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Abstract. The core longitudinal momentum distributions in two-neutron stripping reactions
for halo nuclei of 20C and 22C are computed and compared to the experimental data obtained
by detecting the core nucleus. The three-body wave function from the zero-range renormalized
model is used as input in our calculations. We approximate the wave function of the projectile
with a three-body structure, namely neutron-neutron-core, to an effective two-body one by
integrating over neutron-neutron relative distance, such that the one has a core-dineutron
wave function. The eikonal approximation is used in the description of the fragment-target
interactions where the São Paulo optical potential is used for modeling the core-target and a
Woods-Saxon potential is used for the dineutron-target interaction.

1. Introduction
Thanks to technological developments particle beams of unstable neutron rich nuclei are
produced in laboratories and it is now possible to measure reaction cross-sections of very short
half-life halo nuclei. They are composed by a core plus one or two loosely bound nucleons like
the neutron-rich carbon isotopes, which have been observed within last couple of years [1, 2, 3].
In addition to experimental efforts, theoretical groups, in the last decades, have been making
efforts in order to obtain indirect informations about neutron halo from observables such as the
core momentum distributions [4, 5, 6]. This is important since it provides model constraints
to make possible the prediction of other halo-nuclei properties, like the matter radius, see for
example [7].

The differential cross-sections for the stripping processes (inelastic breakup) for two-body
projectile on a target was discussed in Ref. [8]. We follow the theory presented in that work
and compute the core longitudinal momentum distribution of the bound neutron-rich carbon
isotopes, in particular, for the collision of beams of 20C and 22C with energy of 240 A MeV,
with a target of stable 12C. We approximate the three-body projectile wave function by a two-
body one, namely an effective core-dineutron wave function, by integrating the three-body wave
function over the neutron-neutron relative coordinate.

2. Three-body zero-range wave function
To describe the two-neutron halo nucleus as a three-body system (for example 20C = 18C+n+n,
where n represents one neutron of the halo), the wave function can be written as a possible set
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of the relative coordinates Ψ(r, rnn) as defined in Fig. 1. The wave function is an eigenstate of
the three-body zero-range Hamiltonian where S2n = −E is the two-neutron separation energy.
The neutrons are supposed to be in a spin singlet state and the configuration space zero-range
model wave function [9, 10] is:

Ψ(r, rnn) =

∫
dq

e−κnn|rnn|

|rnn|
eiq.r fnn(q) +

{∫
dq

e−κnc|rnc|

|rnc|
eiq.rn′,ncfnc(q) + (n↔ n′)

}
, (1)

where the last term (n↔ n′) means the symmetry under exchange of the neutrons. The relative
coordinate of the core to the neutron-neutron center of mass is r. The absolute value for vector
rnc = r + rnn

2 is the distance between the core and the neutron. The relative coordinate of n′

to the neutron-core center of mass is rn′,nc = A
A+1r − A+2

2(A+1)rnn and the κ’s in the two-body

subsystems wave functions are: κnn =

√
2µnn

h̄2

(
S2n + h̄2q2

2µnn,c

)
, and κnc =

√
2µnc

h̄2

(
S2n + h̄2q2

2µnc,n

)
,

with the reduced masses, µnn = m
2 , µnn,c = m 2A

A+2 , µnc = m A
A+1 , µnc,n = mA+1

A+2 , where A is the
mass number of the core and the neutron mass is m. The zero-range three-body wave function
is obtained by solving the coupled integral equations for fnn(q) and fnc(q), which are spectator
functions. These integral equations are solved having as inputs the n − n and n − c scattering
lengths, and the value of S2n (See details in Ref. [9]).

Figure 1. Coordinates for two-neutron stripping reaction.

3. Differential two-neutron stripping cross-section
The cross-section for the stripping reaction (n+ n+ c) + target→ c+X, where (n+ n+ c) is
the initial state of the projectile and c corresponds to a final state of the core, is given in [8]:

dσstr
d3kc

=
1

(2π)3

1

2l + 1

∑
m

∫
d2bn

[
1− |Sn(bn)|2

] ∣∣∣∣∫ d3r eikc.rSc(bc)Ψlm(r)

∣∣∣∣2 , (2)

where kc is the core momentum, bc and bn are the impact parameter vectors referring to the
transverse components of Rc and Rn as in Fig. 1. Sc and Sn are the scattering matrix of the
c + target and (n + n) + target, respectively. We introduce the three-body bound state wave
function, Eq. (1), which has the predominance of s-wave ` = 0. However, we approximate
the wave function from three- to two-body by considering the two-neutron stripping. For that
reduction to an effective core-dineutron wave function we integrate the three-body wave function
over rnn as follows:

Ψ(r) :=

∫
d3rnn Ψ(r, rnn). (3)

3.1. Eikonal approximation
The Eikonal approximation is a semiclassical method to obtain the S-matrix, S(b), as a function
of the impact parameter b, where one neglects the excitation energies of the projectile which
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moves along a straight-line trajectory at high energy. By considering that the projectile beam
propagate towards the target with the initial momentum on the z-axis, the S-matrix can be
written as S(b) = exp[iχ(b)], and the eikonal phase is given by:

χ(b) = − 1

h̄v

∫ ∞
−∞

Uopt(b, z)dz, (4)

with v the fragment-target relative velocity and Uopt is the optical potential.
The São Paulo optical potential (SPP) is used to describe the interaction between the core

and the carbon target. This potential consists on a theoretical energy-dependent model that
has been successful in describing the elastic and inelastic scattering for weakly bound nuclei
based on a double folding potential for target and the projectile [11, 12]. It is built with the
fundamental nucleon-nucleon interaction folded into a product of the nucleon densities of the
nuclei and a polarization potential that carries the nonelastic contributions.

The dineutron-target interaction is described by a Woods-Saxon potential that is given by:

V WS(r) =
V0 − iV0I

1 + exp ((r −R0)/a)
, (5)

where R0 is the target nuclear radius of 12C and a = 0.676 fm determines the diffuseness of the
nuclear surface. The parameters used for real and imaginary parts are V0R = 49.9395 MeV and
V0I = 1.8256 MeV, respectively [13].

4. Core longitudinal momentum distributions
We decompose the cross-section in momentum components and integrate over the perpendicular
momentum component kc⊥ as,

dσ

d kc‖
=

∫
dσ

d3kc
d2kc⊥ , (6)

the longitudinal momentum distribution is given by

dσ

dkc‖
=

1

2π

∫ ∞
0

d2bn

[
1− |Sn(bn)|2

] ∫ ∞
0

d2ρ |Sc(ρ, bn, φ)|2
∣∣∣∣∣
∫ ∞
−∞

dz exp[−ik‖z]Ψ(ρ, z)

∣∣∣∣∣
2

, (7)

where φ is the core angle around the z-axis and |bc| =
√
b2n + ρ2 − 2ρbn cos(φ− φn), with the

dineutron position vector was fixed at angle φn = 2π.
The two-neutron differential stripping cross-sections for the momentum distributions of the

core P‖ = h̄kc‖ are shown in Fig. 2 for the projectiles of 22C (left-frame) and 20C (right-frame)
colliding at 240 A MeV on the carbon target. The distributions have been convoluted with
the experimental resolution and normalized to the cross-sections data. The distributions are
convoluted as nconv(q) =

∫∞
−∞ dq

′ exp
(
− (q − q′)2/2σ2

)
n(q′), where n(q′) is the cross-sections

calculated with Eq. (2) and are represented by full lines in both frames. The theoretical results
for the 22C are convoluted with the experimental resolution σ = 27 MeV/c and added to a wide
experimental distribution σwide = 89.6 MeV/c (brown dashed line) associated to a full width at
half maximum of FWHM = 211 MeV/c from Ref. [2]. The distribution for the 18C core in the
reaction 12C(20C,18C)X is computed for an experimental resolution of σ = 28 MeV/c. The red
dashed line in the right-frame represents the approximation so-called the “transparent limit”
where Sc=1 and it neglects the effect of the interaction between the observed fragment and the
target nucleus. The distribution without the experimental resolution is shown as well. The
three-body wave functions for the halo nuclei are computed by using two-neutron separation
energies with S2n = 3.5 MeV(S2n = 0.396 MeV [3]) for the 20C(22C). The bound subsystem 19C
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has one-neutron separation energy of S1n = 0.58 MeV and for the borromean system 22C, we
use the neutron-core system in the unitary limit, where the neutron-core virtual state energy
vanishes, Evirtualnc = 0.

The wide distribution added in the case of 22C is associated with neutrons in the inner orbits
of the core. In the case of 20C, we have not taken into account such contributions, but as one
see in Fig. 2, our calculations lacks strength for |P‖| > 100 MeV/c, due possibly to neutrons
emitted from such inner configurations, which should be considered in a future investigation.
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Figure 2. The core longitudinal momentum distributions of 22C (left-frame) and 20C (right-
frame) obtained with a beam energy of 240 A MeV form the collision with the carbon target are
represented by full lines in both panels. The distributions are convoluted with the experimental
resolutions, and for 22C it is added to a wide normal distribution represented by dashed line. The
blue-dotted line is the distribution without the experimental resolution for 20C. The red-dashed
line is the transparent-limit in which Sc=1. The experimental results are from Ref. [2].

5. Discussion and Outlook
The theory of one-neutron halo stripping reaction has been extended to calculate the cross-
sections of two-neutron stripping processes. The core momentum distribution of 22C, computed
by using the known low-energy parameters, shows a fair consistency with the experimental
results. The nucleus 20C requires a more accurate analysis, since we believe that a wider
experimental resolution should be considered. In general, the results show that the zero-range
model is appropriate to describe the three-body projectile in that stripping process. Despite we
have only computed the momentum density for the neutron rich isotopes of carbon, we plan
in the future calculate the breakup of other exotic two-neutron halo nuclei, using the same
approximation to obtain the nuclear distortion of the fragments in the stripping reaction . In
addition, Coulomb interaction should be taken account to complete this work when considering
more heavier targets.
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