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ABSTRACT

IMPLICATIONS OF NON-MAXWELLIAN DISTRIBUTIONS ON BIG BANG
NUCLEOSYNTHESIS

John Fuqua, MS
Texas A&M University-Commerce, 2013

Advisor: Carlos Bertulani, PhD A model was constructed by physicists to predict the abun-

dance of the light elements produced during a period of time known as big bang nucleosyn-

thesis epoch. Today we can observe these values and compare them to the predictions. The

model has been very accurate for many of the abundances, but there are still some discrep-

ancies. While there are many possible solutions, we consider a different statistical approach

to solving the rates at which the elements are produced and destroyed.

In this work the abundances of light elements based on the big bang nucleosynthesis

model are calculated using the Tsallis non-extensive statistics. The impact of the variation

of the non-extensive parameter q from the unity value is compared to observations and to

the abundance yields from the standard big bang model. We find large differences between

the reaction rates and the abundances of light elements calculated with the extensive and

the non-extensive statistics. But a large deviation of the non-extensive parameter from q = 1

(corresponding to Boltzmann statistics) does not seem to be compatible with observations

(C. A. Bertulani, Fuqua, & Hussein, 2013).
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CHAPTER 1

INTRODUCTION

The cosmological big bang model is in agreement with many observations relevant

for our understanding of the universe. However, comparison of calculations based on the

model with observations is not straightforward because the data are subject to poorly known

evolutionary effects and systematic errors. Nonetheless, the model is believed to be the only

probe of physics in the early universe during the interval from 3 − 20 min, after which the

temperature and density of the universe fell below that which is required for nuclear fusion

and prevented elements heavier than beryllium from forming. The model is inline with the

cosmic microwave background (CMB) radiation temperature of 2.275 K (P. Noterdaeme,

2011), and provides guidance to other areas of science, such as nuclear and particle physics.

Big bang model calculations are also consistent with the number of light neutrino families

Nν = 3. According to the numerous literature on the subject, the big bang model can

accommodate values between Nν = 1.8−3.9 [see, e.g., Olive (2002)]. From the measurement

of the Z0 width by LEP experiments at CERN one knows that Nν = 2.9840 ± 0.0082

(Collaboration, 2006).

In the big bang model nearly all neutrons end up in 4He, so that the relative abundance

of 4He depends on the number of neutrino families and also on the neutron lifetime τn. The

sensitivity to the neutron lifetime affects Big Bang Nucleosynthesis (BBN) in two ways.

The neutron lifetime τn influences the weak reaction rates because of the relation between

τn and the weak coupling constant. A shorter (longer) τn means that the reaction rates

remain greater (smaller) than the Hubble expansion rate until a lower (larger) freeze-out

temperature, having a strong impact on the equilibrium neutron-to-proton ratio at freeze-out.

This n/p-ratio is approximately given in thermal equilibrium by n/p = exp[−∆m/kBT ] ∼

1/6, where kB is the Boltzmann constant, T the temperature at weak freeze-out, and ∆m

is the neutron-proton mass difference. The other influence of τn is due to their decay in

the interval between weak freeze-out (t ∼ 1 s) and when nucleosynthesis starts (t ∼ 200 s),

reducing the n/p ratio to n/p ∼ 1/7. A shorter τn implies lower the predicted BBN helium
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abundance. In this work we will use the value of τn = 878.5± 0.7± 0.3 s, according to the

most recent experiments by A. Serebrov (2005) [a recent review on the neutron lifetime is

found in Wietfeldt and Greene (2011)]. Recently, the implications of a change in the neutron

lifetime on BBN predictions have been assessed by Mathews, Kajino, and Shima (2005).

The baryonic density of the universe deduced from the observations of the anisotropies

of the CMB radiation, constrains the value of the number of baryons per photon, η, which

remains constant during the expansion of the universe. Big bang model calculations are

compatible with the experimentally deduced value of from WMAP observations, η = 6.16±

0.15× 10−10 (Komatsu, 2011).

Of our interest in this work is the abundance of light elements in big bang nucle-

osynthesis. At the very early stages (first 20 min) of the universe evolution, when it was

dense and hot enough for nuclear reactions to take place, the temperature of the primordial

plasma decreased from a few MeV down to about 10 keV, light nuclides as 2H, 3He, 4He

and, to a smaller extent, 7Li were produced via a network of nuclear processes, resulting into

abundances for these species which can be determined with several observational techniques

and in different astrophysical environments. Apparent discrepancies for the Li abundances

in metal poor stars, as measured observationally and as inferred by WMAP, have promoted

a wealth of new inquiries on BBN and on stellar mixing processes destroying Li, whose re-

sults are not yet final. Further studies of light-element abundances in low metallicity stars

and extragalactic H II regions, as well as better estimates from BBN models are required to

tackle this issue, integrating high resolution spectroscopic studies of stellar and interstellar

matter with nucleosynthesis models and nuclear physics experiments and theories (Fields,

2011).

The Maxwell-Boltzmann distribution of the kinetic energy of the ions in a plasma is

one of the basic inputs for the calculation of nuclear reaction rates during the BBN. The

distribution is based on several assumptions inherent to the Boltzmann-Gibbs statistics: (a)

the collision time is much smaller than the mean time between collisions, (b) the interaction

is local, (c) the velocities of two particles at the same point are not correlated, and (d) that

energy is locally conserved when using only the degrees of freedom of the colliding particles
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(no significant amount of energy is transferred to and from collective variables and fields).

If (a) and (b) are not valid the resulting effective two-body interaction is non-local and

depends on the momentum and energy of the particles. Even when the one-particle energy

distribution is Maxwellian, additional assumptions about correlations between particles are

necessary to deduce that the relative-velocity distribution is also Maxwellian. Although the

Boltzmann-Gibbs (BG) description of statistical mechanics is well established in a seemingly

infinite number of situations, in recent years an increasing theoretical effort has concentrated

on the development of alternative approaches to statistical mechanics which includes the BG

statistics as a special limit of a more general theory (Tsallis, 1988) [see also, Rényi (1960)].

Such theories aim to describe systems with long range interactions and with memory effects

(or non-ergodic systems). A very popular alternative to the BG statistics was proposed by

C. Tsallis (Gell-Mann & Tsallis, 2004; Tsallis, 1988), herewith denoted as non-extensive

statistics [for more details on this subject, see the extensive reviews C. Tsallis and Sato

(2005); Gell-Mann and Tsallis (2004); Tsallis (2009)]. Statistical mechanics assumes that

energy is an “extensive” variable, meaning that the total energy of the system is proportional

to the system size; similarly the entropy is also supposed to be extensive. This might be

justified due to the short-range nature of the interactions which hold matter together. But

if one deals with long-range interactions, most prominently gravity; one can then find that

entropy is not extensive (Chavanis & Sire, 2005; Fa & Lenzi, 2001; Lima, Silva, & Santos,

2002; Sakagami & Taruya, 2004; Taruya & Sakagami, 2003).

In classical statistics, to calculate the average values of some quantities, such as the

energy of the system, the number of molecules, the volume it occupies, etc, one searches for

the probability distribution which maximizes the entropy, subject to the constraint that it

gives the right average values of those quantities. As mentioned above, Tsallis proposed to

replace the usual (BG) entropy with a new, non-extensive quantity, now commonly called the

Tsallis entropy, and maximize that, subject to the same usual constraints. There is actually

a whole infinite family of Tsallis entropies, indexed by a real-valued parameter q, which

quantifies the degree of departure from extensivity (one gets the usual entropy back again

when q = 1). It was shown in many circumstances that the classical results of statistical
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mechanics can be translated into the new theory (Tsallis, 2009). The importance of these

families of entropies is that, when applied to ordinary statistical mechanics, they give rise

to probabilities that follow power laws instead of the exponential laws of the standard case

[for details on this see Tsallis (2009)]. In most cases that Tsallis formalism is adopted, e.g.

Pessah, Torres, and Vucetich (2001), the non-extensive parameter q is taken to be constant

and close to the value for which ordinary statistical mechanics is obtained (q = 1). Some

works have also probed sizable deviations of the non-extensive parameter q from the unity

to explain a variety of phenomena in several areas of science (Gell-Mann & Tsallis, 2004).

In the next sections, we shown that the Maxwell-Boltzmann distribution, a corner-

stone of the big bang and stellar evolution nucleosynthesis, is strongly modified by the non-

extensive statistics if q strongly deviates from the unity. As a consequence, it also affects

strongly the predictions of the BBN. There is no “a priori” justification for a large deviation

of q from the unity value during the BBN epoch. In particular, as radiation is assumed to

be in equilibrium with matter during the BBN, a modification of the Maxwell distribution

of velocities would also impact the Planck distribution of photons. Recent studies on the

temperature fluctuations of the cosmic microwave background (CMB) radiation have shown

that a modified Planck distribution based on Tsallis statistics adequately describes the CMB

temperature fluctuations measured by WMAP with q = 1.045±0.005, which is close to unity

but not quite (Bernui, Tsallis, & Villela, 2007). Perhaps more importantly, Gaussian tem-

perature distributions based on the BG statistics, corresponding to the q → 1 limit, do not

properly represent the CMB temperature fluctuations (Bernui et al., 2007). Such fluctua-

tions, allowing for even larger variations of q might occur during the BBN epoch, also leading

to a change of the exponentially decaying tail of the Maxwell velocity distribution.

Based on the successes of the big bang model, it is fair to assume that it can set strong

constraints on the limits of the parameter q used in a non-extensive statistics description of

the Maxwell-Boltzmann velocity distribution. In the literature, attempts to solve the lithium

problem has assumed all sorts of “new physics” (Fields, 2011). The present work adds to the

list of new attempts, although our results imply a much wider impact on BBN as expected

for the solution of the lithium problem. If the Tsallis statistics appropriately describes the
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deviations of tails of statistical distributions, then the BNN would effectively probe such

tails. The Gamow window (see Figure 3.1) contains a small fraction of the total area under

the velocity distribution. Thus, only a few particles in the tail of the distributions contribute

to the fusion rates. In fact, the possibility of a deviation of the Maxwellian distribution and

implications of the modification of the Maxwellian distribution tail for nuclear burning in

stars have already been explored in the past (Coraddu, 1999; Degl’Innocenti, Fiorentini,

Lissia, Quarati, & Ricci, 1998; Haubold & Kumar, 2008; Lissia & Quarati, 2005). As

we show in the next sections, a strong deviation from q = 1 is very unlikely for the BNN

predictions, based on comparison with observations. Moreover, if q deviates from the unity

value, the lithium problem gets even worse.
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CHAPTER 2

BIG BANG NUCLEOSYNTHESIS

2.1 Introduction

Big Bang Nucleosynthesis (BBN) is one of the most important evidences of the validity

of the Standard Model in Cosmology. During the Big Bang the Universe evolved very

rapidly and only the lightest nuclides (e.g., D, 3He, 4He, and 7Li) could be synthesized.

The abundances of these nuclides are probes of the conditions of the Universe during the

very early stages of its evolution. Historically, BBN was generally taken to be a three-

parameter theory with results depending on the baryon density of the Universe, the neutron

mean-life, and number of neutrino flavours (Reichl, 2009). By the early 1980s, primordial

abundances of all four light elements synthesized in the big bang had been determined, and

the concordance of the predicted abundances with the measured abundances was used both

as a test of the big-bang framework and a means of constraining the baryon density.

2.2 Nuclear Equilibrium and Weak interaction freeze-out

In the beginning the universe was so hot that atomic nuclei could not form; space

was filled with a mesh of protons, neutrons, leptons, photons and other short-lived particles.

A proton and a neutron may collide and stick together to form a nucleus of deuterium, but

at such high temperatures these clusters will be broken immediately by high-energy photons

(photo-dissociation). During this time the weak interactions between neutrons, protons and

leptons

νe + n↔ p+ e, (2.1)

e+ + n↔ p+ ν̄e, (2.2)

n↔ p+ e− + ν̄e, (2.3)

and the electromagnetic interaction between electrons and positrons

e− + e+ ↔ γ + γ, (2.4)
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keep all the particles in thermodynamic equilibrium. The weak interaction rate is defined by

the Fermi Golden Rule as the number density of electrons multiplied by the weak interaction

cross section, i.e.

Γ = neσwk =
G2
wk(kT )5

~
. (2.5)

As the universe begins to expand it cools off and the weak process rates eventually become

smaller than the expansion rate

H =
1

2t
=

√
4πGg∗aB

3
T 2 + c, (2.6)

where c is a small constant. When this occurs some particle species can depart from thermo-

dynamical equilibrium with the remaining plasma. At about 2− 3 MeV neutrinos undergo

this process also known as freezing out. Soon after, at a temperature of

TD = 0.7MeV, (2.7)

neutron-proton charged-current weak interactions also become too slow to maintain neutron-

proton chemical equilibrium (Iocco, Mangano, Meile, Pisanti, & Serpico, 2009). It is now

important to calculate the neutron-to-proton ratio because nearly all neutrons end up in

4He, allowing us to approximate the abundance of 4He. There are two considerations when

calculating the number of neutrons, the number of neutrino families and the neutron lifetime

τn.

Figure 2.1 plots the different factors that determine the neutron-to-proton ratio as

a function of time in seconds. Prior to the freeze-out at about 1 second, the relationship

between the neutron lifetime and the weak coupling constant influences the weak reaction

rates. The result on the neutron-to-proton ratio can be explained by the Boltzmann dis-

tribution as they are approximately in thermal equilibrium. According to the Boltzmann

distribution (for more information see Chapter 3), the number ratio of neutrons to protons

is
nn
np

= (
mn

mp

)3/2e−∆m/TD , (2.8)
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n/p freeze out 
BBN starts 

T = 9.9x109 K, ρb = 0.011 g/cm3 

Figure 2.1: A plot of the neutron-to-proton ratio as a function of time. The dashed line
represents the equilibrium ratio governed by the Boltzmann distribution whereas the dotted
line takes into account the fact that free neutrons decay thus altering the ratio. The solid
line is the result of both considerations.

where the neutron-proton mass difference

∆m = 1.29MeV. (2.9)

However, a free neutron is not stable and therefore we have to consider the effect of subse-

quent neutron decays between the interval t ∼ 1 s and t ∼ 200 s (weak freeze-out and start

of nucleosynthesis). This modifies our previous equation to include the neutron decay rate

resulting in
nn
np

= (
mn

mp

)3/2e−∆m/TDe−t/τn . (2.10)

The neutron lifetime has been experimentally measured over the years and is shown

in Figure 2.2. The x-axis is the baryon-to-photon ratio and the y-axis is the 4He abundance.

We use the value of τn = 878.5± 0.7± 0.3 s, according to the most recent experiements by

A. Serebrov (2005), yielding a ratio of about one neutron to every seven protons.
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886.7 s 

869 s 

904 s 

Figure 2.2: Free neutron lifetime calculations as a function of η, the baryon-to-photon ratio,
and Y4, the mass abundance of Helium 4. Both η and Y4 can be experimentally measured
and where they intersect a value for the neutron lifetime is given.

The number of neutrino families is Nν = 2.9840 ± 0.0082, as measured from the Z0

width by LEP experiments at Collaboration (2006). In Figure 2.3, the big bang model is

shown to be consistent with this measurement as it relates the observationally and theoret-

ically predicted abundance of 4He (y-axis) to the number of neutrino families.

At this point, the binding energy (discussed later) of deuterium,

BD ' 2.2MeV, (2.11)

is greater than the photon temperature and thus one would expect that it is possible for

deuterium to survive after forming from the process

n+ p→2 H + γ. (2.12)

This is not true due to the large photon-nucleon density ratio η−1, which delays deuterium

synthesis until the photo-dissociation process becomes ineffective, also known as the deu-

terium bottleneck. Once the high energy photons have become rare enough, i.e. sufficiently

diluted by the expansion, it is possible for deuterium to remain and go on to combine with
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2.5 

Figure 2.3: The number of neutrino families as a function of η, the baryon-to-photon ratio,
and Y4, the mass abundance of Helium 4. Both η and Y4 can be experimentally measured
and where they intersect the number of neutrino families is given.

protons, neutrons and even other deuterium to form nuclei such as helium 3, helium 4,

lithium and beryllium. This process of element-formation is known as ”nucleosynthesis.”

Eventually the universe is no longer hot and dense enough to maintain these processes

but at some point other systems arise and continue where BBN left off. In fact evidence

can be found in these systems that support the theory of BBN. Nuclear fusion of hydrogen

in the core of stars produces helium but does not account for all of the helium. The most

massive stars form the heavier elements up to iron, which has the highest nuclear binding

energy of all elements and thus the most stable possible in a fusion reaction. To overcome

this stability a large amount of energy, such as that of an exploding star (supernovae), is

needed to produce elements heavier than iron. All of these processes involve the destruction

of a lighter element in order to produce the heavier element. In fact, the lightest elements

(deuterium, lithium and beryllium) are only destroyed within a star so they must have

existed before the formation of stars.

However, there are reverse reactions, called fission, in which the heavier element

dissociates into the more stable lighter element. The intricate web of fusion and fission
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is known as the Nuclear Reaction Network and in the next section we will explore these

processes in greater detail.

2.3 Nuclear Reaction Network

In a reaction network, nuclides of type j are created through reactions of type

k + l→ j + i (2.13)

and destroyed through

j +m→ q + r. (2.14)

These reactions can also be written in a more compact way such as k(l,j)i and j(m,q)r,

which states target nucleus plus projectile yields ejectile plus produced nucleus. Common

light particles such as protons, neutrons, deuterons, etc. are abbreviated when using this

alternate method and are displayed in Table 2.1.

Table 2.1: Light Particle Abbreviations.

Particle Abbreviation
proton p
neutron n
deuteron d
helium 4 α
electron β
photon γ

Depending on the reaction, the previously mentioned nuclides of type j absorb or

emit a certain amount of energy when they are created or destroyed. This energy is known

as the binding energy and is further defined in the next section.

2.3.1 Binding Energy

The strong interaction force between nucleons hold them together in order to form a

stable nucleus. The energy required to break the nucleus into individual unbound compo-

nents free of the strong force is known as the binding energy. The binding energy is defined

by C. Bertulani (2007) as

B(Z,N) = {Zmp +Nmn −m(Z,N)}c2, (2.15)
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where mp is the proton mass, mn the neutron mass, and m(Z,N) the mass of the nucleus.

This definition of binding energy is always positive due to the fact that the mass of the

nucleus is smaller than the sum of the masses of its constituents, if measured separately.

In Figure 2.4 we show the binding energy per nucleon of each element. Out of the ele-

ments relevant to big bang nucleosynthesis, 4He has the largest binding energy and therefore

the most stable during BBN. As a consequence, one would expect 4He to have the highest

abundance out of the primordial elements. In order to determine this, all reactions must be

considered, and in the next section we explore this topic.

2.3.2 BBN Reaction Network

Nuclear processes during the BBN proceed in a hot and low density plasma with a

significant population of free neutrons, which expands and cools down very rapidly, resulting

in peculiar ”out of equilibrium” nucleosynthetic yields (Iocco et al., 2009). The low density

of the plasma at the time of BBN is responsible for the suppression of three-body reactions

and an enhanced effect of the Coulomb-barrier, which as a matter of fact inhibits any reaction

with interacting nuclei charges

Z1Z2 ≥ 6. (2.16)

The most efficient categories of reactions in BBN are therefore proton, neutron and deu-

terium captures, charge exchanges, and proton and neutron stripping (Iocco et al., 2009).

The most important reactions in BBN are n-decay, p(n,γ)d, d(p,γ)3He, d(d,n)3He, d(d,p)t,

3He(n,p)t, t(d,n)4He, 3He(d,p)4He, 3He(α, γ)7Be, t(α, γ)7Li, 7Be(n,p)7Li and 7Li(p,α)4He.

These reactions are listed in Figure 2.5 and comprise the focus of our study.

2.4 Lithium Problem

In Figure 2.6 the x-axis is η, or the baryon to photon ratio, and on the y-axis is the

abundance numbers relative to hydrogen. Therefore the plots labelled 4He, D, 3He and 7Li

are the abundance numbers relative to hydrogen as a function of η predicted by the BBN

models. The vertical light blue line is the measured value of η performed by WMAP, or

the Wilkinson Microwave Anisotropy Probe. We should observe the abundance for each

element where their plot intersects with the measured value of η. Our observations (solid
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black boxes) do in fact coincide with the predicted values for 4He, D and 3He, however, the

predicted value for 7Li is off by about a factor of four. Table 2.2 provides a side by side

comparison of the BBN predicted abundance’s to the observed abundance’s.

Table 2.2: Predictions of the BBN (with ηWMAP = 6.2×10−10) with Maxwellian distributions
compared with observations. All numbers have the same power of ten as in the last column.

Maxwell Observation
BBN

4He/H 0.249 0.2561± 0.0108
D/H 2.62 2.82+0.20

−0.19(×10−5)
3He/H 0.98 (1.1± 0.2)(×10−5)
7Li/H 4.39 (1.58± 0.31)(×10−10)

The big bang model accurately reproduces many of our observations, but they are

not in complete agreement. There have been many attempts at explaining the differences,

such as, the predicted abundance is wrong due to poor cross section measurements, or

perhaps our observation of the primordial lithium is wrong due to destruction processes

(star destroyed, etc.). Over the years, attempts to solve this problem range from considering

factors previously not thought of to increasing the accuracy of cross section measurements.

Electron screening has been considered by Wang, Bertulani, and Balantekin (2011).

Our aim here is to see what role modifying the Boltzmann-distribution (see chapter 5) has

on the abundances of the primordial elements. We go into detail in the following chapters.



14

Figure 2.4: Binding Energy per nucleon, B/A, as a function of the mass number A. The
picture is from Kraushaar (1984)

Figure 2.5: Nuclear Reaction Network for the most important reactions that occur during
big bang nucleosynthesis. The picture is from Joakim Brorsson (2010).
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Figure 2.6: The predicted elemental abundance’s of 4He, D, 3He and 7Li as a function of
η, or the baryon-to-photon ratio. The vertical line is a measurement of η performed by
Komatsu (2011). Observations of the elemental abundance’s are made (square boxes) and
then compared to the predicted values provided by the measured value of η.
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CHAPTER 3

MAXWELLIAN AND NON-MAXWELLIN DISTRIBUTIONS

Nuclear reaction rates in the BBN and in stelar evolution are strongly dependent of

the particle velocity distributions. The fusion reaction rates for nuclear species 1 and 2 is

given by 〈σv〉12, i.e., an average of the fusion cross section of 1+2 with their relative velocity,

described by a velocity distribution. It is thus worthwhile to study the modifications of the

stellar reaction rates due to the modifications introduced by the non-extensive statistics.

3.1 Non-extensive Statistics

Statistical systems in equilibrium are described by the Boltzmann-Gibbs entropy,

SBG = −kB
∑
i

pi ln pi, (3.1)

where kB is the Boltzmann constant, and pi is the probability of the i-th microstate. For

two independent systems A, B, the probability of the system A + B being in a state i + j,

with i a microstate of A and j a microstate of B, is

pA+B
i+j = pAi · pBj . (3.2)

Therefore, the Boltzmann-Gibbs entropy satisfies the relation

SA+B = SA + SB. (3.3)

Thus, the entropy based on the Boltzmann-Gibbs statistic is an extensive quantity.

In the non-extensive statistics (Tsallis, 1988), one replaces the traditional entropy

by the following one:

Sq = kB
1−

∑
i p

q
i

q − 1
, (3.4)

where q is a real number. For q = 1, Sq = SBG. Thus, the Tsallis statistics is a natural

generalization of the Boltzmann-Gibbs entropy.
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Now it follows that

Sq(A+B) = Sq(A) + Sq(B) +
(1− q)
kB

Sq(A)Sq(B). (3.5)

The variable q is a measure of the non-extensivity. Tsallis has shown that a formalism

of statistical mechanics can be consistently developed in terms of this generalized entropy

(Tsallis, 2009).

A consequence of the non- extensive formalism is that the distribution function which

maximizes Sq is non- Maxwellian (da Silva, Lima, & Santos, 2000; Muñoz, 2006; Silva,

Plastino, & Lima, 1998). For q = 1, the Maxwell distribution function is reproduced. But

for q < 1, high energy states are more probable than in the extensive case. On the other

hand, for q > 1 high energy states are less probable than in the extensive case, and there is

a cutoff beyond which no states exist.

3.2 Maxwellian Distribution

In stars, the thermonuclear reaction rate with a Maxwellian distribution is given by

Fowler, Caughlan, and Zimmerman (1967)

Rij =
NiNj

1 + δij
〈σv〉 =

NiNj

1 + δij

(
8

πµ

) 1
2
(

1

kBT

) 3
2

×
∫ ∞

0

dES(E) exp

[
−
(

E

kBT
+ 2πη(E)

)]
, (3.6)

where σ is the fusion cross section, v is the relative velocity of the ij-pair, Ni is the number

of nuclei of species i, µ is the reduced mass of i + j, T is the temperature, S(E) is the

astrophysical S-factor, and η = ZiZje
2/~v is the Sommerfeld parameter, with Zi the i-th

nuclide charge and E = µv2/2 is the relative energy of i+ j.

The energy dependence of the reaction cross sections is usually expressed in terms of

the equation

σ(E) =
S(E)

E
exp [−2πη(E)] . (3.7)
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We write 2πη = b/
√
E, where

b = 0.9898ZiZj
√
A MeV1/2, (3.8)

where A is the reduced mass in amu. The factor 1 + δij in the denominator of Eq. (3.6)

corrects for the double-counting when i = j. The S-factor has a relatively weak dependence

on the energy E, except when it is close to a resonance, where it is strongly peaked.

3.3 Non-Maxwellian Distribution

The non-extensive description of the Maxwell-Boltzmann distribution corresponds to

the substitution f(E)→ fq(E), where (Tsallis, 2009)

fq(E) =

[
1− q − 1

kBT
E

] 1
q−1

q→1−→ exp

(
− E

kBT

)
, 0 < E <∞. (3.9)

If q− 1 < 0, Eq. (3.9) is real for any value of E ≥ 0. However, if q− 1 > 0, f(E) is real only

if the quantity in square brackets is positive. This means that

0 ≤ E ≤ kBT

q − 1
, if q ≥ 1

0 ≤ E, if q ≤ 1. (3.10)

Thus, in the interval 0 < q < 1 one has 0 < E < ∞ and for 1 < q < ∞ one has

0 < E < Emax = kBT/(q − 1).

With this new statistics, the reaction rate becomes

Rij =
NiNj

1 + δij
Iq, (3.11)

and the rate integral, Iq, is given by

Iq =

∫ Emax

0

dES(E)Mq(E, T ), (3.12)



19

0.1 0.2 0.3 0.4 0.5

E (MeV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
q

q=2

q=1

q=0.5

2 H(d,p)3 H
T9 =1

Figure 3.1: Modified Gamow distributions Mq(E, T ) of deuterons relevant for the reaction
2H(d,p)3H at T9 = 1. The solid line, for q = 1, corresponds to the use of a Maxwell-
Boltzmann distribution. Also shown are the results when using non-extensive distributions
for q = 0.5 (dotted line) and q = 2 (dashed line).

where the “modified” Gamow energy distribution is

Mq(E, T ) = A(q, T )

(
1− q − 1

kBT
E

) 1
q−1

e−b/
√
E

= A(q, T )

(
1− q − 1

0.08617T9

E

) 1
q−1

× exp

[
−0.9898ZiZj

√
A

E

]
(3.13)

is the non-extensive Maxwell velocity distribution, Emax = ∞ for 0 < q < 1 and Emax =

kBT/(1− q) for 1 < q <∞, and E in MeV units. A(q, T ) is a normalization constant which

depends on the temperature and the non-extensive parameter q.

3.4 Non-Maxwellian distribution for relative velocities

It is worthwhile to notice that if the one-particle energy distribution is Maxwellian,

it does not necessarily imply that the relative velocity distribution is also Maxwellian. Ad-

ditional assumptions about correlations between particles are necessary to deduce that the

relative-velocity distribution, which is the relevant quantity for rate calculations, is also

Maxwellian. This has been discussed in details by Kaniadakis, Lissia, and Scarfone (2005);
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Lissia and Quarati (2005); Tsallis (1988) where non-Maxwellian distributions, such as in

Eq. (3.13), were shown to arise from non-extensive statistics.

Here we show that, if the non-Maxwellian particle velocity distribution is given by

Eq. (3.9), then a two-particle relative can be modified to account for the center of mass

recoil. Calling the kinetic energy of a particle Ei, this distribution is given by

f (i)
q =

(
1− q − 1

kT
Ei

) 1
q−1

→ exp

[
−
(
Ei
kT

)]
(3.14)

The two-particle energy distribution is f
(1)
q f

(2)
q . We now exponentiate the Tsallis

distribution.

f (i)
q = exp

{
1

q − 1

[
ln

(
1− q − 1

kT
Ei

)]}
(3.15)

and the product f
(12)
q = f

(1)
q f

(2)
q reduces to

f (12)
q = exp

{
1

q − 1

[
ln

(
1− q − 1

kT
E1

)(
1− q − 1

kT
E2)

)]}
(3.16)

Since Ei = miv
2
i /2, and thus, E1 + E2 = µv2/2 + MV 2/2, where µ is the reduced

mass of the two particles, M = m1 +m2, v is the relative velocity, and V the center of mass

velocity, the product inside the natural logarithm can be reduced to

1− 1− q
kT

(
µv2

2
+
MV 2

2

)
+

(
1− q
kT

)2
µv2

2

MV 2

2

=

(
1− 1− q

kT

µv2

2

)(
1− 1− q

kT

MV 2

2

)
(3.17)

Thus, the two-body distribution factorizes into a product of relative and center of

mass parts

f (12)
q (v, V, T ) = f (rel)

q (v, T )f (cm)
q (V, T ) (3.18)
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where

f (rel)
q (v, T ) = Arel(q, T )

(
1− 1− q

kT

µv2

2

) 1
q−1

f (cm)
q (V, T ) = Acm(q, T )

(
1− 1− q

kT

MV 2

2

) 1
q−1

, (3.19)

with the normalization constants obtained from the condition,

∫
d3vd3V f (12)

q (v, V, T ) = 1. (3.20)

Because the distribution factorizes, the unit normalization can be achieved for the relative

and c.m. distributions separately. The distribution needed in the reaction rate formula is,

therefore,

fq(v, T ) =

∫
d3V f (12)

q (v, V, T ) = f (rel)
q (v, T ), (3.21)

which attains the same form for as the absolute distribution.

In the limit q → 1 the two-particle distribution reduces to a Gaussian, with the last

term in the left-hand-side of Eq. (3.17) dropping out,

f (12)
q = A(q, T ) exp

{[
−
(
µv2/2 +MV 2/2

kT

)]}
, (3.22)

as expected.

3.5 Equilibrium with electrons, photons and neutrinos

One of the important questions regarding a plasma with particles (i.e., nuclei) de-

scribed by the non-extensive statistics is how to generalize Fermi-Dirac, Bose-Einstein, and

Tsallis statistics, to become more unified statistics with the distribution for the particles.

This has been studied by Buyukkilic and Demirhan (2000), where it was shown that a similar

non-extensive statistic for the distribution can be obtained for fermions and bosons is given

by

n±q (E) =
1[

1− (q − 1) (E−µ)
kT

] 1
q−1 ± 1

, (3.23)
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Figure 3.2: The relative difference ratio (n±q −n±)/n± between non-extensive, nq, and exten-
sive, n = nq→1, statistics. Solid curves are for Fermi-Dirac statistics, n+, and dashed curves
are for Bose-Einstein statistics, n−. For both distributions, we use µ = 0. Results are shown
for q = 2 and q = 0.5, with T9 = 10.

where µ is the chemical potential. This reproduces the Fermi distribution, n+, for q → 1

and the Bose-Einstein distribution for photons, n−, for µ = 0 and q → 1. Planck’s law for

the distribution of radiation is obtained by multiplying n− in Eq. (3.23) (with µ = 0) by

~ω2/(4π2c2), where E = ~ω. The number density of electrons can be obtained from n+ in

Eq. (3.23) with the proper phase-factors depending if the electrons are non-relativistic or

relativistic. Normalization factors A±(q, T ) also need to be introduced, as before.

The electron density during the early universe varies strongly with the temperature.

At T9 = 10 the electron density is about 1032/cm3, much larger than the electron number

density at the center of the sun, nsune ∼ 1026/cm3. The large electron density is due to

the e+e− production by the abundant photons during the BBN. However, the large electron

densities do not influence the nuclear reactions during the BBN. In fact, the enhancement

of the nuclear reaction rates due to electron screening were shown to be very small (Wang

et al., 2011). The electron Fermi energy for these densities are also much smaller than kT

for the energy relevant for BBN, so that one can also use µ = 0 in Eq. (3.23) for n+.

In Figure 3.2 we plot the the relative difference ratio (n±q − n±)/n± between non-

extensive, nq, and extensive, n = nq→1, statistics. For both distributions, we use µ = 0.



23

The solid curves are for Fermi-Dirac (FD) statistics, n+, and dashed curves are for Bose-

Einstein (BE) statistics, n−. We show results for q = 2 and q = 0.5, with T9 = 10. One sees

that the non-extensive distributions are enhanced for q > 1 and suppressed for q < 1, as

compared to the respective FD and BE quantum distributions. The deviations for the FD

and BE statistics also grow larger with the energy. For example, the non-extensive electron

distribution is roughly a factor 2 larger than the usual FD distribution at Ee = 1 MeV, at

T9 = 10.

While we don’t obtain numerical results with modified Fermi-Dirac and Bose-Einstein

distributions here, it can be expected that these generalizations will have a strong influence

on the freezout temperature and the neutron to proton, n/p, ratio. A numerical study of

this problem may be presented in another paper. The freezout temperature, occurs when the

rate, Γ ∼ 〈σv〉, for weak reaction νe + n → p + e− becomes slower than the expansion rate

of the Universe. Because during the BBN the densities of all particles, including neutrinos,

are low compared to kT , the chemical potential µ can be set to zero in the calculation of all

reaction rates. The adoption of non-extensive quantum distributions such as in Eq. (3.23)

will lead to the same powers of the temperature as those predicted by the FD distribution and

the Bose-Einstein distribution. For example, Planck law for the total blackbody is U ∝ T 4,

being form invariant with respect to non-extensivity entropic index q which determines the

the degree of non-extensivity (Sokmen, Buyukkilic, & Demirhan, 2002). This result means

that the weak decay reaction rates do not depend on the non-extensive parameter q. The

freezout temperature and n/p ratio remain the same as before.

More detailed studies have indicated that Planck’s law of blackbody radiation and

other thermodynamical quantities arising from non-extensive quantum statistics can yield

different powers of temperature than for the non-extensive case (Aragao-Rego, 2003; Chamati,

Djankova, & Tonchev, 2003; Nauenberg, 2003; Tsallis, 2004). If that is the case, then a

study of the influence of non-extensive statistics on the weak-decay rates and electromagnetic

processes during BBN is worth pursuing.
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3.6 Thermodynamical equilibrium

The physical appeal for non-extensivity is the role of long-range interactions, which

also implies non-equilibrium. Accepting non-extensive entropy means abandoning the most

important concept of thermodynamics, namely the tendency of any system to reach equilib-

rium. This also means that the concept of non-extensivity means renouncing the second law

of thermodynamics altogether!

The comments above, which seem to be shared by part of the community [see, e.g.,

Bouchet, Dauxois, and Ruffo (2006); Damian H. Zanette (2003); Dauxois (2007); Nauen-

berg (2003); Touchette (2013); Zanette and Montemurro (2004)], are worrisome when one

has to consider a medium composed of particles obeying classical and quantum statistics. It

is not clear for example if the non-extensive parameter q has to be the same for all particle

distributions, both classical and quantum. Even worse is the possibility that the tempera-

tures are not the same for the different particle systems in the plasma.

In the present work, we will avoid a longer discussion on the validity of the Tsallis

statistics for a plasma such as that existing during the BBN. We will only consider the

effect of its use for calculating nuclear reaction rates in the plasma, assuming that it can be

described by a classical distribution of velocities. This study will allow us to constrain the

non-extensive parameter q based on a comparison with observations.
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CHAPTER 4

REACTION RATES DURING BIG BANG NUCLEOSYNTHESIS

Based on the abundant literature on non-extensive statistics [see, e.g., Coraddu

(1999); Degl’Innocenti et al. (1998); Haubold and Kumar (2008); Lissia and Quarati

(2005); Tsallis (1988)], we do not expect that the non-extensive parameter q differs appre-

ciably from the unity value. However, in order to study the influence of a non-Maxwellian

distribution on BBN we will explore values of q rather different than the unity, namely,

q = 0.5 and q = 2. This will allow us to pursue a better understanding of the nature of the

physics involved in the departure from the BG statistics. In Figure 3.1 we plot the Gamow

energy distributions of deuterons relevant for the reaction 2H(d,p)3H at T9 = 1. The solid

line, for q = 1, corresponds to the use of the Maxwell-Boltzmann distribution. Also shown

are results for non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed line).

One observes that for q < 1, higher kinetic energies are more accessible than in the extensive

case (q = 1). For q > 1 high energies are less probable than in the extensive case, and there

is a cutoff beyond which no kinetic energy is reached. In the example shown in the Figure

for q = 2, the cutoff occurs at 0.086 MeV, or 86 keV.

We will explore the modifications of the BBN elemental abundances due to a variation

of the non-extensive statistics parameter q. We will express our reaction rates in the form

NA〈σv〉 (in units of cm3 mol−1 s−1), where NA is the Avogadro number and 〈σv〉 involves

the integral in Eq. (3.6) with the Maxwell distribution f(E) replaced by Eq. (3.9). First we

show how the reaction rates are modified for q 6= 1.

In Figure 4.1 we show the S-factor for the reaction 2H(d,p)3H as a function of the

relative energy E. Also shown is the dependence on T9 (temperature in units of 109 K) for

the effective Gamow energy

E = E0 = 0.122(Z2
i Z

2
jA)1/3T

2/3
9 MeV, (4.1)
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Figure 4.1: S-factor for the reaction 2H(d,p)3H as a function of the relative energy E and of
the temperature T9. The data are from Bosch and Hale (1992); Brown and Jarmie (1990);
Krauss et al. (1987); Schulte et al. (1972); U. Greife (1995). The solid curve is a polynomial
fit to the experimental data.

where A is the reduced mass in amu. The data are from Bosch and Hale (1992); Brown and

Jarmie (1990); Krauss et al. (1987); Schulte et al. (1972); U. Greife (1995) and the solid

curve is a chi-square polynomial function fit to the data.

Using the chi-square polynomial fit obtained to fit the data presented in Figure 4.1,

we show in Figure 4.2 the reaction rates for 2H(d,p)3H as a function of the temperature T9

for two different values of the non-extensive parameter q. The integrals in equation (3.12)

are performed numerically. For charge particles, a good accuracy (witihin 0.1%) is reached

using the integration limits between E0 − 5∆E and E0 + 5∆E, where ∆E is given by Eq.

(4.2) below. The rates are expressed in terms of the natural logarithm of NA〈σv〉 (in units of

cm3 mol−1 s−1). The solid curve corresponds to the usual Maxwell-Boltzmann distribution,

i.e., q = 1. The dashed and dotted curves are obtained for q = 2 and q = 0.5, respectively.

In both cases, we see deviations from the Maxwellian rate. For q > 1 the deviations are

rather large and the tendency is an overall suppression of the reaction rates, specially at

low temperatures. This effect arises from the non-Maxwellian energy cutoff which for this

reaction occurs at 0.086T9 MeV and which prevents a great number of reactions to occur at

higher energies.
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Figure 4.2: Reaction rates for 2H(d,p)3H as a function of the temperature T9 for different
values of the non-extensive parameter q. The rates are given in terms of the natural logarithm
of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with the use of non-extensive distributions
for q = 0.5 (dotted line) and q = 2 (dashed line) are shown.

For q < 1 the nearly similar result as with the Maxwell-Boltzmann distribution is due

to a competition between suppression in reaction rates at low energies and their enhancement

at high energies. The relevant range of energies is set by the Gamow energy which for a

Maxwellian distribution is given by Eq. (4.1) and by the energy window,

∆E = 0.2368(Z2
i Z

2
jA)1/6T

5/6
9 MeV, (4.2)

which for the reaction 2H(d,p)3H amounts to 0.2368T
5/6
9 MeV. This explains why, at T9 = 1,

the range of relevant energies for the calculation of the reaction rate is shown by the solid

curve in Figure 3.1. For q < 1 the Gamow window ∆E is larger and there is as much a

contribution from the suppression of reaction rates at low energies compared to the Maxwell-

Boltzmann distribution, as there is a corresponding enhancement at higher energies. This

explains the nearly equal results shown in Figure 4.2 for q = 1 and q < 1. This finding

applies to all charged particle reaction rates, except for those when the S-factor has a strong

dependence on energy at, and around, E = E0. But no such behavior exists for the most
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Figure 4.3: S-factor for the reaction 7Li(p,α)4He as a function of the relative energy E and of
T9. The data are from Cassagnou et al. (1962, 1963); Fiedler and Kunze (1967); G. S. Mani
(1964); H. Spinka and Winkler (1971); J.M. Freeman (1958); Lerner and Marion (1969);
Rolfs and Kavanagh (1986); S. Engstler (1992a, 1992b); Werby (1973). The solid curve is a
chi-square function fit to the data using a sum of polynomials plus Breit-Wigner functions.

important charged induced reactions in the BBN (neutron-induced reactions will be discussed

separately).

The findings described above for the reaction 2H(d,p)3H are not specific but apply to

all charged particles of relevance to the BBN. We demonstrate this with one more example:

the 7Li(p,α)4He reaction, responsible for 7Li destruction. In Figure 4.3 we show the S-factor

for this reaction as a function of the relative energy E. One sees prominent resonances at

higher energies. Also shown in the Figure is the dependence of the reaction on T9. The

data are from Cassagnou et al. (1962, 1963); Fiedler and Kunze (1967); G. S. Mani (1964);

H. Spinka and Winkler (1971); J.M. Freeman (1958); Lerner and Marion (1969); Rolfs

and Kavanagh (1986); S. Engstler (1992a, 1992b); Werby (1973) and the solid curve is a

chi-square function fit to the data using a sum of polynomials plus Breit-Wigner functions.

Using the chi-square function fit obtained to fit the data presented in Figure 4.3, we

show in Figure 4.4 the reaction rates for 7Li(p,α)4He as a function of the temperature T9

for two different values of the non-extensive parameter q. The rates are given in terms of
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Figure 4.4: Reaction rates for 7Li(p,α)4He as a function of the temperature T9 for two
different values of the non-extensive parameter q. The rates are given in terms of the natural
logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with the use of non-extensive
distributions for q = 0.5 (dotted line) and q = 2 (dashed line) are shown.

the natural logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). The solid curve corresponds

to the usual Maxwell-Boltzmann distribution, i.e., q = 1. The dashed and dotted curves

are obtained for q = 2 and q = 0.5, respectively. As with the reaction presented in Figure

4.2, in both cases we see deviations from the Maxwellian rate. But, as before, for q = 2 the

deviations are larger and the tendency is a strong suppression of the reaction rates as the

temperature decreases. It is interesting to note that the non-Maxwellian rates for q = 0.5

are more sensitive to the resonances than for q > 1. This is because, as seen in Figure 3.1,

for q < 1 the velocity distribution is spread to considerably larger values of energies, being

therefore more sensitive to the location of high energy resonances.

We now turn to neutron induced reactions, which are only a few cases of high relevance

for the BBN, notably the p(n,γ)d, 3He(n,p)t, and 7Be(n,p)7Li reactions. For neutron induced

reactions, the cross section at low energies is usually proportional to 1/v, where v =
√

2mE/~

is the neutron velocity. Thus, it is sometimes appropriate to rewrite Eq. (3.7) as

σ(E) =
S(E)

E
=
R(E)√
E

(4.3)
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Figure 4.5: Spectral function Mq(E, T ) for protons and neutrons relevant for the reaction
p(n,γ)d at T9 = 0.1 (upper panel) and T9 = 10 (lower panel). The solid line, for q = 1,
corresponds to the usual Boltzmann distribution. Also shown are non-extensive distributions
for q = 0.5 (dotted line) and q = 2 (dashed line).

where R(E) is a slowly varying function of energy similar to an S-factor. The distribution

function within the reaction rate integral (3.12) is also rewritten as

Mq(E, T ) = A(q, T )fq(E) = A(q, T )

(
1− q − 1

kBT
E

) 1
q−1

.

(4.4)

The absence of the tunneling factor exp(−b/
√
E) in Eq. (4.4) inhibts the dependence of the

reaction rates on the non-extensive parameter q.

In Figure 4.5 we plot the kinetic energy distributions of nucleons relevant for the

reaction p(n,γ)d at T9 = 0.1 (upper panel) and T9 = 10 (lower panel). The solid line, for

q = 1, corresponds to the usual Boltzmann distribution. Also shown are results for the

non-extensive distributions for q = 0.5 (dotted line) and q = 2 (dashed line). One observes

that, as for the charged particles case, with q < 1 higher kinetic energies are more probable

than in the extensive case (q = 1). With q > 1 high energies are less accessible than in the

extensive case, and there is a cutoff beyond which no kinetic energy is reached. A noticeable
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Figure 4.6: The energy dependence of R(E) = S(E)
√
E for the reaction 7Be(n,p)7Li. is

shown in Figure 4.6. The experimental data were collected from Borchers and Poppe (1963);
Gibbons and Macklin (1959); Koehler (1988); Poppe et al. (1976); Sekharan (1976).
The solid curve is a function fit to the experimental data using a set of polynomials and
Breit-Wigner functions.

difference form the case of charged particles is the absence of the Coulomb barrier and a

correspondingly lack of suppression of the reaction rates at low energies. As the temperature

increases, the relative difference between the Maxwell-Boltzmann and the non-Maxwellian

distributions decrease appreciably. This will lead to a rather distinctive pattern of the

reaction rates for charged compared to neutron induced reactions.

For neutron-induced reactions, a good accuracy (within 0.1%) for the numerical cal-

culation of the reaction rates with Eq. (3.12) is reached using the integration limits between

E = 0 and E = 20kBT . As an example we will now consider the reaction 7Be(n,p)7Li.

The energy dependence of R(E) = S(E)
√
E for this reaction is shown in Figure 4.6. The

experimental data were collected from Borchers and Poppe (1963); Gibbons and Macklin

(1959); Koehler (1988); Poppe et al. (1976); Sekharan (1976).

Using the chi-square fit with a sum of polynomials and Breit-Wigners obtained to

reproduce the data in Figure 4.6, we show in Figure 4.7 the reaction rates for 7Be(n,p)7Li

as a function of the temperature T9 for different values of the non-extensive parameter q.

The rates are given in terms of the natural logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1).
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Figure 4.7: Reaction rates for 7Be(n,p)7Li as a function of the temperature T9 for two different
values of the non-extensive parameter q. The rates are given in terms of the logarithm of
NA〈σv〉 (in units of cm3 mol−1 s−1). Results with the use of non-extensive distributions for
q = 0.5 (dotted line) and q = 2 (dashed line) are shown.

The solid curve corresponds to the usual Boltzmann distribution, i.e., q = 1. The dashed

and dotted curves are obtained for q = 2 and q = 0.5, respectively. In contrast to reactions

induced by charged particles, we now see strong deviations from the Maxwellian rate both

for q > 1 and q < 1. For q < 1 the deviations are larger at small temperatures and decrease

as the energy increase, tending asymptotically to the Maxwellian rate at large temperatures.

This behavior can be understood from Figure 4.5 [for 7Be(n,p)7Li the results are nearly the

same as in Fig. 4.5]. At small temperatures, e.g. T9 = 0.1, the distribution for q = 0.5 is

strongly enhanced at large energies and the tendency is that the reaction rates increase at

low temperatures. This enhancement disappears as the temperature increase (lower panel

of Figure 4.5). For q = 2 the reaction rate is suppressed, although not as much as for the

charged-induced reactions, the reason being due a compensation by an increase because of

normalization at low energies.

Having discussed the dependence of the reaction rates on the non-extensive parameter

q for a few standard reactions, we now consider the implications of the non-extensive statistics

to the predictions of the BBN. It is clear from the results presented above that an appreciable

impact on the abundances of light elements will arise.
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CHAPTER 5

BBN WITH NON-EXTENSIVE STATISTICS

The BBN is sensitive to certain parameters, including the baryon-to-photon ratio,

number of neutrino families, and the neutron decay lifetime. We use the values η = 6.19×

10−10, Nν = 3, and τn = 878.5 s for the baryon-photon ratio, number of neutrino families, and

neutron-day lifetime, respectively. Our BBN abundances were calculated with a modified

version of the standard BBN code derived from Kawano (1988, 1992); Wagoner, Fowler,

and Hoyle (1967).

Although BBN nucleosynthesis can involve reactions up to the CNO cycle (Coc,

Goriely, Xu, Saimpert, & Vangioni, 2012), the most important reactions which can signif-

icantly affect the predictions of the abundances of the light elements (4He, D, 3He, 7Li)

are n-decay, p(n,γ)d, d(p,γ)3He, d(d,n)3He, d(d,p)t, 3He(n,p)t, t(d,n)4He, 3He(d,p)4He,

3He(α, γ)7Be, t(α, γ)7Li, 7Be(n,p)7Li and 7Li(p,α)4He. Except for these reactions, we have

used the reaction rates needed for the remaining reactions from a compilation by NACRE

(Angulo, 1999) and that reported in Descouvemont, Adahchour, Angulo, Coc, and Vangioni-

Flam (2004). For the 11 reactions mentioned above, we have collected data from Angulo

(1999); Descouvemont et al. (2004); Smith, Kawano, and Malaney (1993), and references

mentioned therein [data for n(p,γ)d reaction was taken from the on-line ENDF database

(http://www.nndc.bnl.gov , n.d.) - see also Ando, Cyburt, Hong, and Hyun (2006); Cy-

burt (2004)], fitted the S-factors with a sum of polynomials and Breit-Wigner functions and

calculated the reaction rates for Maxwellian and non-Maxwellian distributions.

In Figure 5.1 we show the calculated deuterium abundance. The solid curve is the

result with the standard Maxwell distributions for the reaction rates. Using the non-extensive

distributions yields the dotted line for q = 0.5 and the dashed line for q = 2. It is interesting

to observe that the deuterium abundances are only moderately modified due to the use of

the non-extensive statistics for q = 0.5. Up to temperatures of the order of T9 = 1, the

abundance for D/H tends to agree for the extensive and non-extensive statistics. This is

due to the fact that any deuterium that is formed is immediately destroyed (a situation
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Figure 5.1: Deuterium abundance. The solid curve is the result obtained with the stan-
dard Maxwell distributions for the reaction rates. Results with the use of non-extensive
distributions for q = 0.5 (dotted line) and q = 2 (dashed line) are shown.

known as the deuterium bottleneck). But, as the temperature decreases, the reaction rates

for the p(n,γ)d reaction are considerably enhanced for q = 2 (see Figure 4.5), and perhaps

more importantly, they are strongly suppressed for all other reactions involving deuterium

destruction, as clearly seen in Figure 4.2. This creates an unexpected over abundance of

deuterons for the non-extensive statistics with q = 2. The deuterium, a very fragile isotope,

is easily destroyed after the BBN and astrated. Its primordial abundance is determined from

observations of interstellar clouds at high redshift, on the line of sight of distant quasars.

These observations are scarce but allow to set an average value of D/H = 2.82+0.20
−0.19 × 10−5

(Pettini, 2008). The predictions for the D/H ratio with the q = 2 statistics (D/H =

5.70× 10−3) is about a factor 200 larger than those from the standard BBN model, clearly

in disagreement with the observation.

A much more stringent constraint for elemental abundances is given by 4He, which

observations set at about 4He/H ≡ Yp = 0.2561 ± 0.0108 (Aver, Olive, & Skillman, 2010;

Boesgaard & Steigman, 1985; Izotov & Thuan, 2010). The 4He abundance generated from

our BBN calculation is plotted in Figure 5.2. The solid curve is the result obtained with the

standard Maxwell distribution for the reaction rates. Using the non-extensive distributions
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Table 5.1: Predictions of the BBN (with ηWMAP = 6.2× 10−10) with Maxwellian and non-
Maxwellian distributions compared with observations. All numbers have the same power of
ten as in the last column.

Maxwell Non-Max. Non-Max. Observation
BBN q = 0.5 q = 2

4He/H 0.249 0.243 0.141 0.2561± 0.0108
D/H 2.62 3.31 570.0 2.82+0.20

−0.19(×10−5)
3He/H 0.98 0.091 69.1 (1.1± 0.2)(×10−5)
7Li/H 4.39 6.89 356.0 (1.58± 0.31)(×10−10)
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Figure 5.2: 4He abundance. The solid curve is the result obtained with the standard Maxwell
distributions for the reaction rates. Results with the use of non-extensive distributions for
q = 0.5 (dotted line) and q = 2 (dashed line) are also shown.

yields the dotted line for q = 0.5 and the dashed line for q = 2. Again, the predicted

abundances for q = 2 deviate substantially from standard BBN results. This time only

about half of 4He is produced with the use of a non-extensive statistics with q = 2. The

reason for this is the suppression of the reaction rates for formation of 4He with q = 2

through the charged particle reactions t(d,n)4He, 3He(d,p)4He.

A strong impact of using non-extensive statistics for both q = 0.5 and q = 2 values

of the non-extensive parameter is seen in Figure 5.3 for the 3He abundance. While for q = 2

there is an overshooting in the production of 3He, for q = 0.5 one finds a smaller value than

the one predicted by the standard BBN. This is due to the distinct results for the destruction
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Figure 5.3: 3He abundance. The solid curve is the result obtained with the standard Maxwell
distributions for the reaction rates. Results with the use of non-extensive distributions for
q = 0.5 (dotted line) and q = 2 (dashed line) are also shown.

of 3He through the reaction 3He(n,p)t, which is enhanced for q = 0.5 and suppressed for q = 2,

in the same way as it happens for the reaction 7Be(n,p)7Li, shown in Figure 4.6. 3He is both

produced and destroyed in stars and its abundance is still subject to large uncertainties,

3He/H = (1.1± 0.2)× 10−5 (Bania, Rood, & Balser, 2002; Vangioni-Flam, Olive, Fields, &

Casse, 2003).

Non-extensive statistics for both q = 0.5 and q = 2 values also alter substantially

the 7Li abundance, as shown in Figure 5.4. For both values of the non-extensive parameter

q = 2, and q = 0.5, there is an overshooting in the production of 7Li. The increase in the

7Li abundance is more accentuated for q = 2. The lithium problem is associated with a

smaller value of the observed 7Li abundance as compared the predictions of BBN. There

has been many attempts to solve this problem by testing all kinds of modifications of the

parameters of the BBN or the physics behind it [a sample of this literature is found in Boyd,

Brune, Fuller, and Smith (2010); Cyburt (2004); Cyburt, Fields, and Olive (2008); Cyburt

and Pospelov (2012); Fields (2011); Iocco and Pato (2012); Kirsebom and Davids (2011);

Nollett and Burles (2000); Wang et al. (2011) and references therein]. In the present case,
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the use of a non-Maxwellian velocity distribution seems to worsen this scenario. A recent

analysis yields the observational value of 7Li/H = (1.58± 0.31)× 10−10 (Sbordone, 2010).

We have calculated a window of opportunity for the non-extensive parameter q with

which one can reproduce the observed abundance of light elements. We chose the data for the

abundances, Yi, of 4He/H, D/H, 3He/H and 7Li as reference. We then applied the ordinary

χ2 statistics, defined by the minimization of

χ2 =
∑
i

[Yi(q)− Yi(obs)]2

σi
, (5.1)

where Yi(q) are the abundances obtained with the non-extensive statistics with parameter

q, Yi(obs) are the observed abundances, and σi the errors for each datum, and the sum is

over all data mentioned in Table 5.1. From this chi-square fit we conclude that q = 1+0.05
−0.12 is

compatible with observations.

No attempt has been made to determine which element dominates the constraint

on q. This might be important for a detailed study of the elemental abundance influence

from nuclear physics inputs, namely, the uncertainty of the reaction cross sections. A study

along these lines might be carried in a similar fashion as described in Nollett and Burles

(2000). Weights on the reliability of observational data should also be considered for a

more detailed analysis. For example, constraints arising from 3He/H abundance may not

be considered trustworthy because of uncertain galactic chemical evolution. On the other

hand, a constraint from the observation of 3He/D is more robust, and so on. Based on our

discussion in Section II, it is more important to determine how the non-extensive statistics

can modify more stringent conditions during the big bang, such as the modification of weak-

decay rates and its influence on the n/p ratio which strongly affects the 4He abundance.

In Table 5.1 we present results for the predictions of the BBN with Maxwellian and

non-Maxwellian distributions. The predictions are compared with data from observations

reported in the literature. It is evident that the results obtained with the non-extensive

statistics strongly disagree with the data. The overabundance of 7Li compared to observation

gets worse if q > 1. The three light elements D, 4He and 7Li constrain the primordial
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Figure 5.4: 7Li abundance. The solid curve is the result obtained with the standard Maxwell
distributions for the reaction rates. Results with the use of non-extensive distributions for
q = 0.5 (dotted line) and q = 2 (dashed line) are also shown.

abundances rather well. For all these abundances, a non-extensive statistics with q > 1

leads to a greater discrepancy with the experimental data.

Except for the case of 3He the use of non-extensive statistics with q < 0.5 does not rule

out its validity when the non-Maxwellian BBN results are compared to observations. 3He is

at present only accessible in our Galaxy’s interstellar medium. This means that it cannot

be measured at low metallicity, a requirement to make a fair comparison to the primordial

generation of light elements. This also means that the primordial 3He abundance cannot

be determined reliably. The result presented for the 3He abundance in Table 5.1 is quoted

from Bania et al. (2002). Notice that our analysis does not include the changes that the

non-extensive statistics would bring to the n/p conversion rates. The electron distributions

would also be expected to change accordingly. This would change the freeze out temperature

and a corresponding influence on the 4He abundance.

We conclude that it does not seem possible to change the Maxwell-Boltzmann statis-

tics to reproduce the observed abundance of light elements in the universe without destroying

many other successful predictions of big bang nucleosynthesis. A chi-square fit of our cal-

culations with the observations of elemental abundance concludes that the non-extensive
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parameter is constrained to q = 1+0.05
−0.12. This means that, should a non-Maxwellian distri-

bution due to the use of the Tsallis non-extensive statistics be confirmed (with a sizable

deviation from q = 1), our understanding of the cosmic evolution of the universe would have

to be significantly changed.
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