each
energy bin in the measured neutron capture histogram, a
random Gaussian distribution is built where the bin content
acts as mean value and the statistical uncertainty of the
bin acts as sigma of the Gaussian distribution. Then, the
randomly distributed neutron capture cross section is used
to calculate the Maxwellian averaged reaction rate for each
temperature [see Eq. (10)], forcing the Maxwellian averaged
reaction rates to be positive definite. This procedure is repeated
1000 times; thus, for each temperature we generate 1000
times a Maxwellian averaged reaction rate. Then, the mean
value of the resulting distribution is used as a value in the
randomized Maxwellian averaged reaction rate as a function of
temperature while the root mean square (rms) acts as statistical
uncertainty.

In order to judge how much the excited states contribute
to the total reaction rate, the population of the first excited
state of 19N relative to the ground state is assumed to be
[23]

P (ER) = exp

(
− ER

kBT

)
2IR + 1

2I0 + 1
, (11)

where ER is the energy of the excited state, IR the spin of the
resonant state and I0 the spin of the ground state.

In order to calculate the stellar reaction rate R, we combine
the neutron capture reaction rate of the ground state R0 and
the neutron capture reaction rate of the first excited state R1

with the population probability [Eq. (11)] [24]:

R = g0R0 + g1R1 exp
(− E1

kBT

)
g0 + g1 exp

(− E1
kBT

) (12)

with g0 = 2I0 + 1.
It should be noted that the dissociation cross sections were

measured for nuclei in their ground state. Therefore, the cross
section and reaction rate determined using the detailed balance

FIG. 7. Stellar reaction rate for 19N(n,γ )20N (black solid line).
The red dotted line denotes contributions from the neutron capture
of the ground state of 19N and the blue dotted-dashed line denotes
contributions from the neutron capture of the first excited state of 19N.
The black dashed line denotes a theoretical curve given by [25].

theorem only constrain the contribution of the ground state.
As a result, the contribution of low-energy first excited states,
which are located at 843 and 1177 keV for 20,21N respectively
[18], to the total (n,γ ) reaction rate is not constrained by
the present measurement. In previous studies, the inclusion of
the capture to thermally populated excited states has led to
significant enhancement of the total cross section [9].

Then, the 19N(n,γ )20N reaction rates as a function of
the temperature are compared with reaction rates included
in reaction network codes which are mainly based on one
theoretical work [25] considering just direct capture and giving
a linear approximation NA〈σv〉theory = (1.54 × 103)T9.

In Fig. 7, the stellar reaction rate [see Eq. (12)] of
19N(n,γ )20N is plotted as a function of the temperature.
The red dotted line denotes contributions from the ground
state of 19N (generated with the randomization technique)
and the blue dotted-dashed line denotes contributions from
the first excited state of 19N while considering the population
probability [compare Eqs. (11) and (12)]. The black solid line
denotes the stellar reaction rate which is obtained by summing
the ground-state and first excited-state contributions, while the
black dashed line denotes theoretical estimates [25]. It is clear
that the excited state only plays a role for T > 3 GK.

At temperatures between 0.1 and 1.0 GK, our measured
data exceed the theoretical ones by up to a factor of 3 before
the ratio drops below 1 and finally levels out at 0.1 of the
theoretical predictions.

In Fig. 8, the stellar neutron capture reaction rate of
20N is shown in a fashion analogous to that of Fig. 7.
Again, we note that due to the limited resolution of the
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FIG. 8. Stellar reaction rate for 20N(n,γ )21N (black solid line).
The red dotted line denotes contributions from the neutron capture
of the ground state of 20N and the blue dotted-dashed line denotes
contributions from the neutron capture of the first and second excited
state of 20N.

gamma spectra, we could not distinguish between the first
and second excited states of 20N. From Eq. (12), one can
see that this causes no major problem for the computation of
the stellar reaction rate. As the spins of the first and second
excited states in 20N are equal [18], only the difference in
energy contributes to an additional uncertainty. We estimate
this additional uncertainty to be 2% of the stellar reaction
rate, much less than the statistical uncertainty of �10%.
For lower temperatures, the contribution of the uncertainty
due to the limited energy resolution is even lower, as the
population probability decreases with decreasing temperature.
No theoretical predictions were available for this reaction
[25]. The references given by Terasawa et al. in 2001 [5] do
not include this reaction rate. Therefore, we show the stellar
reaction rate without any comparison.

In Fig. 8, one can see that the stellar neutron capture reaction
rate of 20N is of the same order of magnitude as the one
of 19N. For temperatures T � 0.8 GK, the stellar neutron
capture reaction rate of 20N is lower than the one of 19N. At a
temperature of 5.5 GK, the ratio of the stellar neutron capture
reaction rates reaches its maximum, where the rate of 20N is
three times larger than the one of 19N. For higher temperatures,
the ratio decreases to 2.5 at a temperature of 10 GK.

VII. NETWORK CALCULATIONS

In order to illustrate the impact of our measured reaction
rates on the final elemental abundance of an r-process
calculation, we included our reaction rates in a reaction
network code [26].

As basic input, we downloaded the reaction network from
the JINA Reaclib Database [27]. As several reactions on
neutron-rich light nuclei were not included, we included
the reaction rates of 14B(n,γ )15B, 17C(n,γ )18C, 18C(n,γ )19C,
19C(n,γ )20C, and 18C(α,n)21O from Sasaqui et al. [3]. The
remaining reaction rates in Ref. [3] were of references
predating our reference network. In Ref. [3], Hauser-Feshbach
models were used to obtain estimates of the reaction rates
for light neutron-rich nuclei. As the network calculation
presented here is not supposed to explain the entire r-process
nucleosynthesis, but only to give a rough impression of the
impact of our measured reaction rates on the r process, we
omitted the derivation of new theoretical reaction rates.

Furthermore, we included the measured stellar reaction rate
of 20N(n,γ )21N (see previous section) and updated the rate of
19N(n,γ )20N (referred to as “our network” in the following).
For comparison we created a second network (referred to
as “reference network”) which included the reaction rate of
19N(n,γ )20N derived by Rauscher et al. [25] but included our
rate of 20N(n,γ )21N, as no previous reference for the latter
reaction was available in the literature.

In order to simulate an r-process environment, we used
the following trajectory for the evolution of density in time
consisting of an exponential decay, reflecting the expanding
medium of the supernova, and an additional slower decaying
term, reflecting the neutrino wind [28]:

ρ(t) = ρ0 exp(−t/τ0) + ρ1

(1 + t/τ1)2
, (13)

where ρ0 = 1.7995 × 106 g/cm3 is the initial density (at t =
0 s) of the exponential term, ρ1 = 540 g/cm3 is the constant
density of the second term, and τ0 = 0.0051 s is the decay
constant of the exponential term.

The temperature T is parametrized as

T (t) ∝ ρ(t)1/3, (14)

with T (t = 0 s) = 9.0 GK. These input parameters were
chosen to match Terasawa et al. [5]. The initial neutron-to-
proton ratio was set to 65/35 (which corresponds to set 2 in
Table 4 of Sasaqui et al. [3]).

Then, the network was run to calculate the reaction flow
until 106 s after the supernova exploded. In Fig. 9, we extracted
the abundance as a function of nucleon number at that time
(red line) where the three main r-process peaks are visible at
A = 79, A = 130, and A = 195. For comparison we added the
solar abundances of r-process elements as derived by Käppeler
et al. (1989) [29] (black symbols) and rescaled our data to
match the height of the peak at A = 195.

Our efforts on network calculations are not to understand
the entire r process in detail but to estimate the impact of
our measured reaction rates on the r-process abundances.
Therefore, we use the abundances derived with our network
for comparison with abundances computed when using the
reference network (see previous passage).

We find a decrease of 10% for fluorine (A = 19), but the
abundances of nuclei with higher mass are unaffected by our
data.

In Fig. 10, we show the reaction flow which is the
contribution per nucleon per second to the abundance of
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FIG. 9. Final abundances as a function of the nucleon number
derived from our network calculation with our measured reaction
rates (red solid line) and solar r-process abundance from reference
(black symbols) [29]. For details, see text.

one of the product species in the reaction. One can see that
the reactions under study become important (e.g., with a
reaction flow �10−5) at times within t ∈ [0.025,0.35] s which
correspond to temperatures T ∈ [2.07,0.60] GK. Thus, we
measured the reaction rate exactly in the important temperature

FIG. 10. Reaction flow as a function of time (and temperature)
during our network calculation for 19N(n,γ )20N (black dashed line)
and 20N(n,γ )21N (red solid line). The temperature is plotted as the
blue dotted line.

range. Corrections due to neutron capture of excited states of
the target nucleus play no role in this temperature range (Figs. 7
and 8).

In order to gauge the possible impact of an increase in the
reaction rate due to neutron capture into excited states of the
product nucleus, which is not constrained by the present data
(see Sec. VI), the network calculations have been repeated with
tenfold increased (n,γ ) reaction rates. The resulting fluorine
abundance is 50% lower than in the reference case, and again
no measurable impact is seen on any other nucleus.

VIII. SUMMARY AND OUTLOOK

Summary. We measured the Coulomb dissociation cross
section of 20,21N and discriminated between transitions into
the ground state and the first excited state of the outgoing
nuclei. In the case of 21N, we could not separate the first from
the second excited state due to the limited resolution of our
gamma calorimeter. Therefore, we presented only transitions
into any excited state of the outgoing 20N ions.

Furthermore, we calculated the photo absorption cross
sections via the virtual photon theory and the neutron capture
cross section by using the principle of detailed balance for
each individual reaction, discriminating for the excitation level
of the outgoing particle. In these cases, the ground state
contributions had such a low statistical uncertainty that only
an upper limit could be presented.

Moreover, the thermonuclear and the stellar reaction rates
were computed even for ground state transitions due to the use
of a Monte Carlo method. Additionally, the reaction rates were
compared to theoretical predictions.

Finally, network calculations were performed to estimate
the impact of our measured reaction rates on the possible
r-process scenario of a supernova with a neutrino driven wind.

A decrease of 10% in the fluorine (A = 19) abundance was
found relative to the abundances when using the reference
rates [25]. The abundances of nuclei with higher mass were
unaffected.

Outlook. In the future, our measured reaction rates may be
implemented in reaction networks which include even more
light neutron-rich nuclei. Other possible r-process scenarios
could be used to study the impact of these reaction rates on the
final r-process elemental abundance in more detail.

A repetition of our measurements with more statistics could
reduce the statistical uncertainties already in the excitation
energy spectra and the photoabsorption and neutron capture
cross sections.

Additionally, the low resolution of our gamma spectra
prevented the separation of the first from the second excited
state of outgoing 20N. Thus, a repetition with a gamma
spectrometer with higher granularity and intrinsic energy
resolution would improve the separation on the one hand and
the resolution of the excitation energy spectra on the other
hand.

Both experimental improvements will be provided in the
future FAIR (Facility for Antiproton and Ion Research) which
is presently under construction at GSI in Darmstadt, Germany
[30].
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Phys. 41, 053101 (2014).

[5] M. Terasawa, K. Sumiyoshi, T. Kajino, G. J. Mathews, and I.
Tanihata, Astrophys. J. 562, 470 (2001).

[6] G. Baur, C. Bertulani, and H. Rebel, Nucl. Phys. A 458, 188
(1986).

[7] S. G. Altstadt, T. Adachi, Y. Aksyutina, J. Alcantara, H. Alvarez-
Pol et al., Nucl. Data Sheets 120, 197 (2014).

[8] C. Caesar, J. Simonis, T. Adachi, Y. Aksyutina, J. Alcantara
et al. (R3B Collaboration), Phys. Rev. C 88, 034313 (2013).

[9] M. Heine, S. Typel, M.-R. Wu, T. Adachi, Y. Aksyutina et al.,
arXiv:1604.05832.

[10] R. Thies, A. Heinz, T. Adachi, Y. Aksyutina, J. Alcantara-Núñes
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