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A B S T R A C T

We review the status and perspectives of indirect methods that make use of transfer reactions.
We focus on two of them that have been extensively used in the past decades to determine cross
sections of reactions of astrophysical relevance: the Trojan Horse method and the Asymptotic
Normalization Coefficients method. We provide a comprehensive description of the theory
behind each of these techniques, followed by an overview of a selection of experiments carried
out using these indirect tools.
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1. Introduction

Nuclear reactions are crucial ingredients in describing how stars evolve. Beside of representing the stellar energy engine, nuclear
eactions are also responsible for the chemical evolution of the universe and the production of the elements. To understand how
lements are synthesized in stellar phenomena, it is fundamental to study the relevant reactions that govern the nucleosynthesis
aths and to quantify their cross sections [1–5]. This is one of the main goals yet a critical issue of nuclear astrophysics since the
xtremely high temperatures in the stellar interiors correspond to amounts of energy usually much smaller than the Coulomb barrier
etween the nuclei involved in the relevant reactions. The Coulomb repulsion is thus responsible for the exponential decrease of the
ross section 𝜎(𝐸) at energies corresponding to stellar temperatures. This makes the majority of astrophysical reactions proceeding
n stellar environments difficult or impossible to measure directly under the same conditions in the laboratory as in the stars. What
s usually done is to carry out direct measurements at as low energies as possible (usually 𝐸 > 100 keV) and then extrapolate the
ehavior of 𝜎(𝐸) down to the astrophysical region using the definition of the astrophysical S(E) factor

𝑆(𝐸) = 𝐸 𝜎(𝐸) exp(2𝜋 𝜂) (1.1)

with the Sommerfeld parameter 𝜂 = 𝛼 𝑍1𝑍2
√

𝜇 𝑐2∕2𝐸, where 𝛼 is the fine-structure constant, 𝑍1 and 𝑍2 are the atomic numbers of
he two colliding nuclei, 𝜇 is their reduced mass and 𝑐 is the speed of light.

It removes the energy dependence of 𝜎(𝐸) due to the barrier tunneling given by the Gamow factor exp(−2𝜋 𝜂). However, even
 simple extrapolation can easily lead to absolutely misleading/wrong results, due, for instance, to the missing contribution of
nexpected resonances or sub-threshold ones. Resonances may change by orders of magnitude the extrapolated cross-section at
strophysical energies.

Another critical issue in laboratory measurements of nuclear reactions is represented by the electron screening effect. Indeed
both target and projectile are usually embedded in neutral/ionized atoms or molecules or in a lattice of a solid-state system, whose
lectron clouds give rise to an attractive potential responsible for a reduction of the Coulomb barrier. This, in turn, leads to an
ncreased cross section for screened nuclei, 𝜎𝑠(𝐸), compared to the cross section for bare nuclei [6,7] 𝜎𝑏(𝐸). Therefore, a correction

factor has to be introduced to determine the unscreened or bare nucleus cross section. It is called screening factor, defined as

𝑓lab(𝐸) =
𝜎𝑠(𝐸)
𝜎𝑏(𝐸)

≈ exp
(

𝜋 𝜂 𝑈𝑒
𝐸

)

, (1.2)

with 𝑈𝑒 the ‘‘electron screening potential’’. The expression holds true when the energy of the incident particle is large compared to
the screening energy, i.e., E ≫ U𝑒. The electron screening potential, U𝑒, is assumed to be independent of energy. In a stellar plasma,
a similar enhancement factor is considered:

𝑓𝑝𝑙(𝐸) =
𝜎𝑝𝑙(𝐸)
𝜎𝑏(𝐸)

≈ exp
(

𝜋 𝜂 𝑈𝑝𝑙
𝐸

)

(1.3)

with 𝜎𝑝𝑙(𝐸) the cross section in the plasma. It can be calculated once the plasma screening potential 𝑈𝑝𝑙 is known. It depends on
mportant properties of the plasma such as the Debye–Hückel radius. A measurement of 𝑈𝑒, which is needed to calculate 𝜎𝑠(𝐸) from
q. (1.2), would also be beneficial to better understand 𝑈 .
2
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Low-energy charged particle fusion reactions measured so far have accordingly shown the exponential enhancement predicted
y Eq. (1.2), see also [7]. However, the deduced 𝑈𝑒 values are often larger than the adiabatic limit, defined in atomic physics as the

difference between the electron binding energies of the separate atoms in the entrance channel and that of the composite atom [7,8].
This disagreement in laboratory experiments is yet to be understood, and prevents the effects under astrophysical conditions to be
fully assessed. A weak point in the laboratory approach - and thus in the deduced 𝑈𝑒 value - is the need to make an assumption for
the energy dependence of 𝜎𝑏(𝐸) at ultra-low energies.

Moreover, it was pointed out that Eq. (1.2) is not appropriate to correct the measured resonance strengths of narrow resonances,
hile it is emphasized that screening is responsible of the shift of the resonance energy compared to the case of unscreened nuclei [9].

These arguments are not so strong for reactions involving radioactive nuclei, which do play a role in explosive nucleosynthesis
nown for its higher energy dynamics. Consequently, these reactions are less impacted by Coulomb suppression or electron
creening [10,11]. In reactions induced by radioactive nuclei, astrophysical timescales should typically align with the half-life of
he nuclear species being studied [10]. Shorter timescales are commonly linked to explosive environments, where energies surpass

those of quiescent nuclear burning, reaching the scale of about MeV. At such energies, the penetration probability of the Coulomb
barrier is a smoothly varying function of the energy, as demonstrated in [12], for instance. Likewise, even considering the upper
limit for the electron screening potential, the enhancement factor rapidly stabilizes around 1 with increasing energy at the MeV
scale as exemplified in Ref. [13].

However, the study of reactions involving radioactive nuclei requires either the existence of radioactive beams, whose intensity
s often very low, rarely exceeding 106 pps, or the production of radioactive targets when nuclei have relatively long lifetimes,
omething not easy to realize with a sufficiently large areal density. Therefore, again direct measurements are very challenging, if
ot impossible, as in the case of r-process reactions, due to the lack of neutron targets.

To overcome all these difficulties, indirect techniques have been introduced, see, e.g., [14,15] for recent reviews. They make use
f direct reaction mechanisms, such as transfer processes, e.g. stripping, pick-up or knock-out. In particular, two indirect methods
ave been devised in this respect: the Asymptotic Normalization Coefficients (ANC) and the Trojan Horse Method (THM). In the
NC method, a virtual nucleon or nucleus 𝑥 is transferred from a nucleus 𝑎 to another nucleus 𝐴 forming a bound state 𝐵 leaving
 nucleus 𝑏 in the exit channel. This reaction

𝑎 + 𝐴→ 𝑏 + 𝐵 (1.4)

is depicted diagrammatically in the left panel of Fig. 1.1 with two vertices representing the breakup of 𝑎 and the formation of
he bound state 𝐵. The measured cross section of this process gives information on the asymptotic radial dependence of the wave
unction of 𝐴𝑥 relative motion in 𝐵 provided the transfer is peripheral. It can then be used in the analytic calculation of the cross

section of the radiative capture reaction

𝑥 + 𝐴 → 𝛾 + 𝐵 (1.5)

at ultra-low energies.
The THM starts with the same entrance channel as the ANC method but a reaction

𝑎 + 𝐴→ 𝑏 + 𝑐 + 𝐶 (1.6)

with three bodies in the exit channel is studied as shown in the right panel of Fig. 1.1. The main goal of the THM is to extract
nformation on the asymptotic form of the 𝑐 + 𝐶 scattering wave functions and hence the cross section of the reaction

𝑥 + 𝐴 → 𝑐 + 𝐶 (1.7)

determined by the corresponding S matrix. The particle 𝑥 that is transferred between the two subsystems is considered virtual, not
eing ‘‘on the energy shell’’. This means that the relation between its energy and momentum is not given by the typical dispersion

relation 𝐸𝑥 = 𝑝2𝑥∕(2𝑚𝑥) of freely propagating particles.
The ANC and THM share the common feature that reactions at high energies much above the Coulomb barrier, and thus far

urpassing the screening potential energy, are studied to access the cross sections of a radiative capture or a rearrangement reaction
t very low energies much below the Coulomb barrier. As a result, these cross-sections are inherently insensitive to both Coulomb
uppression and screening enhancement effects. This feature holds substantial significance in the field of nuclear astrophysics since
he two main effects preventing access to the energies of astrophysical interest in direct measurements are the Coulomb suppression
f cross sections and the electron screening effects. The possibility to use energies of several tens of MeV makes the indirectly
easured cross sections of a radiative capture or a rearrangement reaction free of Coulomb suppression and, from stronger argument,

f electron screening effects as previously discussed in this section.
A proper knowledge of nuclear reaction theory is essential to understand the operation of the ANC and THM. The relation

of the cross sections of the reactions (1.4) and (1.5) or (1.6) and (1.7), respectively, is found with the theory of direct transfer
reactions. Approximations are needed to express the cross sections of the ‘‘surrogate’’ reactions as the product of a contribution
hat can be calculated from theory and a quantity that gives directly the cross section of the two-body reaction of interest. This
actorization is related to the appearance of two vertices in the diagrams of Fig. 1.1. The approximations exploit the fact that the

reaction mechanisms are dominated by peripheral processes where only the asymptotic part of the wave functions is relevant. This
also leads to a selection of specific kinematic conditions in indirect experiments.

The Section 1 is devoted to the presentation of the theory of direct reactions, an indispensable ingredient for the application of
indirect methods. In particular, topics related to the wave functions, transition matrix elements, and cross section with the employed
3
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Fig. 1.1. Vertex diagrams of transfer reactions to a bound state 𝐵 as applied in the ANC method (left panel) and to a scattering state 𝑐 +𝐶 with regard to the
THM (right panel).

approximations will be discussed. The following sections are dedicated to the experimental application of the indirect methods. In
particular, the kinematic conditions, specific features and tests of the methods and an overview over experiments will be given.
Each application will be preceded by a brief astrophysical introduction when applicable. Finally, the work concludes with further
discussion and conclusions.

2. Theory of indirect methods for nuclear astrophysics

In many cases, it is beneficial to measure cross sections of astrophysical reactions not only directly, if possible at all, but to
consider indirect approaches. They are often more advantageous from an experimental point of view but require support from
nuclear reaction theory (for recent reviews, see [15–18]).

The selected surrogate method depends on the reaction of interest. In case of rearrangement reactions 𝐴(𝑥, 𝑐)𝐶, the Trojan Horse
method (THM) can be exploited to extract the energy dependence of the cross section, however, absolute values are not given and
a normalization to direct data at high energies is needed [17,18]. For radiative capture reactions 𝐴(𝑎, 𝛾)𝐷, there are two indirect
methods that are utilized: the ANC method [19] and the Coulomb dissociation (CD) method [20].

The ANC method can be used to determine the zero-energy S factor of the radiative capture reaction. Absolute cross sections
over a certain range of energies are provided by the CD method. In this review, the THM and ANC methods are discussed because
they are based on similar concepts of nuclear reaction theory with processes involving the strong interaction.

The main goal of the THM is to extract the cross section of the two-body reaction (1.7) from the experimentally measured cross
section of the reaction (1.6) with three particles in the exit channel. The connection of the cross sections can be established with the
help of the theory of direct reactions following the traditional approaches for transfer reactions. The distinctive feature of the THM is
a particular choice of the kinematic conditions that corresponds to a quasi-free reaction mechanism for the subreaction (1.7) within
the reaction (1.6), i.e., a small momentum transfer to the spectator nucleus 𝑏 that is originally bound inside the Trojan-horse nucleus
𝑎. It allows to apply certain approximations that finally lead to a factorization of the cross section of the three-body reaction with a
kinematic factor, a momentum distribution of the 𝑏𝑥 relative motion inside the nucleus 𝑎 and a cross section of the two-body reaction
(1.7). The latter is, however, not the on-energy-shell (OES) cross section of the reaction of interest but a half-off-the-energy-shell
(HOES) cross section that needs to be related to the OES cross section [17,18].

The derivation of the relation between the cross sections in the THM proceeds in several steps. First, general expressions for the
cross sections of the two reactions with two and three particles in the final state are devised that connect them to the transition or T-
matrix elements of the processes which contain the essential information of the reactions. These matrix elements can be evaluated in
different approximations. Here, two approaches will be presented: the plane-wave impulse approximation (PWIA) and the modified
distorted-wave and plane-wave Born approximations (MDWBA and MPWBA) that finally allow to deduce the connection between
the HOES and OES cross section of the reaction (1.7). More details on these approaches can be found in some basic THM references,
e.g., see [21–23] and review articles, e.g., [17,18,24]. Finally, other theoretical descriptions of the THM method will be briefly
summarized.

The ANC method uses traditional transfer reactions with two particles in the initial and final states. These are often exploited to
extract spectroscopic factors for specific states from the comparison of experimental cross sections to theoretical values employing
simple single-particle descriptions of nuclear many-body wave functions. However, the goal of the ANC method is to determine the
absolute amplitude of the asymptotic bound-state wave functions in the entrance (𝑎+𝐴) or exit channels (𝑐+𝐶). Thus, experimental
conditions have to be selected that guarantee the dominance of peripheral processes. The ANC can then be used in a theoretical
calculation of the astrophysical S factor for a radiative capture reaction that involves the channel 𝑎 + 𝐴 or 𝑐 + 𝐶 [15,19,24].

2.1. Notation and kinematics

The theoretical formulation usually employs center-of-mass coordinates (cm) in a non-relativistic description where 𝑟𝑖 and 𝑝𝑖
denote the spatial coordinate and the momentum of a particle 𝑖 with mass 𝑚𝑖. It is convenient to introduce relative coordinates and
momenta

𝑟𝑖𝑗 = 𝑟𝑖 − 𝑟𝑗 , 𝑝𝑖𝑗 = 𝜇𝑖𝑗

(

𝑝𝑖 −
𝑝𝑗

)

, (2.1)
4
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Fig. 2.1. Spatial Jacobi coordinates in the initial (left) and final (right) state of the TH reaction are given in red color. The spectator 𝑏 is colored green and
the nuclei participating in the two-body reaction of interest are colored blue.

in a two-body system 𝑖 + 𝑗 as well as the cm position and momentum

�⃗�𝑖𝑗 =
1
𝑀𝑖𝑗

(

𝑚𝑖𝑟𝑖 + 𝑚𝑗𝑟𝑗
)

, 𝑃𝑖𝑗 = 𝑝𝑖 + 𝑝𝑗 , (2.2)

of the total system. In these definitions, the reduced mass and the total mass

𝜇𝑖𝑗 =
𝑚𝑖𝑚𝑗
𝑀𝑖𝑗

, 𝑀𝑖𝑗 = 𝑚𝑖 + 𝑚𝑗 , (2.3)

appear. Denoting the system 𝑖 + 𝑗 with 𝑘 and defining 𝑟𝑘 = �⃗�𝑖𝑗 , 𝑝𝑘 = 𝑃𝑖𝑗 and 𝑚𝑘 = 𝑀𝑖𝑗 , further coordinates and momenta can be
introduced recursively for systems with more than two particles, defining the usual Jacobi coordinates. The spatial Jacobi coordinates
�⃗�𝑥, 𝑟𝑎𝐴, �⃗�𝑎𝐴 and 𝑟𝑐 𝐶 , 𝑟𝑏𝐵 , �⃗�𝑏𝐵 are depicted in Fig. 2.1 for the initial and final state of the TH reaction, respectively. The Jacobi

coordinates in momentum space can be used favorably to express the energies in the entrance and exit channels of the two reactions
f interest. In particular, one has

𝐸𝑥𝐴 = 𝐸𝑥 + 𝐸𝐴 =
𝑝2𝑥𝐴
2𝜇𝑥𝐴

+
𝑃 2
𝑥𝐴

2𝑀𝑥𝐴
, 𝐸𝑐 𝐶 = 𝐸𝑐 + 𝐸𝐶 =

𝑝2𝑐 𝐶
2𝜇𝑐 𝐶

+
𝑃 2
𝑐 𝐶

2𝑀𝑐 𝐶
, (2.4)

with 𝑃𝑥𝐴 = 𝑃𝑐 𝐶 = 0 in the cm system for reaction (1.7) and

𝐸𝑎𝐴 = 𝐸𝑎 + 𝐸𝐴 =
𝑝2𝑎𝐴
2𝜇𝑎𝐴

+
𝑃 2
𝑎𝐴

2𝑀𝑎𝐴
, 𝐸𝑏𝑐 𝐶 = 𝐸𝑏 + 𝐸𝑐 + 𝐸𝐶 =

𝑝2𝑐 𝐶
2𝜇𝑐 𝐶

+
𝑝2𝑏𝐵
2𝜇𝑏𝐵

+
𝑃 2
𝑏𝐵

2𝑀𝑏𝐵
, (2.5)

with 𝑃𝑎𝐴 = 𝑃𝑏𝐵 = 0 in the cm system for reaction (1.6). Here, 𝐵 stands for the system 𝑐 + 𝐶. Energy conservation can be expressed
as

𝐸𝑥𝐴 +𝑄𝑥𝐴→𝑐 𝐶 = 𝐸𝑐 𝐶 , 𝐸𝑎𝐴 +𝑄𝑎𝐴→𝑏𝑐 𝐶 = 𝐸𝑏𝑐 𝐶 , (2.6)

with the Q values

𝑄𝑥𝐴→𝑐 𝐶 = 𝑚𝑥 + 𝑚𝐴 − 𝑚𝑐 − 𝑚𝐶 , 𝑄𝑎𝐴→𝑏𝑐 𝐶 = 𝑚𝑎 + 𝑚𝐴 − 𝑚𝑏 − 𝑚𝑐 − 𝑚𝐶 , (2.7)

for the two reactions.
It is instructive to explore the kinematic condition of the THM in more detail. Combining the two equations gives

𝐸𝑥𝐴 = 𝐸𝑎𝐴 − 𝐸𝑏𝐵 − 𝐵𝑎 (2.8)

with the binding energy

𝐵𝑎 = 𝑚𝑏 + 𝑚𝑥 − 𝑚𝑎 > 0 (2.9)

of the Trojan-horse nucleus 𝑎 with respect to the breakup into 𝑏 + 𝑥 and kinetic energy of relative motion 𝐸𝑏𝐵 = 𝑝2𝑏𝐵∕(2𝜇𝑏𝐵) of the
spectator 𝑏 and the system 𝐵 = 𝑐 + 𝐶. In the cm system, momentum conservation can be written as

0 = 𝑝𝑎 + 𝑝𝐴 = 𝑝𝑏 + 𝑝𝑐 + 𝑝𝐶 = 𝑝𝑏 + 𝑝𝐵 . (2.10)

Then the momenta of relative motion are determined by

𝑝𝑏𝐵 = 𝑝𝑏 = −𝑝𝐵 𝑝𝑎𝐴 = 𝑝𝑎 = −𝑝𝐴 (2.11)

and the energy

𝐸𝑏𝐵 =
𝑝2𝑏

2𝜇𝑏𝐵
=
(

𝑚𝑏
𝑚𝑎

)2 𝑝2𝑎
2𝜇𝑏𝐵

=
(

𝑚𝑏
𝑚𝑎

)2 𝜇𝑎𝐴
𝜇𝑏𝐵

𝐸𝑎𝐴 (2.12)
5
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can be expressed as a multiple of the energy 𝐸𝑎𝐴. Under quasi-free scattering conditions, there is no momentum transfer to the
spectator nucleus and its original velocity inside the Trojan-horse nucleus 𝑎 will not change during the reaction. Thus, its momentum
in the final state is given by

𝑝𝑞 𝑓𝑏 =
𝑚𝑏
𝑚𝑎
𝑝𝑎 (2.13)

if the Fermi motion of 𝑏 inside 𝑎 is neglected. As a result, the quasi-free energy in the initial state of the two-body reaction (1.7)
takes the value

𝐸𝑞 𝑓𝑥𝐴 =

[

1 −
(

𝑚𝑏
𝑚𝑎

)2 𝜇𝑎𝐴
𝜇𝑏𝐵

]

𝐸𝑎𝐴 − 𝐵𝑎 (2.14)

which can be much smaller than the energy 𝐸𝑎𝐴 in the entrance channel of the Trojan-horse (TH) reaction. Thus, it is possible to
tudy reactions at energies below the Coulomb barrier, even at negative energies, with a surrogate reaction at much higher energies
ithout being affected by Coulomb suppression of the cross section or electron screening effects. The quasi-free scattering condition
lso leads to a constraint for the momenta of the particles in the final state, in particular, an angular correlation of the detected
uclei. This condition has to be considered in the planning of a TH experiment.

In practical applications, the energy 𝐸𝑎𝐴 is not changed to cover a certain range in 𝐸𝑥𝐴 since it is determined by the energy of
he projectile in the TH experiment. Instead, a limited range for the momentum transfer to the spectator is allowed, typically of
he order of a few ten MeV/c and smaller than the bound-state momentum 𝑞𝑏𝑥 =

√

2𝜇𝑏𝑥𝐵𝑎 of the nucleus Trojan-horse nucleus 𝑎.
This approach was first described in [25] and is different compared to the procedure envisaged in the original introduction of the
THM in [26] where it was proposed to use the tail of the Fermi motion of 𝑥 inside 𝑎 to compensate for the energy in the 𝑎 + 𝐴
elative motion. The required dominance of the quasi-free reaction mechanism also affects the choice of the Trojan-horse nuclei.
heir momentum distribution should peak near zero momentum transfer to the spectator and thus nuclei like 2H or 6Li with a
ominant s-wave component in their ground state are most favorable to investigate reactions with neutrons, protons, deuterons or
particles.

2.2. Cross sections of nuclear rearrangement reactions

For the reaction (1.7) with two particles in the entrance and exit channels, the general expression for the cross section for
particles with total angular momentum 𝐽𝑖 is given by

𝑑 𝜎(𝑥 + 𝐴 → 𝑐 + 𝐶) = 2𝜋
ℏ
𝜇𝑥𝐴
𝑝𝑥𝐴

1
(2𝐽𝑥 + 1)(2𝐽𝐴 + 1)

∑

𝑀𝑥𝑀𝐴

∑

𝑀𝑐𝑀𝐶
∫

𝑑3𝑝𝑐 𝐶
(2𝜋 ℏ)3

|

|

𝑇𝑥𝐴→𝑐 𝐶 ||2 𝛿(𝐸𝑥𝐴 +𝑄𝑥𝐴→𝑐 𝐶 − 𝐸𝑐 𝐶 ) (2.15)

with an averaging and summation over the unobserved spin projections 𝑀𝑖 in the initial and final states. The prefactor 2𝜋∕ℏ is
nown from Fermi’s golden rule and 𝜇𝑥𝐴∕𝑝𝑥𝐴 is the inverse relative velocity in the entrance channel corresponding to the required

flux factor. The integrand contains the squared modulus of the T-matrix element 𝑇𝑥𝐴→𝑐 𝐶 and a 𝛿 function that represents the energy
conservation. An explicit factor for momentum conservation does not appear because the formulation above is expressed with the
cm relative momentum 𝑝𝑐 𝐶 . The expression (2.15) is valid if the scattering waves that enter the calculation of the T-matrix element
re normalized to plane waves + in/outgoing spherical waves.

A simple integration over 𝐸𝑐 𝐶 with 𝑑3𝑝𝑐 𝐶 = 𝑝2𝑐 𝐶𝑑 𝑝𝑐 𝐶𝑑 𝛺𝑐 𝐶 = (𝑝𝐶 𝑐𝜇𝑐 𝐶 )𝑑 𝐸𝑐 𝐶𝑑 𝛺𝑐 𝐶 yields the usual differential cross section
𝑑2𝜎
𝑑 𝛺𝑐 𝐶

(𝑥 + 𝐴→ 𝑐 + 𝐶) = 𝜇𝑥𝐴𝜇𝑐 𝐶
(2𝜋)2ℏ4

𝑝𝑐 𝐶
𝑝𝑥𝐴

1
(2𝐽𝑥 + 1)(2𝐽𝐴 + 1)

∑

𝑀𝑥𝑀𝐴

∑

𝑀𝑐𝑀𝐶

|

|

𝑇𝑥𝐴→𝑐 𝐶 ||2 (2.16)

where 𝑑 𝛺𝑐 𝐶 defines the solid angle of the relative momentum 𝑝𝑐 𝐶 in the final state. Due to time-reversal symmetry of the reaction,
ne has |

|

𝑇𝑥𝐴→𝑐 𝐶 ||2 = |

|

𝑇𝑐 𝐶→𝑥𝐴||2 and the theorem of detailed balance

(2𝐽𝑥 + 1)(2𝐽𝐴 + 1)𝑝2𝑥𝐴
𝑑 𝜎
𝑑 𝛺𝑐 𝐶

(𝑥 + 𝐴 → 𝑐 + 𝐶) = (2𝐽𝑐 + 1)(2𝐽𝐶 + 1)𝑝2𝑐 𝐶
𝑑 𝜎
𝑑 𝛺𝑥𝐴

(𝑐 + 𝐶 → 𝑥 + 𝐴) (2.17)

with the differential cross section of the inverse reaction easily obtained.
The general expression for the reaction with three particles in the exit channel

𝑑 𝜎(𝑎 + 𝐴→ 𝑏 + 𝑐 + 𝐶) = 2𝜋
ℏ
𝜇𝑎𝐴
𝑝𝑎𝐴

1
(2𝐽𝑎 + 1)(2𝐽𝐴 + 1)

∑

𝑀𝑎𝑀𝐴

∑

𝑀𝑏𝑀𝑐𝑀𝐶

(2.18)

∫
𝑑3𝑝𝑐 𝐶
(2𝜋 ℏ)3

𝑑3𝑝𝑏𝐵
(2𝜋 ℏ)3

|

|

𝑇𝑎𝐴→𝑏𝑐 𝐶 ||2 𝛿(𝐸𝑎𝐴 +𝑄𝑎𝐴→𝑏𝑐 𝐶 − 𝐸𝑏𝑐 𝐶 )

is slightly more involved than the one given in (2.15) due to the additional momentum integration and summation over the angular
momentum projection of the third particle. The 𝛿 function for energy conservation allows again to perform an explicit integration
over 𝐸𝑏𝐵 . The result

𝑑5𝜎
𝑑 𝐸𝑐 𝐶𝑑 𝛺𝑐 𝐶𝑑 𝛺𝑏𝐵

(𝑎 + 𝐴 → 𝑏 + 𝑐 + 𝐶) = 𝜇𝑎𝐴𝜇𝑏𝐵𝜇𝑐 𝐶
(2𝜋)5ℏ7

𝑝𝑏𝐵𝑝𝑐 𝐶
𝑝𝑎𝐴

1
(2𝐽𝑎 + 1)(2𝐽𝐴 + 1)

∑

𝑀 𝑀

∑

𝑀 𝑀 𝑀

|

|

𝑇𝑎𝐴→𝑏𝑐 𝐶 ||2 (2.19)
6
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is a five-fold differential cross section that depends on the kinematic state of the 𝑐 +𝐶 subsystem (𝐸𝑐 𝐶 , 𝛺𝑐 𝐶 ) and the solid angle of
the momentum 𝑝𝑏𝐵 . In principle, also another variable than 𝐸𝑐 𝐶 can be chosen for the integration but the one used above is most
convenient in the theoretical formulation of the THM.

As soon as a relation between the T-matrix elements 𝑇𝑥𝐴→𝑐 𝐶 and 𝑇𝑎𝐴→𝑏𝑐 𝐶 is found, it is possible to establish a relation between
he cross sections (2.16) and (2.19). In order to keep the expressions simple, the spins of the particles will not be considered in the

following. Equations with a full treatment of the angular momenta can be found in [23].

2.3. T-matrix elements and relation of cross sections in the THM

There are various possibilities to give explicit expression for the T-matrix elements 𝑇𝑥𝐴→𝑐 𝐶 and 𝑇𝑎𝐴→𝑏𝑐 𝐶 . Starting from exact forms,
pproximations have to be applied to arrive at tractable forms for an actual calculation. In the case of the THM, it is sufficient to
ind some formal expressions that allow to establish the required connection. All of them contain wave functions in the various
hannels. The internal wave functions of individual nuclei 𝑖 are denoted by 𝜙𝑖 and the plane waves for their relative motion are
ritten as 𝛷𝑖𝑗 = exp (𝑖 ⃗𝑝𝑖𝑗 ⋅ 𝑟𝑖𝑗∕ℏ

)

.
As first approach, the plane-wave impulse approximation is discussed in the following. It serves as a transparent means to

btain the characteristic factorization of the three-body cross section. The second approach considers the modified plane-wave
orn approximation that is more involved but helps to take the off-shell effects into account that are essential in the application of
he THM.

2.3.1. Plane-wave impulse approximation
The T-matrix elements for the reactions (1.7) and (1.6) can be written in the post and prior forms as

𝑇𝑥𝐴→𝑐 𝐶 = ⟨𝜙𝑐𝜙𝐶𝛷𝑐 𝐶 |𝑉𝑐 𝐶 |𝛹 (+)
𝑥𝐴 ⟩ = ⟨𝛹 (−)

𝑐 𝐶 |𝑉𝑥𝐴|𝜙𝑥𝜙𝐴𝛷𝑥𝐴⟩ (2.20)

𝑇𝑎𝐴→𝑏𝑐 𝐶 = = ⟨𝜙𝑏𝜙𝐵𝛷𝑏𝐵|𝑉𝑏𝑐 + 𝑉𝑏𝐶 |𝛹
(+)
𝑎𝐴 ⟩ = ⟨𝛹 (−)

𝑏𝑐 𝐶 |𝑉𝑥𝐴 + 𝑉𝑏𝐴|𝜙𝑎𝜙𝐴𝛷𝑎𝐴⟩ (2.21)

with the exact solutions of the scattering problem, 𝛹 (+)
𝑥𝐴 and 𝛹 (+)

𝑎𝐴 in the initial state or 𝛹 (−)
𝑐 𝐶 and 𝛹 (−)

𝑏𝑐 𝐶 in the final state, respectively.
(The full three-body wave function 𝛹 (−)

𝑏𝑐 𝐶 is approximated here as the product 𝛹 (−)
𝑏(𝑐 𝐶)𝜙𝐵 where 𝜙𝐵 = 𝛹 (−)

𝑐 𝐶 is a scattering state in the
𝐵 = 𝑐 + 𝐶 system.) Formally, T-matrix elements can be expressed as

𝑇𝑥𝐴→𝑐 𝐶 = ⟨𝜙𝑐𝜙𝐶𝛷𝑐 𝐶 |𝑡𝑥𝐴→𝑐 𝐶 |𝜙𝑥𝜙𝐴𝛷𝑥𝐴⟩, 𝑇𝑎𝐴→𝑏𝑐 𝐶 = ⟨𝜙𝑏𝜙𝑐𝜙𝐶𝛷𝑐 𝐶𝛷𝑏𝐵|𝑡𝑎𝐴→𝑏𝑐 𝐶 |𝜙𝑎𝜙𝐴𝛷𝑎𝐴⟩, (2.22)

with transition operators 𝑡𝑥𝐴→𝑐 𝐶 and 𝑡𝑎𝐴→𝑏𝑐 𝐶 , respectively, which are usually highly complex objects that act on the wave functions.
They can be expressed explicitly with the Green’s function 𝐺(𝑧) = 1∕(𝑧−𝐻) depending on the Hamiltonian 𝐻 = 𝑇 +𝑉 . E.g., in case
of the TH reaction one has

𝑡𝑎𝐴→𝑏𝑐 𝐶 =
(

𝑉 − 𝑉𝑐 𝐶
)

[

1 + lim
𝜀→0

𝐺(𝐸 + 𝑖𝜀)
(

𝑉 − 𝑉𝑏𝑥
)

]

(2.23)

with the full interaction

𝑉 = 𝑉𝑏𝑥 + 𝑉𝑏𝐴 + 𝑉𝑥𝐴 = 𝑉𝑐 𝐶 + 𝑉𝑏𝑐 + 𝑉𝑏𝐶 . (2.24)

In the impulse approximation, the rather drastic approximation

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ ⟨𝜙𝑏𝜙𝑐𝜙𝐶𝛷𝑐 𝐶𝛷𝑏𝐵|𝑡𝑥𝐴→𝑐 𝐶 |𝜙𝑎𝜙𝐴𝛷𝑎𝐴⟩ (2.25)

is applied with a replacement of 𝑡𝑎𝐴→𝑏𝑐 𝐶 by 𝑡𝑥𝐴→𝑐 𝐶 . This is only permissible if the interaction of 𝑏 with the other nuclei can be
neglected during the reaction. A simple condition for the validity of this approach is a very small momentum transfer to 𝑏. Thus,
the subreaction 𝑥𝐴 → 𝑐 𝐶 proceeds independent of the presence of 𝑏, which is just an uninvolved spectator. From a kinematical
oint of view, this condition corresponds to a quasi-free scattering process of 𝑥 and 𝐴. It limits the range of momenta in the final
tate of the 𝑎+𝐴→ 𝑏+𝑐+𝐶 reaction that can be used in the analysis of a TH experiment. Furthermore, it suffices for the theoretical
escription of the TH reaction to be accurate solely within the small fraction of the full phase space under examination. Beyond this
pecific region of momenta combinations, the precision of the theoretical framework in describing the reaction is of no importance.

Another feature of the THM is the employment of a Trojan-horse nucleus 𝑎 that has a high probability to be considered as a
cluster configuration 𝑏 + 𝑥 in its ground state. Thus it is reasonable to write the internal wave function 𝜙𝑎 of 𝑎 in coordinate space
as

𝜙𝑎 = ∫
𝑑3𝑞

(2𝜋 ℏ)3 𝜑𝑎(𝑞) exp
(

𝑖 ⃗𝑞 ⋅ 𝑟𝑏𝑥∕ℏ
)

𝜙𝑏𝜙𝑥 (2.26)

neglecting other components of the many-body wave function. Introducing this form in the T-matrix element and gives

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ ∫
𝑑3𝑞𝑏𝑥
(2𝜋 ℏ)3 𝜑𝑎(𝑞𝑏𝑥) ⟨𝜙𝑏𝜙𝑐𝜙𝐶𝛷𝑐 𝐶𝛷𝑏𝐵|𝑡𝑥𝐴→𝑐 𝐶 | exp

(

𝑖 ⃗𝑞𝑏𝑥 ⋅ 𝑟𝑏𝑥∕ℏ
)

𝜙𝑏𝜙𝑥𝜙𝐴𝛷𝑎𝐴⟩ (2.27)

with the momentum amplitude 𝜑𝑎(𝑞).
For a further reformulation of the T-matrix element 𝑇𝑎𝐴→𝑏𝑐 𝐶 , it is convenient to use the transformation of the arguments

− 𝑝𝑏𝐵 ⋅ 𝑟𝑏𝐵 + 𝑞𝑏𝑥 ⋅ 𝑟𝑏𝑥 + 𝑝𝑎𝐴 ⋅ 𝑟𝑎𝐴 =
(

𝑞𝑏𝑥 − �⃗�𝑏𝐵
)

⋅ 𝑟𝑏𝐵 +
[

�⃗�𝑎𝐴 −
𝑚𝐴 (

𝑞𝑏𝑥 − �⃗�𝑏𝐵
)

]

⋅ 𝑟𝑥𝐴 (2.28)
7
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in the product 𝛷∗
𝑏𝐵 exp

(

𝑖 ⃗𝑞𝑏𝑥 ⋅ 𝑟𝑏𝑥∕ℏ
)

𝛷𝑎𝐴 with the new momenta

�⃗�𝑎𝐴 = 𝑝𝑎𝐴 −
𝑚𝐴

𝑚𝑥 + 𝑚𝐴
𝑝𝑏𝐵 , �⃗�𝑏𝐵 = 𝑝𝑏𝐵 −

𝑚𝑏
𝑚𝑥 + 𝑚𝑏

𝑝𝑎𝐴 . (2.29)

Then the T-matrix element assumes the form

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ ∫ 𝑑3𝑞𝑏𝑥 𝜑𝑎(𝑞𝑏𝑥) 𝛿
(

𝑞𝑏𝑥 − �⃗�𝑏𝐵
)

⟨𝜙𝑐𝜙𝐶𝛷𝑐 𝐶 |𝑡𝑥𝐴→𝑐 𝐶 | exp
{

𝑖
[

�⃗�𝑎𝐴 −
𝑚𝐴

𝑚𝑥 + 𝑚𝐴

(

𝑞𝑏𝑥 − �⃗�𝑏𝐵
)

]

⋅ 𝑟𝑥𝐴∕ℏ
}

𝜙𝑥𝜙𝐴⟩

= 𝜑𝑎(�⃗�𝑏𝐵) ⟨𝜙𝑐𝜙𝐶𝛷𝑐 𝐶 |𝑡𝑥𝐴→𝑐 𝐶 | exp
(

𝑖�⃗�𝑎𝐴 ⋅ 𝑟𝑥𝐴∕ℏ
)

𝜙𝑥𝜙𝐴⟩ (2.30)

since the integration over 𝑟𝑏𝑥 is analytic and gives a 𝛿 function so that the integration over 𝑞𝑏𝑥 can also be performed immediately.
he remaining matrix element looks very similar to the two-body matrix element (2.22) except that the plane wave 𝛷𝑥𝐴 =

exp
(

𝑖 ⃗𝑝𝑥𝐴 ⋅ 𝑟𝑥𝐴∕ℏ
)

is replaced by �̃�𝑥𝐴 = exp
(

𝑖�⃗�𝑎𝐴 ⋅ 𝑟𝑥𝐴∕ℏ
)

. Since �⃗�𝑎𝐴 ≠ 𝑝𝑥𝐴 in general and
𝑄2
𝑎𝐴

2𝜇𝑥𝐴
≠

𝑝2𝑥𝐴
2𝜇𝑥𝐴

=
𝑝2𝑐 𝐶
2𝜇𝑐 𝐶

−𝑄𝑥𝐴→𝑐 𝐶 , (2.31)

there is an energy mismatch and hence a HOES T-matrix element of the two-body reaction (1.7) appears in the T-matrix element

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ 𝜑𝑎(�⃗�𝑏𝐵) 𝑇𝐻 𝑂 𝐸 𝑆
𝑥𝐴→𝑐 𝐶 = 𝜑𝑎(�⃗�𝑏𝐵) ⟨𝜙𝑐𝜙𝐶𝛷𝑐 𝐶 |𝑡𝑥𝐴→𝑐 𝐶 |�̃�𝑥𝐴𝜙𝑥𝜙𝐴⟩ (2.32)

of the TH reactions (1.6). Finally, the cross section factorizes as
𝑑5𝜎

𝑑 𝐸𝑐 𝐶𝑑 𝛺𝑐 𝐶𝑑 𝛺𝑏𝐵
(𝑎 + 𝐴 → 𝑏 + 𝑐 + 𝐶) ≈ 𝐾 𝑊 (�⃗�𝑏𝐵)

𝑑2𝜎𝐻 𝑂 𝐸 𝑆
𝑑 𝛺𝑐 𝐶

(𝑥 + 𝐴→ 𝑐 + 𝐶) (2.33)

with a kinematic factor

𝐾 =
𝜇𝑎𝐴𝜇𝑏𝐵

(2𝜋 ℏ)3𝜇𝑥𝐴
𝑝𝑥𝐴𝑝𝑏𝐵
𝑝𝑎𝐴

, (2.34)

and momentum distribution

𝑊 (�⃗�𝑏𝐵) = |

|

|

𝜑𝑎(�⃗�𝑏𝐵)
|

|

|

2
, (2.35)

and the HOES cross section
𝑑2𝜎𝐻 𝑂 𝐸 𝑆
𝑑 𝛺𝑐 𝐶

(𝑥 + 𝐴 → 𝑐 + 𝐶) = 𝜇𝑥𝐴𝜇𝑐 𝐶
(2𝜋)2ℏ4

𝑝𝑐 𝐶
𝑝𝑥𝐴

|

|

|

𝑇𝐻 𝑂 𝐸 𝑆
𝑥𝐴→𝑐 𝐶

|

|

|

2
(2.36)

of the two-body reaction. The argument �⃗�𝑏𝐵 of the momentum distribution has a simple interpretation. In the cm system it is given
y �⃗�𝑏𝐵 = 𝑝𝑏 − 𝑞𝑏, i.e., it is the momentum transfer to the spectator 𝑏, cf., (2.13), if 𝑞𝑏 = 𝑚𝑏

𝑚𝑥+𝑚𝑏
𝑝𝑎 is identified with the momentum

f 𝑏 in the initial state. Thus, the condition �⃗�𝑏𝐵 = 0 characterizes the quasi-free scattering condition that leads to
�⃗�𝑞 𝑓𝑎𝐴 =

(

1 − 𝑚𝐴
𝑚𝑥 + 𝑚𝐴

𝑚𝑏
𝑚𝑥 + 𝑚𝑏

)

𝑝𝑎𝐴 (2.37)

for the momentum appearing in the HEOS cross section. The derivation of the cross section formula (2.33) is very transparent but
no evident link between the HOES cross (2.36) and the sought-after OES cross section is found. For this, a more detailed treatment
of the reaction with the help of the theory of direct reactions is required.

2.3.2. Modified distorted-wave and plane-wave Born approximations
The quasi-free reaction mechanism in the THM can be described as a transfer reaction in a similar way as usual in direct reaction

theory. The main difference is that the transferred particle 𝑥 is not captured to a bound state with the nucleus 𝐴 in the exit channel
but a reaction takes place to a scattering state 𝑐 +𝐶 with a different partition than before. The main aim is to express the T-matrix
element 𝑇𝑎𝐴→𝑏𝐶 𝐶 of the TH reaction (1.6) in a form that allows to find a more direct connection to the cross section of the two-body
reaction (1.7).

A possible starting point is the general post-form T-matrix element

𝐓𝐚𝐀→𝐛𝐁 = ⟨𝜙𝑏𝜙𝐵𝛷𝑏𝐵|𝑉𝑏𝐵|𝛹
(+)
𝑎𝐴 ⟩ (2.38)

that contains the full interaction 𝑉𝑏𝐵 between the spectator 𝑏 and the system 𝐵 = 𝑐 +𝐶 and the exact scattering wave function 𝛹 (±)
𝑎𝐴

n the initial state. (The boundary conditions of outgoing or ingoing spherical waves in the reaction channels are denoted by the
symbol.) The wave function 𝜙𝐵 represents the full scattering wave function of the 𝑐 + 𝐶 system in the final state. In an ordinary

ransfer reaction it was just the bound state after the pickup of the transferred particle 𝑥 by the nucleus 𝐴. Since the expression
2.38) contains the unknown wave function 𝛹 (±)

𝑎𝐴 , it has to be transformed to a more suitable form. The potential 𝑉𝑏𝐵 is in general a
rather complicated interaction that depends on the coordinates of all nucleons. It is convenient to introduce optical potentials 𝑈𝑎𝐴
and 𝑈𝑏𝐵 that depend only on the relative coordinates 𝑟𝑎𝐴 and 𝑟𝑏𝐵 . Then the Schrödinger equations

( ̂⃗𝑝2𝑎𝐴
2𝜇𝑎𝐴

+ 𝑈𝑎𝐴(𝑟𝑎𝐴)

)

𝜒 (±)
𝑎𝐴 =

𝑝2𝑎𝐴
2𝜇𝑎𝐴

𝜒 (±)
𝑎𝐴 ,

( ̂⃗𝑝2𝑏𝐵
2𝜇𝑏𝐵

+ 𝑈𝑏𝐵(𝑟𝑏𝐵)

)

𝜒 (±)
𝑏𝐵 =

𝑝2𝑏𝐵
2𝜇𝐵 𝑏

𝜒 (±)
𝑏𝐵 , (2.39)

can be solved exactly with the distorted waves 𝜒 (±)
𝑎𝐴 and 𝜒 (±)

𝑏𝐵 that describe the relative motion in the 𝑎 + 𝐴 and 𝑏 + 𝐵 channels for
lastic scattering. An application of the Gell-Mann–Goldberger relation allows to write

(+) (−) (+)
8

𝑇𝑎𝐴→𝑏𝑐 𝐶 = ⟨𝜙𝑏𝜙𝐵𝛷𝑏𝐵|𝑈𝑏𝐵|𝜙𝑎𝜙𝐴𝜒𝑎𝐴 ⟩ + ⟨𝜙𝑏𝜙𝐵𝜒𝑏𝐵 |𝑉𝑏𝐵 − 𝑈𝑏𝐵|𝛹𝑎𝐴 ⟩ (2.40)
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for the T-matrix element with two contributions. The first term vanishes because 𝑎 + 𝐴 ≠ 𝑏 + 𝐵. Replacing the full scattering wave
function 𝛹 (+)

𝑎𝐴 with the distorted wave 𝜒 (+)
𝑎𝐴 in the second term leads to the distorted-wave Born approximation (DWBA)

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ ⟨𝜙𝑏𝜙𝐵𝜒
(−)
𝑏𝐵 |𝑉𝑏𝐵 − 𝑈𝑏𝐵|𝜙𝑎𝜙𝐴𝜒

(+)
𝑎𝐴 ⟩ (2.41)

with the difference

𝑉𝑏𝐵 − 𝑈𝐵 𝑏 = 𝑉𝑏𝑐 + 𝑉𝑏𝐶 − 𝑈𝑏𝐵 = 𝑉𝑏𝑥 + 𝑉𝑏𝐴 − 𝑈𝑏𝐵 (2.42)

of the potentials. Since it is assumed that the full potential 𝑉𝑏𝐴 and the optical potential 𝑈𝑏𝐵 have similar effects in the scattering
f the spectator 𝑏 on the nuclei 𝐴 and 𝐵, the potential difference in (2.41) is replaced by 𝑉𝑏𝑋 . Considering that the wave function
𝜙𝐵 in the T-matrix element is given by the full scattering wave function 𝛹 (−)

𝑐 𝐶 in the final state, the approximate expression

𝑇𝑎𝐴→𝑏𝑐 𝐶 = ⟨𝜙𝑏𝛹
(−)
𝑐 𝐶 𝜒

(−)
𝑏𝐵 |𝑉𝑏𝑥|𝜙𝑎𝜙𝐴𝜒

(+)
𝑎𝐴 ⟩ (2.43)

is obtained. Similar as in the plane-wave impulse approximation, the bound-state wave function 𝜙𝑎 of the Trojan-horse nucleus 𝑎
n coordinate space is replaced by a representation in momentum space also taking into account the action of the potential 𝑉𝑏𝑥 via

the Schrödinger equation
( ̂⃗𝑝2𝑏𝑥
2𝜇𝑏𝑥

+ 𝑉𝑏𝑥

)

𝜙𝑎 =
(

− ℏ2

2𝜇𝑏𝑥
𝛥𝑟𝑏𝑥 + 𝑉𝑏𝑥

)

𝜙𝑎 = −𝐵𝑎𝜙𝑎 (2.44)

with the binding energy 𝐵𝑎 of the bound-state. Thus the expression

𝑉𝑏𝑥𝜙𝑎 = ∫
𝑑3𝑞𝑏𝑥
(2𝜋 ℏ)3 𝑤

𝑎
𝑏𝑥(𝑞𝑏𝑥) exp

(

𝑖 ⃗𝑞𝑏𝑥 ⋅ 𝑟𝑏𝑥∕ℏ
)

𝜙𝑏𝜙𝑥 (2.45)

with the momentum amplitude

𝑤𝑎𝑏𝑥(𝑞𝑏𝑥) = −
(

𝐵𝑎 +
𝑞2𝑏𝑥
2𝜇𝑏𝑥

)

𝜑𝑎(𝑞𝑏𝑥) (2.46)

is obtained and the T-matrix assumes the form

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ ∫
𝑑3𝑞

(2𝜋 ℏ)3 𝑤
𝑎
𝑏𝑥(𝑞) ⟨𝛹

(−)
𝑐 𝐶 𝜒

(−)
𝑏𝐵 | exp

(

𝑖 ⃗𝑞 ⋅ 𝑟𝑏𝑥∕ℏ
)

𝜙𝑥𝜙𝐴𝜒
(+)
𝑎𝐴 ⟩ (2.47)

in analogy to (2.27) but with the full scattering wave function 𝛹 (−)
𝑐 𝐶 and the distorted waves 𝜒 (+)

𝑎𝐴 and 𝜒 (−)
𝑏𝐵 .

In order to find the relation of the cross section (2.19) with the T-matrix element (2.47) to the cross section of the two-
body reaction (1.6), it is necessary to specify the scattering wave function 𝛹 (−)

𝑐 𝐶 in more detail. In partial-wave representation,
ts asymptotic form for large radii is given by

𝛹 (±)
𝑐 𝐶 (𝑝𝑐 𝐶 ) → 4𝜋 ℏ

𝑝𝑐 𝐶
∑

𝑑 𝐷
∑

𝑙 𝑚
𝑖𝑙

𝑟𝑑 𝐷
𝜓 (±)
𝑑 𝐷 𝑐 𝐶 (𝑙 , 𝑟𝑑 𝐷)𝑌𝑙 𝑚( ̂⃗𝑟𝑑 𝐷)𝑌 ∗

𝑙 𝑚( ̂⃗𝑝𝑐 𝐶 )𝜙𝑑𝜙𝐷 (2.48)

when all two-body channels with partitions 𝑑 +𝐷 = 𝑐 + 𝐶 , 𝑎 + 𝐴,… are considered. The radial wave functions have the form

𝜓 (+)
𝑑 𝐷 𝑐 𝐶 (𝑙 , ⃗𝑟𝑑 𝐷) = 𝜓 (−)∗

𝑑 𝐷 𝑐 𝐶 (𝑙 , ⃗𝑟𝑑 𝐷) → (2.49)
1
2𝑖

√

𝑣𝑐 𝐶
𝑣𝑑 𝐷

{

exp
[

2𝑖𝜎𝑙(𝜂𝑑 𝐷)
]

𝑆𝑙𝑑 𝐷 𝑐 𝐶 𝑢(+)𝑙 (𝜂𝑑 𝐷, 𝑝𝑑 𝐷𝑟𝑑 𝐷∕ℏ) − 𝛿𝑑 𝐷 𝑐 𝐶 𝑢(−)𝑙 (𝜂𝑑 𝐷, 𝑝𝑑 𝐷𝑟𝑑 𝐷∕ℏ)
}

for large radii with (nuclear) S-matrix elements 𝑆𝑙𝑑 𝐷 𝑐 𝐶 for the reactions 𝑐+𝐶 → 𝑑+𝐷, Coulomb phase shifts 𝜎𝑙(𝜂𝑑 𝐷), and Sommerfeld
arameter 𝜂𝑑 𝐷 The out- and ingoing Coulomb wave functions

𝑢(±)𝑙 (𝜂 , 𝑧) = exp [∓𝑖𝜎𝑙(𝜂)
] [
𝐺𝑙(𝜂; 𝑧) ± 𝑖𝐹𝑙(𝜂; 𝑧)

]

(2.50)

are expressed with the help of the regular and irregular Coulomb wave functions 𝐹𝑙 and 𝐺𝑙, respectively, and have the asymptotic
form

𝑢(±)𝑙 (𝜂 , 𝑧) → exp
[

±𝑖
(

𝑧 − 2𝜂 ln 𝑧 − 𝑙 𝜋
2

)]

(2.51)

for large argument 𝑧→ ∞. Comparing the boundary condition of the full wave function

𝛹 (±)
𝑐 𝐶 → 𝜙𝑐𝜙𝐶 exp

(

𝑖 ⃗𝑝𝑐 𝐶 ⋅ 𝑟𝑐 𝐶∕ℏ
)

+
∑

𝑑 𝐷
𝑓 (±)
𝑐 𝐶→𝑑 𝐷𝜙𝑑𝜙𝐷

exp
(

±𝑖𝑝𝑑 𝐷𝑟𝑑 𝐷∕ℏ
)

𝑟𝑑 𝐷
(2.52)

with the asymptotic form (2.48), the scattering amplitude

𝑓 (+)
𝑐 𝐶→𝑥𝐴 = ℏ

2𝑖𝑝𝑐 𝐶

√

𝑣𝑐 𝐶
𝑣𝑥𝐴

∑

𝑙
(2𝑙 + 1) exp [2𝑖𝜎𝑙(𝜂𝑥𝐴)

]

𝑆𝑙𝑥𝐴𝑐 𝐶𝑃𝑙(cos 𝜗) (2.53)

for the two-body reaction 𝑐 + 𝐶 → 𝑥 + 𝐴 can be extracted. The Legendre polynomials 𝑃𝑙 depend on the scattering angle 𝜗 with
cos 𝜗 = ̂⃗𝑟𝑥𝐴 ⋅ ̂⃗𝑝𝑐 𝐶 . Then the differential cross section of this reaction is obtained from

𝑑2𝜎 (𝑐 + 𝐶 → 𝑥 + 𝐴) = 𝑣𝑥𝐴 |

|𝑓 (+)
𝑐 𝐶→𝑥𝐴

|

|

2
= ℏ2 |

|

|

∑

(2𝑙 + 1) exp [2𝑖𝜎𝑙(𝜂𝑥𝐴)
]

𝑆𝑙𝑥𝐴𝑐 𝐶𝑃𝑙(cos 𝜗)
|

|

|

2

(2.54)
9

𝑑 𝛺𝑥𝐴 𝑣𝑐 𝐶 | | 4𝑝2𝑐 𝐶 |

| 𝑙
|

|
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that can be related directly to the cross section of the inverse reaction (1.7) of interest with the theorem of detailed balance (2.17).
An angular integration gives the total reaction cross section

𝜎𝑐 𝐶→𝑥𝐴 = 𝜋 ℏ2
𝑝2𝑐 𝐶

∑

𝑙
(2𝑙 + 1) ||

|

𝑆𝑙𝑥𝐴𝑐 𝐶
|

|

|

2
(2.55)

with the contributions of individual partial waves.
The action of the optical potentials on the distorted waves will lead to a strong suppression of the contributions at small distances

between the particles in the matrix element in (2.47) and thus it will be sufficient to consider only the asymptotic form of the full
scattering wave function (2.48). The choice of the initial state 𝑎 + 𝐴 in the matrix element will then select this channel from 𝛹 (−)

𝑐 𝐶 .
n this case, the T-matrix element (2.47) of the TH reaction can be written in a similar form as the scattering amplitude (2.53). It
ssumes the form

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ ℏ
2𝑖𝑝𝑐 𝐶

√

𝑣𝑐 𝐶
𝑣𝑥𝐴

∑

𝑙
(2𝑙 + 1) exp [2𝑖𝜎𝑙(𝜂𝑥𝐴)

]

𝑆𝑙𝑥𝐴𝑐 𝐶 𝑈 (+)
𝑙 (2.56)

with the functions

𝑈 (±)
𝑙 = 4𝜋 𝑖−𝑙

(2𝑙 + 1)
∑

𝑚
𝑌𝑙 𝑚( ̂⃗𝑝𝑐 𝐶 )∫

𝑑3𝑞𝑏𝑥
(2𝜋 ℏ)3 𝑤

𝑎
𝑏𝑥(𝑞𝑏𝑥) (2.57)

⟨𝜃(𝑟𝑥𝐴 − 𝑅)𝑟−1𝑥𝐴𝑢
(∓)
𝑙 (𝜂𝑥𝐴, 𝑝𝑥𝐴𝑟𝑥𝐴∕ℏ)𝑌𝑙 𝑚( ̂⃗𝑟𝑥𝐴)𝜒 (−)

𝑏𝐵 | exp
(

𝑖 ⃗𝑞𝑏𝑥 ⋅ 𝑟𝑏𝑥∕ℏ
)

𝜒 (+)
𝑎𝐴 ⟩

in the various partial waves that depend on kinematic quantities, the momentum amplitude 𝑤𝑎𝑏𝑥, and the distorted waves. The 𝜃
unction in the matrix element limits the integration range to radii 𝑟𝑥𝐴 larger than a suitably selected cut-off radius 𝑅 to select
nly the asymptotic part of the wave function. The similarity of (2.53) and (2.56) is obvious. In this modified distorted-wave
orn approximation (MDWBA) it is still necessary to perform the integration over 𝑞𝑏𝑥 in the functions 𝑈 (±)

𝑙 and thus there is no
actorization of the T-matrix element as in (2.32). However, if the distorted waves are replaced by plane waves

𝜒 (+)
𝑎𝐴 → exp

[

𝑖
(

𝑟𝑎𝐴 ⋅ 𝑝𝑎𝐴
)

∕ℏ
]

, 𝜒 (−)
𝑏𝐵 → exp

[

𝑖
(

𝑟𝑏𝐵 ⋅ 𝑝𝑏𝐵
)

∕ℏ
]

, (2.58)

the same transformations as in the PWIA can be applied after a rearrangement of the arguments, cf., (2.28), in the matrix element.
It is again possible to perform the integration over 𝑟𝑏𝐵 and 𝑞𝑏𝑥 analytically with the result

𝑈 (±)
𝑙 = 4𝜋 ℏ2

𝑄𝑎𝐴𝑝𝑥𝐴
𝑤𝑎𝑏𝑥(�⃗�𝑏𝐵) 𝐽

(±)
𝑙 𝑃𝑙( ̂⃗𝑝𝑐 𝐶 ⋅ ̂⃗𝑄𝑎𝐴) (2.59)

where the simple radial integrals

𝐽 (±)
𝑙 =

𝑄𝑎𝐴𝑝𝑥𝐴
ℏ2 ∫

∞

𝑅
𝑑 𝑟𝑥𝐴 𝑟𝑥𝐴𝑢(±)𝑙 (𝜂𝑥𝐴, 𝑝𝑥𝐴𝑟𝑥𝐴∕ℏ)𝑗𝑙(𝑄𝑎𝐴𝑟𝑥𝐴∕ℏ) (2.60)

where spherical Bessel functions 𝑗𝑙 appear. As a consequence, the T-matrix elements factorizes as

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ 4𝜋 𝑤𝑎𝑏𝑥(�⃗�𝑏𝐵)
ℏ

2𝑖𝑝𝑐 𝐶

√

𝑣𝑐 𝐶
𝑣𝑥𝐴

∑

𝑙
(2𝑙 + 1) exp [2𝑖𝜎𝑙(𝜂𝑥𝐴)

]

𝑆𝑙𝑥𝐴𝑐 𝐶 𝐽 (±)
𝑙 𝑃𝑙( ̂⃗𝑝𝑐 𝐶 ⋅ ̂⃗𝑄𝑎𝐴) (2.61)

with an angular dependence defined by the Legendre polynomial. This finally leads to the expression
𝑑5𝜎

𝑑 𝐸𝑐 𝐶𝑑 𝛺𝑐 𝐶𝑑 𝛺𝑏𝐵
(𝑎 + 𝐴 → 𝑏 + 𝑐 + 𝐶) = 𝐾

𝑝2𝐴𝑥
𝑊 (�⃗�𝑏𝐵)

𝑣𝑐 𝐶
𝑣𝑥𝐴

𝑑2𝜎𝐻 𝑂 𝐸 𝑆
𝑑 𝛺𝑥𝐴

(𝑐 + 𝐶 → 𝑥 + 𝐴) (2.62)

for the cross section in the modified plane-wave Born approximation (MPWBA) with a kinematic factor

𝐾 =
𝜇𝑎𝐴𝜇𝑏𝐵𝜇𝑐 𝐶
(2𝜋 ℏ)3

𝑝𝑏𝐵𝑝𝑐 𝐶
𝑝𝑎𝐴

4
𝑄2
𝑎𝐴

, (2.63)

the momentum distribution

𝑊 (�⃗�𝑏𝐵) = |

|

|

𝑤𝑎𝑏𝑥(�⃗�𝑏𝐵)
|

|

|

2
(2.64)

and the HOES cross section
𝑑2𝜎𝐻 𝑂 𝐸 𝑆

𝑐 𝐶→𝑥𝐴
𝑑 𝛺𝑥𝐴

(𝑐 + 𝐶 → 𝑥 + 𝐴) = ℏ2

4𝑝2𝑐 𝐶

|

|

|

|

|

∑

𝑙
(2𝑙 + 1) exp [2𝑖𝜎𝑙(𝜂𝑥𝐴)

]

𝑆𝑙𝑥𝐴𝑐 𝐶 𝐽 (+)
𝑙 𝑃𝑙( ̂⃗𝑝𝑐 𝐶 ⋅ ̂⃗𝑄𝑎𝐴)

|

|

|

|

|

2

(2.65)

that can be compared to the cross (2.54) and thus quantifies the off-shell effects. The main difference is the appearance of the
functions 𝐽 (±)

𝑙 that are dimensionless quantities. They have been studied in detail in [23], their dependence on 𝑝𝑥𝐴. In the limit of
mall energies 𝐸𝑥𝐴 in the entrance channel to the two-body reaction (1.7), i.e., 𝑝𝑥𝐴 → 0, they behave as

𝐽 (±)
𝑙 ∝ 𝑝3∕2𝑥𝐴 exp

(

𝜋 𝜂𝑥𝐴
)

(2.66)

with a characteristic exponential factor depending on the Sommerfeld parameter of the 𝑥 + 𝐴 system. So the approximate relation
𝑑2𝜎𝐻 𝑂 𝐸 𝑆

𝑐 𝐶→𝑥𝐴 (𝑐 + 𝐶 → 𝑥 + 𝐴) ≈ 𝑝3 exp
(

2𝜋 𝜂 ) 𝑑2𝜎𝑐 𝐶→𝑥𝐴 (𝑐 + 𝐶 → 𝑥 + 𝐴) (2.67)
10

𝑑 𝛺𝑥𝐴
𝑥𝐴 𝑥𝐴 𝑑 𝛺𝑥𝐴
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can be established. Taking the theorem of detailed balance (2.17) into account, the final expression
𝑑5𝜎

𝑑 𝐸𝑐 𝐶𝑑 𝛺𝑐 𝐶𝑑 𝛺𝑏𝐵
(𝑎 + 𝐴 → 𝑏 + 𝑐 + 𝐶) ≈ �̃� 𝑊 (�⃗�𝑏𝐵)

𝑝3𝑥𝐴
𝑣𝑥𝐴

exp
(

2𝜋 𝜂𝑥𝐴
) 𝑑2𝜎
𝑑 𝛺𝑐 𝐶

(𝑥 + 𝐴→ 𝑐 + 𝐶) (2.68)

with the modified kinematic factor

�̃� = 𝐾
𝑣𝑐 𝐶
𝑝2𝑐 𝐶

=
𝜇𝑎𝐴𝜇𝑏𝐵
(2𝜋 ℏ)3

𝑝𝑏𝐵
𝑝𝑎𝐴

4
𝑄2
𝑎𝐴

(2.69)

is found that relates the two cross sections of interest. The essential feature in formula (2.68) is the appearance of the factor
𝑝3𝑥𝐴
𝑣𝑥𝐴

exp
(

2𝜋 𝜂𝑥𝐴
)

= 2𝜇2𝑎𝑋𝐸𝑥𝐴 exp
(

2𝜋 𝜂𝑥𝐴
)

(2.70)

that is (except for the constant 2𝜇2𝑎𝑋) identical to the factor that appears in the relation of the astrophysical S factor to the cross
ection for reactions of astrophysical interest, cf., (1.1). It removes the strong energy dependence due to the Coulomb barrier in the

entrance channel. Hence, the cross section of the TH reaction is also not affected by the Coulomb suppression and the S factor is
essentially measured directly in the TH experiments.

2.3.3. Other approaches
In the discussion of the MDWBA/MPWBA, the post-form expression for the DWBA T-matrix element (2.41) has been used to

derive the relation to the S-matrix elements and thus the cross section of the astrophysical reaction (1.7). But also the prior-form of
the DWBA T-matrix element

𝑇𝑎𝐴→𝑏𝑐 𝐶 ≈ ⟨𝜙𝑏𝛹
(−)
𝑐 𝐶 𝜒

(−)
𝑏𝐵 |𝑉𝑎𝐴 − 𝑈𝑎𝐴|𝜙𝑎𝜙𝐴𝜒

(+)
𝑎𝐴 ⟩ (2.71)

in combination with a surface-integral approach can be used to find a connection to the two-body reaction cross section, see [27]
for details.

If the TH reaction (1.6) proceeds via a resonance, the R-matrix formalism can be applied as a particular option as, e.g., discussed
in [28,29]. In this case, the reduced width amplitudes 𝛾 in the entrance and exit channels appear explicitly in the HOES cross section
or a resonant reaction. It assumes the form

𝑑2𝜎
𝑑 𝐸𝑥𝐴𝑑 𝛺𝑏

= 𝑁
∑

𝑖

(

2𝐽𝑖 + 1)
|

|

|

|

|

|

|

|

√

𝑝𝑐 𝐶
ℏ𝜇𝑐 𝐶

√

2𝑃𝑙𝑖 (𝑝𝑐 𝐶𝑅𝑐 𝐶∕ℏ)𝑀𝑖(𝑝𝑥𝐴𝑅𝑥𝐴∕ℏ)𝛾 𝑖𝑐 𝐶𝛾 𝑖𝑥𝐴
𝐷𝑖(𝐸𝑥𝐴)

|

|

|

|

|

|

|

|

2

(2.72)

in the case of isolated non-interfering resonances 𝑖 [30] with a normalization factor 𝑁 and penetration factors 𝑃𝑙𝑖 in the partial wave
𝑙𝑖. 𝑅𝑥𝐴 and 𝑅𝑐 𝐶 are the channel radii in the initial and final state of the two-body reaction. If the use of plane waves is justified,
he simple form

𝑀𝑖(𝑝𝑥𝐴𝑅𝑥𝐴∕ℏ) =
[

(

𝐵𝑖𝑥𝐴 − 1) 𝑗𝑙𝑖 (𝜌) − 𝜌
𝜕 𝑗𝑙𝑖 (𝜌)
𝜕 𝜌

]

𝜌=𝑝𝑥𝐴𝑅𝑥𝐴∕ℏ

, (2.73)

for the transfer amplitude in (2.72) can be deduced [31]. Here, 𝑝𝑥𝐴 =
√

2𝜇𝑥𝐴(𝐸𝑥𝐴 + 𝐵𝑎𝑏𝑥) is the effective momentum, 𝑗𝑙𝑖 (𝜌) is a
pherical Bessel function, and 𝐵𝑖𝑥𝐴 is an arbitrary boundary condition. It can be chosen as in [32] to yield observable resonance

parameters. Finally, the quantity 𝐷𝑖(𝐸𝑥𝐴) in (2.72) is the standard R-matrix denominator for the case of a one-level, two-channel
R-matrix description [33]. The factorization of the THM cross section into a momentum distribution and a HOES cross section
epresents a two-step description of the reaction. However, this approach is not explicitly considered in the direct reaction theory
utlined earlier, which employs a one-step process in its theoretical framework. To address this, it has been suggested to examine
he propagation of the transferred particle 𝑥 within a two-step framework, as exemplified in the inclusive nonelastic breakup
heory [34,35]. Moreover, achieving a more precise calculation of the T-matrix element involving three particles in the exit channel
ight require the application of three-body scattering within the Faddeev theory [36]. This strategy could enable the exploration

of the validity and limitations of simplified approximations. Nonetheless, adopting these advanced methodologies results in the loss
of the convenient factorization of the TH cross section.

2.4. T-matrix elements and cross sections in the ANC method

In contrast to the THM, where the subsystem 𝐵 in the exit channel of the transfer reaction is a scattering state 𝑐 + 𝐶, a bound
tate 𝐵 is considered in the ANC method. The T-matrix element is usually considered in the distorted-wave Born approximation

𝑇𝑎𝐴→𝑏𝐵 ≈ ⟨𝜙𝑏𝜙𝐵𝜒
(−)
𝑏𝐵 |𝑊 |𝜙𝑎𝜙𝐴𝜒

(+)
𝑎𝐴 ⟩ (2.74)

with 𝑊 = 𝑉𝑏𝐵 − 𝑈𝑏𝐵 or 𝑊 = 𝑉𝑎𝐴 − 𝑈𝑎𝐴 in the post or prior formulation, respectively, with optical potentials 𝑈𝑖𝑗 and distorted
aves 𝜒 (±)

𝑖𝑗 , cf. Section 2.3.2. As in the THM, it is supposed that the many-body wave functions 𝜙𝑎 and 𝜙𝐵 have a prominent cluster
structure 𝑎 = 𝑥 + 𝑏 and 𝐵 = 𝑥 + 𝐴, respectively. Then one can write
11

𝜙𝑎 = 𝜙𝑥𝜙𝑏𝜙
𝑎
𝑥𝑏, 𝜙𝐵 = 𝜙𝑥𝜙𝐴𝜙

𝐵
𝑥𝐴, (2.75)
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with wave functions of relative motion

𝜙𝑎𝑥𝑏 = ⟨𝜙𝑥𝜙𝑏|𝜙𝑎⟩, 𝜙𝐵𝑥𝐴 = ⟨𝜙𝑥𝜙𝐴|𝜙𝐵⟩, (2.76)

that are often denoted as overlap functions. The T-matrix element can then be expressed as

𝑇𝑎𝐴→𝑏𝐵 ≈ ⟨𝜙𝑥𝜙𝑏𝜙𝐴𝜙
𝐵
𝑥𝐴𝜒

(−)
𝑏𝐵 |𝑊 |𝜙𝑥𝜙𝑏𝜙𝐴𝜙

𝑎
𝑥𝑏𝜒

(+)
𝑎𝐴 ⟩ (2.77)

that reduces to the simplified form

𝑇𝑎𝐴→𝑏𝐵 ≈ ⟨𝜙𝐵𝑥𝐴𝜒
(−)
𝑏𝐵 |𝑊 |𝜙𝑎𝑥𝑏𝜒

(+)
𝑎𝐴 ⟩ (2.78)

if the integration over the internal coordinated of 𝑥, 𝑏 and 𝐴 can be performed. The overlap functions depend only on the relative
coordinates 𝑟𝑥𝑏 and 𝑟𝑥𝐴 and can be expressed as

𝜙𝑎𝑥𝑏(𝑟𝑥𝑏) =
𝜑𝑎𝑥𝑏(𝑟𝑥𝑏)
𝑟𝑥𝑏

𝑌𝑙𝑥𝑏𝑚𝑥𝑏 (�̂�𝑥𝑏), 𝜙𝐵𝑥𝐴(𝑟𝑥𝐴) =
𝜑𝐵𝑥𝐴(𝑟𝑥𝐴)
𝑟𝑥𝐴

𝑌𝑙𝑥𝐴𝑚𝑥𝐴 (�̂�𝑥𝐴), (2.79)

in a partial-wave representation with radial wave functions 𝜑𝑎𝑥𝑏, 𝜑
𝐵
𝑥𝐴 and spherical harmonics 𝑌𝑙𝑥𝑏𝑚𝑥𝑏 , 𝑌𝑙𝑥𝑎𝑚𝑥𝑎 . Different to usual

single-particle wave functions, they are not normalized to one but their norms

𝑆𝐴𝑥𝑏 = ⟨𝜙𝑎𝑥𝑏(𝑟𝑥𝑏)|𝜙
𝑎
𝑥𝑏(𝑟𝑥𝑏)⟩, 𝑆𝐵𝑥𝐴 = ⟨𝜙𝐵𝑥𝐴(𝑟𝑥𝐴)|𝜙

𝐵
𝑥𝐴(𝑟𝑥𝐴)⟩, (2.80)

are the so-called spectroscopic factors that are smaller than one in most cases.
In actual calculations, the overlap functions are usually replaced by simple normalized single-particle wave functions 𝜉𝑎𝑥𝑏 and 𝜉𝐵𝑥𝐴

with radial wave functions 𝑢𝑎𝑥𝑏(𝑟𝑥𝑏) and 𝑢𝐵𝑥𝐴(𝑟𝑥𝐴). The latter are found by solving the Schrödinger equations of relative motion with
nuclear potentials of Woods–Saxon form using standard parameters for the radius, diffuseness and depths adjusted to the correct
energies. Thus the overlap functions are written as

𝜙𝑎𝑥𝑏 = 𝐴𝑎𝑥𝑏𝜉
𝑎
𝑥𝑏, 𝜙𝐵𝑥𝐴 = 𝐴𝐵𝑥𝐴𝜉

𝐵
𝑥𝐴, (2.81)

with spectroscopic amplitudes 𝐴𝑎𝑥𝑏 and 𝐴𝐵𝑥𝐴 to account for the difference in the normalization. Then the T-matrix element factorizes
as

𝑇𝑎𝐴→𝑏𝐵 = 𝐴𝑎𝑥𝑏 𝐴
𝐵∗
𝑥𝐴 𝑇

𝑠𝑝
𝑎𝐴→𝑏𝐵 (2.82)

with the single-particle T-matrix element

𝑇 𝑠𝑝𝑎𝐴→𝑏𝐵 ≈ ⟨𝜉𝐵𝑥𝐴𝜒
(−)
𝑏𝐵 |𝑊 |𝜉𝑎𝑥𝑏𝜒

(+)
𝑎𝐴 ⟩ (2.83)

that enters in the cross section 𝑑2𝜎∕𝑑 𝛺𝑏𝐵 of the transfer reaction 𝐴(𝑎, 𝑏)𝐵. Hence, one can write
𝑑2𝜎
𝑑 𝛺𝑏𝐵

(𝑎 + 𝐴 → 𝑏 + 𝐵) = |

|

|

𝐴𝑎𝑥𝑏
|

|

|

2
|

|

|

𝐴𝐵𝑥𝐴
|

|

|

2 𝑑2𝜎𝑠𝑝

𝑑 𝛺𝑏𝐵
(𝑎 + 𝐴→ 𝑏 + 𝐵) (2.84)

with the single-particle cross section
𝑑2𝜎𝑠𝑝

𝑑 𝛺𝑏𝐵
(𝑎 + 𝐴→ 𝑏 + 𝐵) = 𝜇𝑎𝐴𝜇𝑏𝐵

(2𝜋)2ℏ4
𝑝𝑏𝐵
𝑝𝑎𝐴

|

|

|

𝑇 𝑠𝑝𝑎𝐴→𝑏𝐵
|

|

|

2
(2.85)

that can be calculated using well-known computer codes. Identifying the modulus squares of the spectroscopic amplitudes with
spectroscopic factors, i.e.,

𝑆𝑎𝑥𝑏 =
|

|

|

𝐴𝑎𝑥𝑏
|

|

|

2
, 𝑆𝐵𝑥𝐴 = |

|

|

𝐴𝐵𝑥𝐴
|

|

|

2
, (2.86)

the latter can be determined from the ratio of experimentally measured cross sections to calculated single-particle cross sections
2.85). Since one of the two spectroscopic factors in the cross section is usually known, e.g., if 𝑎 or 𝐵 is a deuteron with 𝑆𝑑𝑛𝑝 = 1,

the other can be obtained.
The distinctive difference of the ANC method to the usual application of transfer reactions is the selection of peripheral reactions.

In that case, only the asymptotic part of the overlap functions (2.79) contributes effectively in the T-matrix elements and the reaction
cross section is, in fact, not proportional to the spectroscopic factors. For sufficiently large radii, the radial wave function in (2.79)
behaves as

𝜑𝑎𝑥𝑏(𝑟𝑥𝑏) → 𝐶𝑎𝑥𝑏𝑊−𝜂𝑥𝑏 ,𝑙𝑥𝑏 (2𝑞
𝑎
𝑥𝑏𝑟𝑥𝑏), 𝜑𝐵𝑥𝐴(𝑟𝑥𝐴) → 𝐶𝐵𝑥𝐴𝑊−𝜂𝑥𝐴 ,𝑙𝑥𝐴 (2𝑞

𝐵
𝑥𝐴𝑟𝑥𝑏), (2.87)

with Whittaker functions that depend on the Sommerfeld parameters 𝜂𝑥𝑏, 𝜂𝑥𝐴 orbital angular momenta 𝑙𝑥𝑏, 𝑙𝑥𝐴, and bound-state
ave numbers 𝑞𝑎𝑥𝑏 =

√

2𝜇𝑥𝑏𝐵𝑎𝑥𝑏∕ℏ, 𝑞𝐵𝑥𝐴 =
√

2𝜇𝑥𝐴𝐵𝐵𝑥𝐴∕ℏ with binding energies 𝐵𝑎𝑥𝑏, 𝐵
𝐵
𝑥𝐴 in the two channels. The asymptotic form

of the radial wave functions is thus fully determined by known properties of the nuclei 𝑎 and 𝐵, except for the quantities 𝐶𝑎𝑥𝑏 and
𝐶𝐵𝑥𝐴 that are the asymptotic normalization coefficients for the breakup of the nuclear ground states of 𝑎 and 𝐵 into 𝑥+ 𝑏 and 𝑥+𝐴,
respectively. Similarly as in the determination of spectroscopic factors, T-matrix elements 𝑇 𝑎𝑠𝑦𝑚𝑎𝐴→𝑏𝐵 and single-particle cross sections
𝑑2𝜎𝑎𝑠𝑦𝑚∕𝑑 𝛺𝑏𝐵 can be introduced using only the asymptotic part of the radial wave functions (Whittaker functions) without the
ANCs. Then the cross

𝑑 𝜎 (𝑎 + 𝐴 → 𝑏 + 𝐵) = |

|𝐶𝑎 ||
2
|

|𝐶𝐵 |

|

2 𝑑 𝜎𝑎𝑠𝑦𝑚 (𝑎 + 𝐴 → 𝑏 + 𝐵) (2.88)
12

𝑑 𝛺𝑏𝐵 |

𝑥𝑏
| |

𝑥𝐴
| 𝑑 𝛺𝑏𝐵
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is proportional to the modulus squares of the ANCs and an ‘asymptotic’ single-particle cross section that is actually calculated. A
comparison with experimental cross sections allows then to extract one of the two ANCs if the other is known.

In a final step, the cross section 𝜎(𝑥+𝐴 → 𝐵+ 𝛾) of the radiative capture reaction can be calculated numerically for low energies
in the entrance channel. It involves the transition matrix element

𝑀𝑥𝐴→𝐵 𝛾 = ⟨𝜙𝐵𝑥𝐴|(𝐸 𝜆𝜇)|𝛹 (+)
𝑥𝐴 ⟩ (2.89)

with the electric multipole operator that has the form

(𝐸 𝜆𝜇) = 𝑍(𝜆)
𝑥𝐴𝑒 𝑟𝜆𝑥𝐴𝑌𝜆𝜇(�̂�𝑥𝐴) (2.90)

with the effective charge number

𝑍(𝜆)
𝑥𝑎 = 𝑍𝑥

(

𝑚𝐴
𝑚𝑥 + 𝑚𝐴

)𝜆
+𝑍𝐴

(

−
𝑚𝑥

𝑚𝑥 + 𝑚𝐴

)𝜆
(2.91)

for the relative motion between 𝑥 and 𝐴. Then, adding the angular momenta and their projections in the notation, the reduced
transition probability

𝑑 𝐵
𝑑 𝐸𝑥𝐴

(𝐸 𝜆, 𝑗𝐵 → 𝑗𝑥𝑗𝐴) = 1
2𝑗𝐵 + 1

∑

𝑚𝐵

∑

𝑚𝑥𝑚𝐴
∫ 𝑑 𝛺𝑥𝐴

|

|

|

⟨𝜙𝐵𝑥𝐴(𝑗𝐵𝑚𝑏)|(𝐸 𝜆𝜇)|𝛹 (+)
𝑥𝐴 (𝑝𝑥𝐴, 𝑗𝑥𝑚𝑥𝑗𝐴𝑚𝐴)⟩||

|

2 𝜇𝑥𝐴𝑝𝑥𝐴
(2𝜋 ℏ)3 (2.92)

can be introduced. It enters the calculation of the photo absorption cross section

𝜎abs(𝐸 𝜆, 𝑗𝐵 → 𝑗𝑥𝑗𝐴) = 𝜆 + 1
𝜆

(2𝜋)3

[(2𝜆 + 1)!!]2 𝑘
𝜆−1
𝛾

𝑑 𝐵
𝑑 𝐸𝑥𝐴

(𝐸 𝜆, 𝑗𝐵 → 𝑗𝑥𝑗𝐴) (2.93)

with the photon momentum ℏ𝑘𝛾 that is related to the radiative capture cross section

𝜎cap(𝐸 𝜆, 𝑗𝑥𝑗𝐴 → 𝑗𝐵) =
2(2𝑗𝐵 + 1)

(2𝑗𝑥 + 1)(2𝑗𝐴 + 1)
𝑘2𝛾
𝑘2𝑥𝐴

𝜎abs(𝐸 𝜆, 𝑗𝐵 → 𝑗𝑥𝑗𝐴) (2.94)

via the theorem of detailed balance. Finally, the astrophysical S factor is obtained as

𝑆𝐸 𝜆(𝐸𝑥𝐴, 𝑗𝑥𝑗𝐴 → 𝑗𝐵) = 𝜎cap(𝐸 𝜆, 𝑗𝑥𝑗𝐴 → 𝑗𝐵) 𝐸𝑥𝐴 exp
(

2𝜋 𝜂𝑥𝐴
)

(2.95)

with the Sommerfeld parameter 𝜂𝑥𝐴 = 𝑍𝑥𝑍𝐴𝑒2
√

2𝐸𝑥𝐴∕𝜇𝑥𝐴∕ℏ. Due to its 𝑟𝜆𝑥𝐴 dependence and the Coulomb suppression of the radial
wave function in the scattering state for small radii in the calculation of (2.89), it is sufficient to use only the asymptotic form
2.87) of the radial wave function for the bound state of nucleus 𝑎. At very low energies, it is found that interaction effects in the

scattering channel are also strongly reduced and the wave function of relative motion between 𝑥 and 𝐴 can be well approximated by
he regular Coulomb scattering wave function. The transition matrix element is then easily calculated numerically with the analytical
adial wave functions of the bound and scattering states for large radii. The reduced transition probability (2.92), the absorption

cross (2.93), the radiative capture cross (2.94), and the S(E) factor (2.95) are proportional to |𝐶𝑏𝑥𝐴|
2. A detailed analysis of the

energy dependence of the cross sections and the S(E) factor shows that 𝑆𝐸 𝜆(𝐸𝑥𝐴) approaches a finite value in the limit 𝐸𝑥𝐴 → 0 for
the capture from an 𝑠-wave in the continuum to a 𝑝 or 𝑑 wave in the bound state via an 𝐸1 or 𝐸2 transition, respectively. Thus,
𝑆𝐸 𝜆(0, 𝑗𝑥𝑗𝐴 → 𝑗𝐵) is given by |𝐶𝑏𝑥𝐴|

2 up to a numerical factor from theory, which presents a valuable constraint for the S factor from
the known ANC.

3. Experimental application of the ANC method

The ANC technique [37] stems from the fact that capture reactions of astrophysical interest involve bound-state systems where
he binding energy of the captured particle is low. In stars, these captures occur through the tail of the overlap function, being highly
eripheral. The shape of this function is therefore insensitive to the details of the nuclear potential, and its amplitude (the ANC)
ictates the strength of the capture reaction. To reduce the influence of the nucleus’s internal structure (phase shifts in the involved
artial waves) in the scattering wave function, ANC measurements can only determine low-energy S(E) factors for peripheral direct
adiative capture reactions. Traditional methods using nuclear transfer reactions can be used for this purpose [37,38], as long as

the capture occurs with weakly bound states in the system 𝐵 = 𝑥 + 𝐴. For tightly bound states, the ANC technique is not suitable
because the bound state wave function is confined to a small region and the influence of interactions at short distances becomes
significant. This can bring non-negligible changes in the zero-energy S(E) factor.

The computation of the reduced differential cross section, as specified in Eq. (2.88) utilizing Whittaker functions, can be achieved
through conventional DWBA codes such as FRESCO [39]. This process entails a meticulous selection of optical potentials for
etermining the distorted waves in the matrix element (2.89). In the context of the normalized single-particle wave function 𝜉𝑎𝑥𝑏 for

the 𝑎 = 𝑥 + 𝑏 cluster configuration, under asymptotic conditions it takes the form

𝜉𝑎𝑥𝑏(𝑟𝑥𝑏) → 𝑏𝑎𝑥𝑏𝑊−𝜂𝑥𝑏 ,𝑙𝑥𝑏 (2𝑞
𝑎
𝑥𝑏𝑟𝑥𝑏), (3.1)

where the parameter 𝑏𝑎𝑥𝑏 represents the single-particle ANC (for a detailed discussion, refer to [15]). From Eq. (2.81) and (2.87) one
can retrieve the connection between the ANC and the single-particle ANC (eq. (2.47) of ref. [15]):
13

𝐶𝑎𝑥𝑏 = 𝐴𝑎𝑥𝑏 𝑏
𝑎
𝑥𝑏. (3.2)
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By using the single-particle ANC definition 𝑏𝑎𝑥𝑏, the aforementioned equation can be reformulated in a manner commonly used in
experimental applications:

𝑑 𝜎𝑒𝑥𝑝
𝑑 𝛺𝑏𝐵

(𝑎 + 𝐴 → 𝑏 + 𝐵) =
|

|

|

|

|

𝐶𝑎𝑥𝑏
𝑏𝑎𝑥𝑏

|

|

|

|

|

2
|

|

|

|

|

𝐶𝐵𝑥𝐴
𝑏𝐵𝑥𝐴

|

|

|

|

|

2
𝑑 𝜎DWBA
𝑑 𝛺𝑏𝐵

(𝑎 + 𝐴→ 𝑏 + 𝐵) (3.3)

where 𝑑 𝜎DWBA

𝑑 𝛺𝑏𝐵 represents the transfer cross section calculated within the DWBA formalism, linked to the experimental one through
the spectroscopic factors according to Eq. (3.2).

The ANC technique can also be used to determine the 𝛾 widths 𝛤𝛾 for resonant capture processes, see, e.g., [31] for neutron, [40],
proton and [41] 𝛼 captures of astrophysical interest. The method has also been applied to mirror reactions to study proton/neutron
captures [42–45]. In summary, the ANC method is valuable for both resonant and nonresonant capture amplitudes and it can be
used to determine astrophysical S(E) factors when the capture occurs through a subthreshold resonance. [37].

When resonance parameters are known, which can be obtained from measurements or calculations, R-matrix calculations can
be performed to determine the capture cross section.

For practical applications of the ANC method, the following steps need to be taken into account:

• The transfer reaction has to be peripheral. This requirement can be achieved in two ways: by using reactions with large impact
parameters — this can be achieved by selecting events with small scattering angles; by performing reactions at sub-Coulomb
energies to secure the peripherality of the process due to the Coulomb repulsion.
With the assistance of DWBA calculations, cross checks can be done by changing the values of the radius and diffuseness
parameters in the potentials describing the binding of the transferred particle 𝑥 to the cores 𝐴. Peripherality is then verified
by assessing the dependence of 𝐶𝑎𝑥𝑏 on 𝑏𝑎𝑥𝑏 (Eq. (3.2)) While 𝐴𝑎𝑥𝑏 and 𝑏𝑎𝑥𝑏 depend on the choice of the potentials used in
the calculations, their product is a model independent quantity, provided that the experimental conditions necessary for
its deduction are satisfied. Specifically, this entails the possibility to describe the experimental transfer cross section using
Eq. (3.3).

• After confirming that the ANC reaction is peripheral, the experiment needs to measure the absolute differential cross section
accurately. This involves carefully considering all factors that might influence the results and estimating the associated
uncertainties.

• The last step involves comparing measured results with calculations to extract the ANC we need. This comparison relies on
accurate descriptions of how particles interact with the nucleus, which are captured by the optical model parameters.
For stable nuclei, these parameters can be easily obtained by measuring elastic scattering cross sections in the entrance and
exit channels. However, for unstable nuclei, obtaining good optical potentials is more challenging. In these cases, one might
need to rely on data from broader studies also involving similar nuclei.

The ANC method has proven valuable in studying various reactions relevant to key astrophysical problems. Table 3.1 showcases
some of the most studied reactions using ANC, highlighting both the astrophysical and the ANC reactions. Here below, we will
eport on some recent applications: 18O(p, 𝛾)19F, 3He(𝛼, 𝛾)7Be and 26Si(p, 𝛾)27P reaction studies.

3.0.1. The 18O(p, 𝛾)19F reaction
Astrophysical background. The 18O(p, 𝛾)19F radiative capture finds its importance in the nucleosynthesis, given that such a reaction
an play an important role in mixing stages of the AGB environment. The (p, 𝛾) process, in fact, allows the escape from the CNO

cycle, and its branching ratio against 18O(p, 𝛼)15N (that is the dominant one) has an impact on both 15N and 19F abundances. This
ratio represents an important parameter for different nucleosynthesis environments, and can be crucial to determine the origin of
presolar grains [46,47].

The direct capture of the 18O(p, 𝛾)19F reaction constitutes the most important part of the total cross section of astrophysical
nterest, and its behavior has been thoroughly investigated: its excitation function has been evaluated theoretically and experimen-
ally [48], and the presence of three resonances at low energies have been confirmed [49,50]. Nonetheless discrepancies in the

behavior of the direct component at low energies have been found [51], showing an increasing trend with energy, instead of the
decreasing one present in the literature at the time [48].

Experimental set-up and astrophysical S(E) factor extraction. For the reasons above, the 18O(p, 𝛾)19F has been investigated by means of
the ANC method [52]. The radiative part of the total cross section has been retrieved from the 18O(3He,d)19F transfer reaction, using
the 3He beam available at the U-120M iso-chronous cyclotron of the Nuclear Physics Institute of the Czech Academy of Sciences.
n order to study the transfer reaction, a gas target composed by a chamber filled with 99% purity 18O, with an output window
hat covers the angular range −65◦ +40◦, has been used. The detection set-up was composed by eight 𝛥E-E telescopes made by thin

(250 μm) Si and thick (5 mm) Si(Li) detectors, in order to detect the deuterons of interest, as well as the scattered 3He from the
beam.

The optical model parameters (OMP’s) for the entrance channel have been extracted from the elastic scattering, and are consistent
with previous publications [53,54]. Eleven peaks belonging to excited states related to the deuterons coming from the reaction of
nterest, corresponding to the transitions to the ground state of 19F, have been identified. For the OMP’s in the exit channels, those

were taken from the global formula in [55] at the proper energy. An example of the angular distribution fitting procedure can be
found in the left panel of Fig. 3.1, showing the angular distributions for the transitions to the 19F ground and first (0.197 MeV)
excited states. The black solid squares represent the experimental data, while the lines refer to the sets of optical model parameters
taken from Table 1 of [52] (fit A: solid line, fit B: dashed line).
14
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Fig. 3.1. Left panel: angular distribution for the 18O(3He,d)19F in the 19F ground and first excited state. Right panel: S(E) factor for the total proton direct
capture 18𝑂(p, 𝛾)19F for three different potentials, compared with literature (see text for details).
Source: The figure is adapted from Ref. [40].

Using three different potentials, the ANC’s for the twelve states (ground state and eleven excited ones) have been calculated (see
Table 3 from [52]). Resulting S(E) factors for the 18O(p, 𝛾)19F total direct capture are shown in the right panel of Fig. 3.1 as blue
solid (Coulomb potential), dashed (Perey & Perey potential) and dash-dotted (hard sphere potential) lines. Calculations from [51]
and measurement by [48] are shown as solid black and red lines, respectively. In two out of three cases the resulting astrophysical
S(E) factor has been found having the same trend found by [51], but with a lower contribution than the one given in [48,51]. This
is due to the fact that the ANC method addresses only the direct part of the capture process. To address this discrepancy, the S(E)
factor calculated with the Coulomb potential was normalized to the absolute cross-section value measured by Wiescher et al. at E𝑐 .𝑚.
= 1.75 MeV. The normalized curve (blue dotted line) closely matches the Buckner et al. calculations. Also it has been found that
the Coulomb potential contribution to the direct part constitutes up to 57% or more of the contribution determined in [51]. Refer
to [52] for more details.

3.0.2. The 3He(𝛼, 𝛾)7Be reaction
Astrophysical background. The 3He(𝛼 , 𝛾)7Be reaction is critically important in nuclear astrophysics. The reaction is significant for
understanding the lithium problem in Big Bang Nucleosynthesis [56] and especially to constrain the Standard Solar Model from
precise measurements of the neutrino flux from the Sun’s core, if accurate nuclear reaction cross sections are known. However,
current uncertainties in these parameters are too high due to the low cross sections at the relevant energies. Improving our knowledge
of the low-energy cross section of the 3He(𝛼 , 𝛾)7Be reaction would significantly reduce uncertainties in solar neutrino flux predictions
and, in turn, on the Standard Solar Model parameters [3].

The reaction has been extensively studied using different experimental methods, such as gamma ray detection, measuring 7Be
activity, and counting 7Be recoils (see, e.g. [57] and references therein for works published after 2004). Despite the extensive
number of dedicated experimental studies, it has remained a challenge to measure it directly because the energy range relevant to
astrophysics, known as the Gamow window, falls between approximately 15 keV and 30 keV for a temperature of 15 MK, which
characterizes the core of the Sun [3]. At these temperatures, the cross-section of the 3He(𝛼 , 𝛾)7Be reaction becomes exceedingly
small, making the direct measurement presently unfeasible or very uncertain. For applications to the lithium problem in Big Bang
Nucleosynthesis, it plays a role particularly at energies around 100 keV, where more data are available, though sometimes with
scattered absolute values.

For these reasons, extrapolation from higher energies is often necessary, in particular using the R-matrix approach (see, for
instance, the compilation [58]). Furthermore, various theoretical models, including external capture models, potential models, and
ab initio approaches, have been used to describe the reaction (see [57] for an inexhaustive list). Different models yield varying
values for the astrophysical S(E) factor of the reaction, especially with respect to the absolute value. Recent studies have focused
15
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Fig. 3.2. Left panel: angular distribution for the 6Li(3He, 𝛼)7Be populating the ground ((a) and (c), beam energy 3 MeV) and first (0.429 MeV, (b) and (d), beam
energy 5 MeV) along with the calculated differential cross sections (gray lines, see text for details). Right panel: Summary of the most recent 3He(𝛼 , 𝛾)7Be S34(0)
results. The central value represents the recommended one.
Source: The figure is adapted from Ref. [57].

on using the asymptotic normalization coefficient (ANC) technique to derive the zero-energy astrophysical factor S34(0) factor of
the 3He(𝛼 , 𝛾)7Be reaction without extrapolation [59]. This approach takes advantage of the pure external direct capture process of
the reaction and to the possibility to derive the absolute normalization from measurements easier to carry out.

From the experiment to the astrophysical factor. The 3He(𝛼 , 𝛾)7Be reaction was studied through the ANC approach by measuring
the near-barrier transfer reaction 6Li(3He, 𝑑)7Be, populating both the 7Be ground state and first excited state (excitation energy
429 keV). The angular distributions of the emitted deuterons were measured in two experiments performed using the 3 MV singletron
accelerator of the Department of Physics and Astronomy (DFA) of the University of Catania (Italy) and the FN tandem accelerator
at the John. D. Fox Superconducting Accelerator Laboratory at the Florida State University (FSU), Tallahassee, USA, at 3He beam
energies of 3 and 5 MeV. Details on the experiment and on the analysis are given in [57,60]. In the analysis, the ANCs for the 6Li-𝑝
channel were deduced as well, to provide an independent assessment of the accuracy of the method.

The ANCs of the 3He-𝛼 channels were extracted from the analysis of the deuteron angular distributions (Fig. 3.2, left panel)
at backward angles in the center of mass, focusing in particular on the main peak, where the peripherality of the process is more
pronounced. The angular distributions were fitted using the post form of the modified DWBA, taking into account the channel
coupling effects (CCE). Two separate calculations were carried out (originating the two sets of gray lines in Fig. 3.2, left panel),
assuming two different reaction mechanisms, 𝑝-transfer at forward center-of-mass angles (𝜃cm ≤ 90◦) and 𝛼-transfer at backward
center-of-mass angles (𝜃cm ≥ 90◦). Focusing on 𝛼-transfer, the contribution of 𝑝-transfer is negligible at large 𝜃cm angles, as well as
the interference of the two mechanisms. To minimize and quantify the systematic error introduced by the dependence on optical
model parameters, several sets of optical potentials were tested in the ingoing and outgoing channels. From these, the one providing
the most accurate description for the experimental data was used in the data analysis. Furthermore, the geometrical parameters of
the Woods–Saxon potential of the bound state wave function were varied within a broad range to test the peripheral nature of
the reaction. The ANCs were found to have a very weak dependence on the single particle ANCs, showing that the peripherality
condition is satisfied within a 2%–3% level [60].

As discussed in [57], the values of the square of the ANCs for the 3He + 𝛼 → 7Be(g.s.) and 3He + 𝛼 → 7Be(0.429 MeV) were
found to be 𝐶2 = 20.84 ± 1.12 [0.82; 0.77] fm−1 and 𝐶2 = 12.86 ± 0.50 [0.35; 0.36] fm−1, respectively. Square parentheses show
the components of the error budget: it includes both experimental uncertainties on the 𝑑 𝜎exp∕𝑑 𝛺 (first term in square brackets)
and the uncertainty due to the ANC of 𝑑 +4 He →6 Li, as well as the uncertainties from the adopted optical model (second term in
square brackets). Using the deduced ANCs and within the modified two-body potential model (MTBPM) [57,60], the direct capture
3He(4He, 𝛾)7Be astrophysical factor was calculated and the resulting S34(0) (Fig. 3.2) and S34(23 keV) factors (23 keV being the
Gamow energy for Solar fusion) turned out to be S34(0) = 0.534 ± 0.025 [0.015; 0.019] keVb and S34(23 keV) = 0.525 ± 0.022
[0.016; 0.016] keVb. The comparison with the values in the literature shows an improved accuracy with respect to the present-day
recommended value in [3], S34(0) = 0.56 ± 0.02(expt)±0.02(theor) keVb, but with an uncertainty still higher than the target value
of 3%, calling for further improved determinations of the 6Li(3He, 𝑑)7Be transfer cross section.
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Table 3.1
Reactions studied with the ANC method.

Indirect reaction Direct reaction References

[1] 10B(7Be, 8B)9Be 1H(7Be, 𝛾)8B Azhari et al 2001 [76]
[2] 14N(7Be, 8B)13C 1H(7Be, 𝛾)8B Azhari et al 2001[76]
[3] 13C(7Li, 8Li)12C 1H(7Be, 𝛾)8B Trache et al 2003 [43]
[4] 16O(3He, 𝑑)17F 1H(16O, 𝛾)17F Gagliardi et al 1998 [77]
[5] 14N(3He, 𝑑)15O 1H(14N, 𝛾)15O Bertone et al 2002 [78]
[6] 12C(𝑑 , 𝑝)13C 𝑛(12C, 𝛾)13C Imai et al 2000 [79]
[7] 13C(6Li, 𝑑)17O 4He(13C, 𝑛)16O Kubono et al 2003 [80]
[8] 14N(13N, 14O)13C 1H(13N, 𝛾)14O Motobayashi et al 1991 [81]
[9] 12N(3He, 𝑑)13O 1H(12N, 𝛾)13O Skorodumov et al 2007 [82]
[10] 15N(3He, 𝑑)16O 1H(15N, 𝛾)16O Mukhamedzhanov et al 2010 [83]
[11] 13C(14C, 15C)12C 14C(𝑛, 𝛾)15O McCleskey et al 2014 [44]
[12] 14C(𝑑 , 𝑝)15C 14C(𝑛, 𝛾)15O McCleskey et al 2014 [44]
[13] 18O(3He, 𝑑)19F 18O(𝑝, 𝛾)19F Burjan et al 2019 [40]
[14] 6Li(3He, 𝑑)7Be 3He(𝛼 , 𝛾)7Be Kiss et al 2020 [41]
[15] 26Mg(𝑑 , 𝑝)27Mg 26Si(𝑝, 𝛾)27P Guo et al 2006, Timofeyuk et al 2008, D’Agata et al 2021 [45,69,70]
[16] 6Li(3He, 𝑑)7Be 6Li(𝑝, 𝛾)7Be Kiss et al 2021 [84]

3.0.3. The 26Si(p, 𝛾)27P reaction
Astrophysical background. The production and destruction channels of 26Si are strongly correlated with one of the most studied
opics in nuclear astrophysics: the 26Al abundance in our Galaxy. Such element (T1∕2 = 0.75 Mys, 𝐽𝜋 =5+) can be produced in a
umber of different stellar scenarios, such as core-collapse Supernovae [61], Novae [62], Wolf–Rayet objects and AGB-stars [63].

All these sites have been addressed as possible sites of proton capture, therefore 26Al can be produced from 24Mg following the
reaction chain 24Mg(p, 𝛾)25Al(𝛽+)25Mg(p, 𝛾)26Al, with the 26Al that then decays in 26Mg 1st, that almost immediately (476 fs) falls
in its ground state, emitting the well-known 1.807 MeV 𝛾-ray line. Such a scenario is made more complicated by the presence of
the well-known isomeric state 26Al𝑚 (T1∕2 = 6.34 s, 𝐽𝜋 =0+), that can swiftly decay in 26Mg𝑔 .𝑠. Such an isomer can be produced
from 25Al via proton capture, following the reaction chain 25Al(p, 𝛾)26Si(𝛽+)26Al𝑚, thus reducing the quantity of 26Al produced. In
this second reaction chain, the unstable (T1∕2 = 2.24 s) 26Si can also capture a proton, producing 27P via the 26Si(p, 𝛾)27P reaction.

The 26Si(p, 𝛾)27P proton capture has been studied many times in the past [64–70]. In particular, in [69], the authors re-analyzed
old published data available in literature [71] regarding the 26Mg(d,p)27Mg reaction, and using the well established extension of
the ANC method for the mirror nuclei ([72], see also [73] for more details), were able to calculate the ANC’s for the 26Si(p, 𝛾)27P
apture in the ground, first and second excited states. Such results were nonetheless challenged by [70], that retrieved the ANC’s for
he ground and 1st excited states of 27P from the 26Mg(t,d)27Mg reaction, again using the mirror nuclei technique. In this last work,
he ANC’s for the ground and first excited states for the 26Mg(n, 𝛾)27Mg neutron capture have been found to be a factor of 2 and a
actor of 3 smaller, respectively, and the S(E) factor at zero energies – 𝑆(0) – has been found to be 1.7 times smaller than [69].

Experimental apparatus and reaction rate calculation. To address this discrepancies, another ANC experiment involving mirror nuclei
as been performed, using the deuteron beam available at the U120-M isochronous cyclotron of the Nuclear Physics Institute of the
zech Academy of sciences [45]. The 26Mg(d,p)27Mg reaction has been then used to study the 26Si(p, 𝛾)27P one.

The experimental setup consisted of five 𝛥E-E telescopes, made with thin (250 μm) Si and thick (5 mm) Si(Li) surface detectors.
hree of those were positioned on a rotating plate with a 10◦ step between each other, in order to cover the region between 7◦ and

60◦ in the laboratory reference frame. On the other side of the beam, the remaining two 𝛥E-E telescopes were placed at 15◦ and
35◦, and have been used as monitors to check beam purity and alignment.

The OMP’s for the entrance channel have been obtained from the elastic scattering 26Mg(d,d)26Mg, while for the exit one the
code FRESCO has been used to fit the experimental angular distributions of the protons coming from the 26Mg(d,p)27Mg in the
ground and 1st excited states (Fig. 3.3, left panel), using the OMP’s from [69] as seed values (see dashed and dotted lines in the
igure referring to potentials P1 and P2 from Table I of Ref. [45]).

Once the peripherality for the process has been ascertained by checking the small dependency of the ANC from the single-
article ANC (Fig. 3.3, right panel), following the discussion in section 3 and in Ref. [15] (section 2.1.3), the calculated ANC’s in

this work have been found to be 28.26 ± 4.9 fm−1 and 1.41 ± 0.25 fm−1 for the 26Mg(n, 𝛾)27Mg capture in the ground state and
n the first excited state, respectively. Those values – in reasonable agreement with [70] – have then been used to calculate the
|𝐶1∕2+
𝑆 𝑖+𝑝 |

2
=1420 ± 255 fm−1, value in agreement with [70] if the different separation energies for the system 26Si+p used in [45,70]

are considered. For the first excited state of 27P, the total width 𝛤𝑝 has been calculated – 𝛤𝑝 = (5.23±1.5)×10−9 – and there is again a
fair agreement between [45,70]. Finally, the reaction rates for proton capture in both the ground and 1st excited states of 27P have
een calculated and compared with the results coming from [74], using the 𝛤𝛾 value coming from the 𝛤𝛾∕𝛤𝑝 ratio from [75]: an

increasing by a factor 1.4 and 2.2 has been found for the reaction rates of the 26Si(p, 𝛾)27P capture in the ground and first excited
tates, respectively.

4. Experimental application of the THM

The Theory of the THM relies on the principles of direct reactions and is utilized to establish a connection between the cross
sections of two closely related reactions. In this approach, the reaction of astrophysical interest (Eq. (1.7)) can be viewed as a
17
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Fig. 3.3. Left Panel: angular distribution for the 26Mg(d,p)27Mg transfer reaction for the ground (a) and first excited (b) states. Fitting dashed and dotted lines
in the figure refer to potentials P1 and P2 from Table I of Ref. [45]. Right panel: comparison between the variation of the spectroscopic factor (a) and ANC (b)
as a function of the single-particle ANC. The small variation of the latter is a strong hint of a peripheral process, allowing the application of the ANC method.
Source: The figure is adapted from Ref. [45].

subprocess of the actual Trojan-Horse (TH) reaction (Eq. (1.6)). The nucleus 𝑎 possesses a prominent cluster structure 𝑏 + 𝑥 in
its ground state and acts as a Trojan horse, drawing an analogy to the tale from Homer’s Odyssey. The nucleus 𝑏 is considered a
spectator, essentially unaffected by the TH reaction, and therefore, only a minimal momentum transfer to 𝑏 is expected. The theory
of the THM has been developed and discussed in multiple papers employing various alternative formalisms [17,21,23,26,85]

However, despite the differences in notation, introduced quantities, and specific details, the general features of the THM remain
essentially the same. In the previous section on transfer reactions, an approach was chosen to provide a direct understanding of
the key aspects of the THM. The TH reaction (Eq. (1.6)) is assumed to be dominated by surface effects, and the reduction of the
cross section for the sub-process (Eq. (1.7)) due to Coulomb interactions is suppressed. This suppression occurs because the particle
𝑥 is brought close to nucleus 𝐴 within the Trojan horse 𝑎 at a high energy. Despite the high energy in the 𝑎 + 𝐴 channel, it is
possible to achieve low energies in the relative motion of 𝑥 and 𝐴. Initially, it was proposed an explanation for this phenomenon by
considering the momentum distribution of the clusters 𝑥 and 𝑏 inside the Trojan horse 𝑎 [26]. However, this interpretation, which
relied on compensating the energy of 𝑎 + 𝐴 with the Fermi motion of 𝑥 within 𝑎, was later superseded by the experimental work
carried out by the nuclear astrophysics group at INFN-Laboratori Nazionali del Sud in Catania, known as the ASFIN group. Historical
developments and reviews of this work can be found in [15,17,85–87]. In order to successfully apply the THM in actual experiments,
the TH reaction (Eq. (1.6)) is typically studied under quasi-free (QF) scattering conditions. Under these kinematic conditions, the
momentum transfer �⃗�𝑏𝐵 to the spectator 𝑏, as described in Eq. (2.29), is small and close to the peak of the momentum distribution.
This particular region in the three-body phase space is where the quasi-free (QF) process makes the most significant contribution
to the cross section of the reaction (1.6), in comparison to other mechanisms such as sequential or compound-nucleus reactions.
Consequently, the momentum transfer is not large and does not correspond to the tail of the momentum distribution, as initially
assumed in the original presentation of the method.

4.1. Kinematic conditions

The conservation of energy in the center-of-mass (c.m.) system for the TH reaction (1.6) can be expressed as:

𝐸𝑎𝐴 = 𝐸𝑐 𝐶 + 𝐸𝑏𝐵 −𝑄𝑎+𝐴→𝑏+𝑐+𝐶 (4.1)

with the Q value (2.7) and the kinetic energies of the relative motion (2.4).
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Additionally, we introduce the binding energy 𝐵𝑎 of the Trojan horse 𝑎, defined in Eq. (2.9). By utilizing the energy conservation
f the two-body reaction (1.7), we can further analyze the energy relationships involved in the TH reaction:

𝐸𝑐 𝐶 + 𝑚𝑐 + 𝑚𝐶 = 𝐸𝑥𝐴 + 𝑚𝑥 + 𝑚𝐴 , (4.2)

and the effective kinetic energy

𝐸𝑥𝐴 = 𝐸𝑎𝐴 − 𝐸𝑏𝐵 − 𝐵𝑎 (4.3)

in the initial state of the sub-process (1.7) is expressed by means of the energies of the TH reaction (1.6).
The positivity of both 𝐸𝑏𝐵 and 𝐵𝑎 implies that the energy 𝐸𝑥𝐴 is significantly smaller than the energy 𝐸𝑎𝐴 in the entrance channel

f the TH reaction. This observation underscores the fact that the Trojan horse mechanism allows for the extraction of low-energy
nformation from a higher-energy entrance channel. Moreover, momentum conservation in the quasi-free scattering condition, where
⃗𝑏𝐵 = 0 or 𝑝𝑏𝐵 = 𝑚𝑏𝑝𝑎𝐴∕(𝑚𝑥 + 𝑚𝑏), can be utilized to impose an additional constraint on the kinematics of the reaction.

The expression

𝐸𝑏𝐵 =
𝑝2𝑏𝐵
2𝜇𝑏𝐵

=
(

𝑚𝑏
𝑚𝑥 + 𝑚𝑏

)2 𝜇𝑎𝐴
𝜇𝑏𝐵

𝐸𝑎𝐴 (4.4)

allows us to define the quasi-free energy

𝐸𝑞 𝑓𝑥𝐴 =

[

1 −
(

𝑚𝑏
𝑚𝑥 + 𝑚𝑏

)2 𝜇𝑎𝐴
𝜇𝑏𝐵

]

𝐸𝑎𝐴 − 𝐵𝑎 (4.5)

in the entrance channel of the astrophysical reaction (1.7). This quasi-free energy is completely determined by the energy in the
initial state of the TH reaction (1.6). It is important to note that 𝐸𝑞 𝑓𝑥𝐴 can become very small or even negative depending on the
inding energy 𝐵𝑎 of the Trojan horse 𝑎 and the choice of 𝐸𝑎𝐴, as the pre-factor of 𝐸𝑎𝐴 is smaller than one. However, in real

experiments, the quasi-free energy 𝐸𝑞 𝑓𝑥𝐴 is not changed by changing 𝐸𝑎𝐴.
Typically, it is more suitable to maintain a constant value for the beam energy while exploring a specific range in 𝑄𝑏𝐵 around zero.

By utilizing the definition of Jacobi momenta and disregarding the binding energies of the nuclei relative to their masses, we can
stablish �⃗�𝑏𝐵 = −𝑝𝑥𝑏. To ensure a reasonable approach, it is advisable to confine the range to 𝑄𝑏𝐵 < ℏ𝜅𝑥𝑏, where 𝜅𝑥𝑏 =

√

2𝜇𝑥𝑏𝐵𝑎∕ℏ
enotes the OES wave number for the bound state of 𝑎. The method described here, initially outlined in [88], represents a distinct

approach to the THM (Three-Body Model) in contrast to the original concept presented in [26], where the pertinent values of 𝑝𝑥𝑏
were substantially higher, reaching hundreds of MeV/c. This high 𝑝𝑥𝑏 value was necessary to compensate for the energy associated

ith the relative motion of 𝐴+𝑎. At such large momenta, the magnitude of the momentum distribution can be significantly smaller
compared to that at 𝑝𝑥𝑏 = 0, necessitating a careful separation of the quasi-free process from other competing reaction mechanisms.
Furthermore, given that the analysis of experimental data relies on the shape of the momentum distribution, it is crucial to have a
reliable theoretical description. This becomes more challenging for the tail of the distribution compared to a limited region at small
𝑝𝑥𝑏 values.

The finite range of 𝑝𝑥𝑏 in the inter-cluster motion is employed to ensure access to the astrophysical energy region in the TH
xperiment. Typically, this range is on the order of a few tens of MeV/c. Fig. 4.1 illustrates a typical shape analysis of the momentum

distribution, conducted for the 17O(p, 𝛼)14N reaction by employing 2H as the TH nucleus [89,90]. The experimental momentum
distribution is represented by black full circles and is compared with theoretical distributions. Theoretical distributions are obtained
using the square of the Hulthén wave function in momentum space, based on the plane-wave impulse approximation (shown as
a black solid line), as well as calculations performed within the distorted-wave Born approximation (DWBA) using the FRESCO
code [39] and optical potential parameters extrapolated from [55] (represented by a red dotted line). Both curves are scaled to the
experimental maximum for comparison purposes. A noticeable agreement within experimental uncertainties is observed for neutron
momentum values 𝑝𝑏 ≤50 MeV/c, which corresponds to the matching 𝜅𝑥𝑏 value for the deuteron. This criterion determines the
selection of quasi-free (QF) events for further analysis of the data.

The quasi-free condition 𝑝𝑥𝑏 = 0 can be expressed as 𝑚𝑥𝑝𝑏 = 𝑚𝑏𝑝𝑥, leading to the following equations:

𝑝𝑥 =
(

1 + 𝑚𝑏
𝑚𝑥

)−1
𝑝𝑎 =

𝑚𝑥
𝑚𝑎
𝑝𝑎 (4.6)

These equations are derived from the fact that 𝑝𝑎 = 𝑝𝑥 + 𝑝𝑏. Furthermore, this provides the energy expression:

𝐸𝑥𝐴 =
𝑝2𝑥𝐴
2𝜇𝑥𝐴

= 1
2𝜇𝑥𝐴

[

𝜇𝑥𝐴

(

𝑝𝑥
𝑚𝑥

−
𝑝𝐴
𝑚𝐴

)]2

=
𝜇𝑥𝐴
𝜇𝑎𝐴

𝐸𝑎𝐴 (4.7)

This energy expression, derived through the usual dispersion relation, is distinct from 𝐸𝑞 𝑓𝑥𝐴 calculated in Eq. (2.14). Consequently,
the sub-process of transferring 𝑥 in the TH (Transfer-Hydrogen) reaction occurs off the energy shell, and 𝑥 must be regarded as
a virtual particle. In TH experiments, the quasi-free condition, where 𝑝𝑥𝑏 is close to zero, also determines the selection of the TH
nuclei. TH nuclei that exhibit a significant cluster component in an 𝑠-wave of relative motion are preferred, such as 2H for two-body
reactions involving protons or neutrons, or 6Li for the transfer of deuterons or 𝛼 particles.

4.2. General steps of data analysis

Now the methodology for data analysis in TH experiments is discussed, which requires careful considerations regarding the
choice of the TH nucleus, kinematic conditions (to satisfy Eq. (2.14) regarding beam energy), detection angles, choice of detected
19
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Fig. 4.1. Experimental momentum distribution for the spectator (full black and open circles) from [89,90] compared with theoretical ones, given in plane wave
impulse approximation (black solid line) and DWBA (red dotted line) normalized to the experimental maximum.

particles, and the experimental setup. Successful TH experiments necessitate relatively simple experimental setups with high energy
and angular resolutions (typically less than 1% and less than 0.2 degrees, respectively) to minimize uncertainties in 𝐸𝑥𝐴. For TH
reactions, all kinematic variables can be calculated using the energies and angles of any two out of the three particles in the exit
channel. This feature is particularly advantageous when the breakup occurs in the target or when one of the three particles involved
is a neutron. In such cases, the detection of very low-energy particles, which may be limited by detection thresholds, or the use of
neutron detectors with poor angular resolution can be avoided. A typical detection setup consists of two or more pairs of coincidence
telescopes positioned on opposite sides of the beam direction at relatively forward angles. TH experiments are often conducted in
inverse kinematics. Several steps are involved in the data analysis process before extracting the two-body cross section relevant to
astrophysics:

• identification of the three-body reaction channel of interest, typically accomplished using the standard 𝛥E-E technique or
through kinematic calculations;

• validity tests on selected events and the selection of the quasi-free (QF) mechanism;
• extraction of the binary cross section from the measured TH cross section in arbitrary units. At sub-Coulomb energies, the

penetrability factor needs to be considered;
• normalization procedure using available direct data to obtain the cross section 𝜎𝑏(𝐸)∕𝑆𝑏(𝐸) in absolute units. In cases

where ultra-low energy data from direct measurements are available, the electron screening potential can be extracted using
Eq. (1.2);

• validity tests comparing direct and indirect data in terms of excitation functions, including resonances, and angular distribu-
tions.

After these validations, THM data can be considered reliable in cases where direct data are not available. The general
procedure for applying the TH method is summarized in Fig. 4.2. Starting with the selection of a specific TH nucleus with a
articular momentum distribution (top panel) and determining the entrance channel energy 𝐸𝑎𝐴, the quasi-free energy (2.14) in

the astrophysical reaction (1.7) is calculated (bottom panel). The chosen momentum distribution cutoff, denoted as 𝑄cut , defines
the accessible range of energies 𝐸𝑥𝐴. The cross section extracted from the TH experiment needs to be scaled to direct data since it
provides only the energy dependence and not the absolute normalization.

Recently, the selection of suitable nuclei for TH experiments has expanded to include 14N in addition to the commonly used
uclei 2H, 3He, and 6Li, which have been extensively employed in numerous TH experiments. The inclusion of 14N in recent
pplications [30] opens up new possibilities for future experiments using THM with heavier stable nuclei and even with radioactive-
on beams. The utilization of heavier TH nuclei, such as 13C, 14N, 20Ne, 23Na, and 26Mg, holds promise for investigating crucial
eactions that contribute to energy generation and the production of heavy elements in the late stages of massive star evolution.

These experiments can provide valuable insights into the dynamics and role of clusters within the THM framework. For more detailed
information on the influence of clusters and their dynamics in THM, refer to [91]. Additionally, some of the potential TH nuclei
20
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Fig. 4.2. Connection of the momentum distribution of the Trojan-Horse nucleus (top panel) to the range of accessible energies for the astrophysical S(E) factor
lower panel) in the THM.

exhibit p-wave intercluster motion configurations, and focused studies in this area are anticipated in the near future to broaden the
applicability of the method.

4.3. Recent applications

The THM has demonstrated successful applications to various reactions of astrophysical importance. A comprehensive list of the
ost significant reactions investigated thus far, along with relevant bibliographical references, can be found in Table 4.1. For a more

detailed analysis of the specific characteristics of each experimental study, it is recommended to refer to the corresponding articles.
Here, we will provide an overview of recent results, highlighting the versatility of the THM. The method has been employed to study
a wide range of reactions, including those involving charged particles (resonant or non-resonant) and neutron-induced reactions.
These investigations have utilized both stable and radioactive ion beams (see, for example, [92,93]). TH investigations typically
focus on processes that are relevant to stellar nucleosynthesis scenarios, spanning from the early universe to advanced and explosive
phases of evolved stars. In some cases, these studies serve the purpose of understanding crucial aspects of nuclear interactions. They
also play a significant role in investigating fusion dynamics in plasmas for energy production. Notable examples include the d+d
reaction [94] and the 10,11B+p reaction [95,96]. In these cases, the availability of unscreened low-energy data allows for testing the
consistency of existing models in determining electron screening effects. In the following, we will review recent studies, most of
them triggered by the nuclear astrophysics interest. In particular, we will focus on the 7Be(n, 𝛼) and 7Be(n, 𝑝) reactions, 27Al(n, 𝛼)
reaction, Coulomb-free 𝑝 − 𝑝 scattering cross section and 12C+12C fusion reaction.

4.3.1. The contribution to the standard BBN reaction network
The Big Bang Nucleosynthesis (BBN) occurred during the time span when our universe was capable of producing nuclei, just

fter baryogenesis, most likely 1÷20 min after the Bang. BBN has been extensively studied for decades due to its significance in
nderstanding the entire Big Bang Model. It serves as one of the three main evidences supporting the model, along with galactic
ecession and the Cosmic Microwave Background (CMB). BBN allows us to explore the universe during its earliest stages, making it
 valuable tool for constraining the physical evolution of the Big Bang. By studying the primordial abundances of 2H, 3He, 4He, 7Li,
21
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Table 4.1
Reactions studied with the THM.

Indirect reaction Direct reaction References

[1] 2H(7Li, 𝛼 𝛼)n 1H(7Li, 𝛼)4He Spitaleri et al 1999, Lattuada et al 2001 [97]
[2] 3He(7Li, 𝛼 𝛼)d 2H(7Li, 𝛼)4He Tumino et al 2006 [98]
[3] 2H(6Li, 𝛼3He)n 1H(6Li, 𝛼)3He Tumino et al 2003 [88]
[4] 6Li(6Li, 𝛼 𝛼)4He 2H(6Li, 𝛼)4He Spitaleri et al 2001 [22]
[5] 2H(9Be, 𝛼6Li)n 1H(9Be, 𝛼)6Li Wen et al 2008 [99]
[6] 2H(10B, 𝛼7Be)n 1H(10B, 𝛼)7Be Lamia et al 2008, Rapisarda et al 2018, Cvetinovic et al 2018 [100–102]
[7] 2H(11B, 𝛼08Be)n 1H(11B, 𝛼)8Be Spitaleri et al 2004, Lamia et al 2011 [103,104]
[8] 2H(15N, 𝛼12C)n 1H(15N, 𝛼)12C La Cognata et al 2007 [105]
[9] 2H(18O, 𝛼15N)n 1H(18O, 𝛼)15N La Cognata et al 2009 [106]
[10] 2H(17O, 𝛼14N)n 1H(17O, 𝛼)14N Sergi et al 2010, Sergi et al. 2015 [89,90]
[11] 6Li(3He, p4He)4He 2H(3He, p)4He La Cognata et al 2005 [107]
[12] 2H(6Li, p3H)4He 2H(d, p)3H Rinollo et al 2005 [108]
[13] 6Li(12C, 𝛼12C)2H 4He(12C, 12C)4He Spitaleri et al 2000 [109]
[14] 2H(6Li, t4He)1H n(6Li, t )4He Tumino et al 2005, Gulino et al 2010 [110,111]
[15] 2H(p, pp)n 1H(p, p)1H Tumino et al 2007, Tumino et al 2008 [112,113]
[16] 2H(3He, p3H)1H 2H(2H, p)3H Tumino et al 2011, Tumino et al 2014 [94,114]
[17] 2H(3He, n3He)1H 2H(2H, n)3He Tumino et al 2011, Tumino et al 2014 [94,114]
[18] 2H(19F, 𝛼16O)n 1H(19F, 𝛼)16O La Cognata et al 2011, Indelicato et al 2017 [32,115]
[19] 13C(6Li, 𝑛16O)2H 13C(𝛼 , 𝑛)16O La Cognata et al 2014 [116]
[20] 2H(18F, 𝛼15O)n 1H(18F, 𝛼)15O Cherubini et al 2015, Pizzone et al. 2016, La Cognata et al. 2017 [92,117,118]
[21] 2H(10B, 𝛼7Li)1H 𝑛(10B, 𝛼)7Li Guardo et al 2019, Sparta et al 2021 [119,120]
[22] 2H(7Be, 𝛼 𝛼)1H 𝑛(7Be, 𝛼)4He Lamia et al 2017, Lamia et al 2019, Hayakawa et al 2021 [121–123]
[23] 12C(14N, 𝛼20Ne)2H 12C(12C, 𝛼)20Ne Tumino et al 2018 [30]
[24] 12C(14N, p23Na)2H 12C(12C, p)23Na Tumino et al 2018 [30]
[25] 6Li(19F, 𝑝22Ne)2H 4He(19F, 𝑝)22Ne Pizzone et al 2017, Dagata et al 2018 [117,124]
[26] 2H(17O, 𝛼14C)1H 17O(𝑛, 𝛼)14C Oliva et al 2020 [125]
[27] 2H(3He, 𝑝𝑡)1H 3He(𝑛, 𝑝)3H Pizzone et al 2021 [126]
[28] 2H(7Be, 𝑝7Li)1H 𝑛(7Be, 𝑝)7Li Hayakawa et al 2021 [123]
[29] 2H(27Al, 𝛼24Mg)𝑛 27Al(𝑝, 𝛼)24Mg Palmerini et al 2021, La Cognata et al. 2022 [127–129]

we can gather information about the physical conditions in the primordial era. For a recent review and references, refer to [130]. To
investigate the abundances, origin, and evolution of light elements, we must consider various processes in addition to the Big Bang,
such as production by cosmic rays, stellar destruction, and nucleosynthesis. However, understanding the light element abundances
in stars is limited by our incomplete knowledge of many astrophysical processes, including convection, microscopic diffusion, and
he possible presence of additional mixing mechanisms. Furthermore, the destruction of light elements strongly depends on the
hosen physical inputs, particularly the nuclear reaction rates. One well-studied case is the discrepancy between the predicted and
bserved abundances of 7Li in the Sun, as well as in open clusters and halo or disk stars. However, a complete understanding of
ithium burning in stars also involves considering the role of the less abundant 6Li [88,131]. It is important to note that, except

for 7Li, the predicted and observed abundances of other primordial isotopes generally match within uncertainties, considering the
appropriate astrophysical sites. Despite the efforts made to reduce uncertainties, in most cases, directly measured cross-section data
exhibit inadequate accuracy in the energy range relevant for BBN. This is due to inherent limitations, such as the presence of the
Coulomb barrier for charged particle-induced reactions, which reduces cross-section values to such small values that they are nearly
impossible to measure. Additionally, there is a need for neutron beams that cover the energy region relevant to astrophysics.

Recently, indirect measurements have been performed to overcome these difficulties, particularly using the THM. This has
een applied to some of the most relevant reactions of the SBBN network, such as 2H(d,p)3H [94,114,132], 2H(d,n)3He [94,114],

3He(d,p)4He [133], 7Li(p, 𝛼)4He [134,135], and then extended to 7Be(n, 𝛼)4He, 7Be(n,p)7Li and 3He(n,p)3H [136] in [137]. These
studies open up new avenues for the application of the Trojan Horse Method (THM) to neutron-induced reactions on radioactive
ion beams. This significantly expands the utility of THM to encompass almost all the reactions that are relevant for astrophysics.

4.3.2. Status of the 7Be+n measurements and the THM experiment at CRIB
Background. The nucleosynthesis of the radioactive 7Be isotope impacts the final abundance of 7Li predicted by the cosmological Big

ang Nucleosynthesis (BBN) model. BBN is a critical probe to understand the early universe, describing the primordial production
f light nuclides such as 4He, D, 3He, and 7Li [138,139]. Besides the fair agreement founds nowadays for 3, 4He and D, a factor of

2.5–3.5 of discrepancy is still present between the predicted BBN 7Li primordial abundances at the value of the baryon-to-photon
ratio 𝜂 deduced by CMB studies and the observed ones deduced by halo objects observations [130]. Among the possible nuclear
hysics solutions proposed for shedding light on the so-called ‘‘cosmological lithium problem’’, those involving the radioactive 7Be

nucleus were hampered in the very recent years with particular regard to its destruction during BBN because of neutron-induced
eactions by using both direct and indirect approaches [121–123,140–143].

Recent THM investigation. 7Be+n interaction at BBN energies has to be investigated for both of the two competing channels, (n,p)
and (n, 𝛼). Although the (n,p) channel dominates the 7Be destruction, the (n, 𝛼) ones had large uncertainties, now reduced because of
the improved experimental studies. In order to complement the already available information on the (n,p ) and (n,p ) cross section
22
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Fig. 4.3. THM cross sections for the 7Be(n,p0)7Li, 7Be(n,p1)7Li and 7Be(n, 𝛼)4He nuclear reactions as discussed in [123].
Source: The figure is adapted from Ref. [123].

measurements of [142,144,145] and those referring to the (n, 𝛼) channels [140,141], devoted THM studies have been performed
by applying the method to the 7Be+2H quasi-free reaction [122,123].

The most recent THM application of [123] allowed to deduce both the (n,p) and (n, 𝛼) channels cross sections via a single
experiment performed at the Center-for-Nuclear-Study RI Beam separator (CRIB) of the University of Tokyo, located at the RI Beam
actory, RIKEN [146–148]. A 64 μg/cm2 thick deuterated polyethylene (CD2) target was irradiated by a 7Be beam at 3.16 MeV per
ucleon with a typical intensity of ∼106 pps produced. The adopted experimental setup has an expanded capability to detect, besides
-particles, also the 7Li recoils, enabling the 7Be(n, (p) 7Li reaction measurement via 2H(7Be, 7Li p)1H. Beam tracking was ensured
y using two parallel plate avalanche counters installed in front of the target. Particle detection has been accomplished by using six
𝛥E-E silicon telescopes having charge-division position-sensitive detectors with 45 × 45 mm2 active areas, surrounding the target
t distances of 20 cm placed at central angles of 12◦, 34◦ and 56◦ with respect the beam direction in a symmetric configuration to

double the statistics. The most forward telescopes were equipped with a 20𝜇 𝛥E silicon layer optimized for lithium detection while
at backward angles 𝛼-particles and protons were detected though a 300 μm 𝛥E silicon detector.

As in deep discussed in [123], the selection of the three-body channels have been accomplished via the standard approach
foreseen by THM analysis and described elsewhere, such as experimental Q-value reconstruction. In details, because of the focus on
the (n,p) channels, the experiment allowed for unambiguously derive results on both p0 (Q = −0.580 MeV) and p1 (Q = −1.058 MeV)
hannels in a single experiment. The occurrence of the QF-mechanism has been provided by detailed study on the experimental
omentum distribution that, in the present case of using a deuteron as TH-nucleus, was compared with the theoretical Hultheń-

wave function in momentum space. For the analysis only the events below 60 MeV/c were selected as those belonging to pure
F-mechanism. The derived HOES cross section for the (n,p) and (n, 𝛼) channels were corrected for the dominant partial waves

ntervening in the penetrability function, i.e. s-wave component for both the (n,p) channels and p-wave for the (n, 𝛼) one [123]. The
btained THM cross section for the 7Be(n,p0)7Li, 7Be(n,p1)7Li and 7Be(n, 𝛼)4He are reported in Fig. 4.3 with solid lines representing
-matrix fits with light-colored bands as their uncertainties (see Ref. [123] for details).

4.3.3. Status of the 𝑑 + 𝑑 fusion measurements and the THM experiments
Background. The outstanding relevance of 2H(d,p)3H and 2H(d,n)3He cross section at energies of less than 1 MeV reaches both
astrophysics and applications. These two channels, in fact, are at the base of the chain of the twelve most important reactions that
lead to BBN, thus being greatly effective on the primordial abundances. Furthermore, they are part of the chain of reactions in the
23
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Pre Main Sequence phase of the stellar evolution and their possible application for energy production in fusion power plants makes
these reactions been measured several times in the last century, as well as the extraction of electron screening potential, studied
lso in metals, to ultimately understand this process in details.

The THM measurement. The 2H(d,p)3H and 2H(d,n)3He have also been studied using the THM [94], with a simple experimental
etup consisting of silicon telescopes placed on both sides of the beam direction and using a single beam energy to cover a center

of mass energy between 2 keV and 1.1 MeV. According to the THM features, the bare nucleus (unscreened) S(E) factor has been
determined, also valuable to be compared with the screened measurements to obtain the screening potential. The measured reactions
were 2H(3He,p3H)1H and 2H(3He,n3He)1H with 3He as projectile with a beam energy of 18 MeV. This was the first application of
the THM with the coincidence detection of 3H/3He with the proton that acts as a spectator to both 2H(d, (n) 3He and 2H(d, (p)
3H binary processes. This technique was very convenient for the 3He+n fusion channel to avoid the limitation of standard neutron
detectors. However, it was also suitable for the 3H+p channel, preventing detection of unwanted QF events from target break-up.
A detailed account of the measurement and related data analysis is given in [94,114]. Here, we briefly report on the final results.

The 𝑆(𝐸) factor of the 2H(𝑑,p)3H channel is shown in Fig. 4.4. TH data are shown as black full dots, with uncertainties accounting
for statistical and normalization errors. Direct data from [149–152] are shown as colored symbols. The various datasets exhibit
significant dispersion, displaying deviations of over 15% in both energy dependence and absolute values. This contrasts with the
smooth trend observed in THM data.

The THM parameterizations of the 𝑆(𝐸) factors lead to new values of 𝑆(0) = 57.4 ± 1.8 keVb for 3H+p and 60.1 ± 1.9 keVb
for 3He+n, with uncertainties including the 1% normalization error and 3% coming from the theory, combined in quadrature. A
comparison between the THM S(0) factors to the 2H(d, (p) 3H direct data below 15 keV provides further insight into the electron
screening effect. Low-energy direct data at 14.95 keV from [150] were first normalized to the THM 𝑆𝑏𝑎𝑟𝑒(𝐸) (black solid line) and
hen fitted with the screening function [13] leaving 𝑈𝑒 as a free parameter. This provides a value of 𝑈𝑒 = 13.2 ± 1.8 eV, not exceeding

the adiabatic limit (14 eV) for a molecular deuteron target (gas target), but covering it with its uncertainty. Further improvements
in the precision of direct low-energy data would help to pin point the electron screening potential.

The deduced 2H(d, (p) 3H and 2H(d, (n) 3He reaction rates undergo significant changes. At the SBBN temperature, the rate for the
3H+p (3He+n) channel increases (decreases) by up to 15% with respect to previous studies [58,153,154] while at the temperatures
elevant for PMS and future fusion power plants it undergoes a larger increase by up to 20% for both channels. Using the sensitivity

studies reported in [154,155], the rate variations at the SBBN temperatures lead to a decrease in the production of lithium by up
to 10%.

New insights. The results shown in [94] provided the calculation of the reaction rates with an error of 5%. In the last decades,
BBN has moved to the so-called precision era, and since 2018 D/H is known from observations with a 1.2% precision [156].
Correspondingly, a new cross section measurement by the LUNA collaboration [157] of the 2H(p, 𝛾)3He has made it possible a
rate calculation with a 2% error [158]. For this reason, a more accurate 2H(d,p)3H and 2H(d,n)3He measurement is now foreseen.
From the THM side, data in [94] are undergoing a revision with an improved theoretical support based on new inputs from the
recent literature.

4.3.4. The 27Al(𝑝, 𝛼)24Mg reaction: astrophysical scenarios and measurements
The astrophysical thread. Measurements of Mg and Al isotopic abundances play an important role in advancing our understanding
of astrophysical processes. Recent observations reveal an intriguing anti-correlation between Mg and Al abundances in red-giant-
ranch stars located in globular clusters like NGC 2808, 𝜔 − 𝐶 𝑒𝑛, and M4. This anti-correlation is of particular interest because it

suggests a complex interplay of nucleosynthesis processes in these stars [159–161]. Advanced high-resolution stellar spectroscopy
has contributed to our understanding by showing that these globular clusters host various stellar populations. This has further
complicated our understanding of Mg-Al abundances, indicating that different types of stars, including massive, fast-rotating stars,
intermediate-mass asymptotic giant branch (AGB) stars, and super AGB stars, all contribute to the observed abundance patterns.
Furthermore, these observations underscore the necessity for fine-tuning theoretical models to account for the observed variations
n Mg isotopes. The production, destruction, or accumulation of 24Mg is highly sensitive to the temperature of stellar H-burning,
articularly within the narrow temperature range of 0.07 to 0.08 GK. In this framework, the Mg-Al cycle is a fundamental process
o tag Mg and Al isotopic abundances in high-temperature H-burning in evolved stars. This cycle involves a set of nuclear reactions,
ith the 27Al(p, 𝛼)24Mg reaction playing a central role [162,163]. It contributes to both the destruction of 27Al and the production

of 24Mg, and it is a key component in closing the Mg-Al cycle. The reliability of astrophysical predictions depends on the rate of this
reaction being higher than the competing 27Al(p, 𝛾)28Si reaction, especially in the energy range typical of stellar nucleosynthesis
(around 100 keV). The significant uncertainties in these rates present a challenge in making precise predictions.

High-precision investigations of the nucleosynthesis of 27Al and 24Mg influences our understanding of 26Al production as well.
6Al is especially important in astrophysics. While its presence in the Milky Way is established through the detection of gamma
missions from 26Mg following the 𝛽 decay of 26Al [164], its initial presence in the Early Solar System is indicated by the excesses

of 26Mg observed in presolar grains, meteorites, and early solar system materials [165]. These excesses, when measured in relation
to the most abundant Mg isotope (24Mg), provide crucial insights into the 26Al/27Al ratio in the ancient Galaxy and the ages of
ncient solids within meteorites and early solar system materials. Also in this case the 27Al(p, 𝛼)24Mg reaction intervene in the

complex interplay of Mg and Al isotopes. However, precise measurements in the energy region of astrophysical interest are still
acking. Indeed, direct and indirect investigation could only set upper limits to the resonance strengths below about 300 keV in the
7Al-p center of mass [162].
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Fig. 4.4. THM 2H(d,p)3H S(E) factor (black solid circles and squares) from [94] compared with direct data sets (colored symbols).
Source: The figure is adapted from Ref. [94].

Extraction of the resonance strengths using the narrow-resonance approximation. Since the astrophysical factor of the 27Al(p, 𝛼)24Mg
reaction is dominated by narrow resonances, the THM in its formulation for the resonant reaction case [29] was applied, selecting
the QF contribution to the 𝑑(27Al, 𝛼24Mg)𝑛 reaction. Assuming that a single resonance is present (a more generalized treatment can
be found in [17,29,128,129]), the double differential cross section integrated over d𝛺�̂�𝛼24Mg

is given by:

d2𝜎TH
d𝐸𝛼24Mg d𝛺�̂�𝑛28Si

= 1
2𝜋

𝛤𝛼24Mg

(

𝐸𝛼24Mg

)

(𝐸𝛼24Mg − 𝐸𝑅)2 +
1
4 𝛤

2(𝐸𝛼24Mg)
×

d𝜎𝑑(27Al,𝑛)28Si
d𝛺�̂�𝑛28Si

(4.8)

where
d𝜎𝑑(27Al,𝑛)28Si
d𝛺�̂�𝑛28Si

is the differential cross section for the stripping 𝑑(27Al, 𝑛)28Si to the resonant state of 28Si, 𝐸𝛼24Mg is the 𝛼− 24Mg

relative energy, 𝛤 and 𝛤𝛼24Mg are the total and partial width for the resonance under examination. Therefore, if 𝑁𝑖 is the area of
the 𝑖−th peak in the THM cross section described by Eq. (4.8) and 𝜔𝑖 is the statistical factor [163], the strength (𝜔𝛾)𝑖 of the 𝑖−th
resonance is given in arbitrary units by:

(𝜔𝛾)𝑖 =
1
2𝜋
𝜔𝑖𝑁𝑖

𝛤 𝑠.𝑝.
𝑝27Al

d𝜎𝑠.𝑝
𝑑(27Al,𝑛)28Si
d𝛺�̂�𝑛28Si

, (4.9)

where the superscript 𝑠.𝑝. is used to indicate that single-particle wave functions should be used in the calculation of the parameters,
herefore no spectroscopic factors appear.

The 2H(27Al, 𝛼24Mg)𝑛 reaction was measured at the INFN-LNS Tandem (Catania, Italy) using a 80-MeV 27Al beam delivered onto
 CD2 target. The beam energy was chosen to span the 27Al−𝑝 energy range between the threshold and ∼1.5 MeV for normalization
f the THM strengths (Eq. (4.9)) to the resonance strengths in the literature (see [127–129]. Also, the overlap with an energy region

where resonance strengths are known made it possible to carry out validity tests of the method and constrain model parameters.
Fig. 4.5 shows the result of the THM measurement. While the 2H(27Al, 𝛼24Mg)𝑛 QF cross section is dominated by a clear resonant

pattern, in agreement with what expected from the literature. Focusing first on the energy region of astrophysical interest around
100 keV, as marked by the red arrow in the figure, a clear resonance at about 85 keV is apparent, corresponding to the 84.3 keV
25
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Fig. 4.5. Double differential cross section of the 2H(27Al, 𝛼24Mg)𝑛 reaction (black symbols). The red solid line is the result of the fitting using eq.A5 of [29].
Dashed lines are used to highlight the contribution of each resonance. The red arrow marks the energy region of astrophysical interest.
Source: The figure is adapted from Ref. [129].

1− resonance in [162], for which only an upper limit was available. Using Eq. (4.9) and normalizing the strength to those of the
resonances at 903.54 keV and 1388.8 keV (to minimize the normalization error [115,166]) for the first time a value of the strength
was obtained: 1.67 ± 0.32 × 10−14 eV, well within the upper limit 𝜔𝛾 ≤ 2.60 × 10−13 eV in [162]. For the other resonances below about
300 keV, more stringent upper limits than in the latter compilation were introduced, while the THM resonance strengths of states
above 300 keV were found to be in good agreement with those in [162], confirming the validity of the method and indicating the
presence of negligible systematic errors in comparison with the precision.

Using the narrow-resonance approximation and the Monte Carlo code RatesMC (see [167]), we calculated the reaction
rate [129] that turned out to be ∼3 times lower than in [162] at the temperatures where the MgAl cycle is especially important,
around 0.1 GK. These results suggest that the MgAl cycle would not be closed at such temperatures, the (𝑝, 𝛼) channel having a lower
probability than so far adopted. Though further studies of the 27Al(p, 𝛾)28Si reaction are ongoing, being the latter more relevant
for astrophysical considerations, preliminary calculations of AGB star nucleosynthesis were performed. They show that the THM
27Al(p, 𝛼)24Mg reaction rate increases the 27Al yield in stars experiencing soft hot-bottom burning up to ∼25%, for solar metallicity
in the 4 − 5 M⊙ mass domain [129].

4.3.5. The Coulomb-free p-p scattering cross section and the fundamental symmetries in the NN interaction
A recent application to the fundamental symmetries in the NN interactions originated from a previous work whose aim was to

investigate the suppression of the Coulomb amplitude when the THM is applied to scattering processes [168,169]. In particular,
the 𝑝𝑝 scattering was selected because of the presence of a characteristic minimum in the cross section around a center of mass
energy of 200 keV, attributed to the interference between nuclear and Coulomb forces. The quasi-free scattering of protons below
1 MeV, extracted from the 2H(p,pp)n reaction via the Trojan Horse Method (THM) did not show this minimum, a feature that was
interpreted as a clear signature of suppression of Coulomb effects, also thanks to a sound theoretical development to determine the
shape of the HOES 𝑝𝑝 scattering cross section. Strengthened by this result, the quasi-free scattering of protons below 1 MeV, has been
used to obtain the first experimental estimation of the 1S0 Coulomb-free scattering length and effective range for the proton–proton
interaction. In fact, the Coulomb effects need to be theoretically removed from experimental 𝑝-𝑝 data to reveal the strong interaction
contribution to the scattering length. Thus, one starts from the uncorrected 𝑝-𝑝 scattering length using available 𝑝-𝑝 scattering world
data quoted as −7.8063 ± 0.0026 fm [170] and ends to the nuclear 𝑝-𝑝 scattering length applying sophisticated theoretical tools
that can introduce considerable model dependence. The outcome can be as low as −14.9 ± 0.3 fm [171] or up to values ranging
from −16.0 ± 0.3 fm [172] to −17.5 ± 0.3 fm [173]. The scatter of about 2.5 fm between the corrected values can be seen as a
systematic uncertainty coming from theory. Moreover, the model corrections bring an increase in the relative uncertainty of almost
two orders of magnitude.

An almost model-independent quantity is the short-range 1S0 scattering length, where only the long-range Coulomb contribution
is subtracted. This has been determined in [174]: it represents the first direct experimental outcome of the Coulomb free 𝑝-𝑝
scattering length and effective range. To arrive at this result, the s-wave effective-range expansion was used to fit the data, whose
26
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Fig. 4.6. Experimental quasi-free p-p scattering cross section after removal of the residual Coulomb interaction (black solid circles). Error bars indicate ±1𝜎
ncertainties. The result of the fit using Eq. (4.11) is shown as solid black line, while the dotted red, blue and black lines refer to the same equation for 𝑛 − 𝑛,
𝑝 − 𝑝 and 𝑛 − 𝑝 scatterings, respectively, using current accepted values for nuclear 𝑎 and r0 parameters.
ource: The figure is adapted from Ref. [174].

fundamental equations are:

𝑘 cot 𝛿 = −1
𝑎
+ 1

2
𝑟0𝑘

2, (4.10)

where 𝑘 denotes the relative momentum of the 𝑁 𝑁 pair and 𝑎 and 𝑟0 are the scattering length and the effective range parameters,
espectively.

The s-wave 𝑁 𝑁 scattering cross section is given by

𝜎𝑡𝑜𝑡 =
4𝜋

( 1𝑎 −
1
2 𝑟0𝑘

2)2 + 𝑘2
. (4.11)

The fit was carried out using a Bayesian approach, taking 𝑎 and 𝑟0 as free parameters of the model. In particular, a Markov
hain Monte Carlo (MCMC) method was used by means of the emcee Python library [175], which is based on the Goodman &
eare algorithm described in [176]. To account for the large historical dispersion of 𝑎, a weakly informative flat prior distribution

in the interval (−25 fm, −15 fm) was taken. A Gaussian prior distribution was chosen for 𝑟0 with centroid at 2.80 fm corresponding
to the weighted average of the current accepted values from the three 𝑁 𝑁 combinations. See [174] for further details. The numbers
resulting from the procedure are 𝑎𝑝𝑝 = −18.17+0.52−0.58|𝑠𝑡𝑎𝑡 ± 0.01𝑠𝑦𝑠𝑡 fm and 𝑟0 = 2.80 ± 0.05𝑠𝑡𝑎𝑡 ± 0.001𝑠𝑦𝑠𝑡 fm. The result of the fit
s shown in Fig. 4.6 as solid black line with Coulomb free THM p-p scattering data given as black solid circles. Dotted red, blue

and black lines in the same figure refer to Eq. (4.11) with current accepted values for nuclear scattering length and effective range
parameters from 𝑛 − 𝑛, 𝑝 − 𝑝 and 𝑛 − 𝑝 scatterings, respectively.

We found that the extracted value of a𝑝𝑝 includes contributions from the short-range electromagnetic interaction [174].
Interestingly, even in the low-energy regime where the interacting protons exhibit point-like behavior, the s-wave phase shift 𝛿 of
the nucleon–nucleon (NN) interaction in Eq. (4.10) incorporates all the effects arising from short-range interactions. Consequently,
the current analysis of the HOES cross section provides direct insight into the complete short-range 𝑝− 𝑝 interaction, characterized
y its distinctive values of 𝑎 and r0.
The charge symmetry breaking of the short-range interaction and the universal window. Our methodology incorporates the concept of
 universal window that applies to the nucleon–nucleon (NN) system. The universal or unitary window refers to a specific region
haracterized by the presence of a shallow state with an energy close to the threshold. In this region, the two-body scattering length,
enoted as ‘a’, reaches values that are close to infinity. When ‘a’ is large, the shallow state can either be real (a> 0) or virtual (a< 0),
nd its energy is determined by the scattering length according to E ≃ ℏ2/ma2. The shallow nature of this state becomes apparent
hen comparing its energy to a typical energy of the system, ℏ/ml2, where 𝑙 represents a typical length, such as the interaction

ange. When the ratio l/a is much smaller than 1, it indicates that the system is located within the unitary window and experiences
 universal behavior, meaning that the system’s dynamics are largely unaffected by the specifics of the interaction. Instead, it is
rimarily influenced by the long-range behavior, allowing for a description based on only a few parameters [177]. By exploiting

the characteristics of the universal window, we have developed a model that takes into account the short-range interaction between
wo protons being parameterized with a two-parameter Gaussian interaction for nucleon–nucleon (NN) interactions, specifically
27
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applicable to s-wave interactions in the spin singlet channel, as given by:

𝑉𝑁 𝑁 (𝑟) = 𝑉0𝑒
−𝑟2∕𝑟2𝐺 +

𝑒2𝑁 𝑁
𝑟
, (4.12)

with 𝑁 𝑁 ≡ 𝑛𝑛, 𝑛𝑝, 𝑝𝑝 and 𝑒2𝑝𝑝 = 𝑒2 and zero otherwise. For more details on this construction and on how parameters have been
set, please refer to [174]. The model gives the value 𝑎𝑠𝑟𝑝𝑝 = −17.6 ± 0.4 fm, in agreement within experimental errors with the
THM estimate. Recently a new calculation has been performed using a model based on the Eckart potential [178] to capture
oth nuclear and electromagnetic contributions and for which the shape parameters are zero. The model produces the value 𝑎𝑠𝑟𝑝𝑝
 −17.9 ± 0.5 fm, absolutely compatible with the one obtained using the Gaussian interaction. We conclude that this technique
rovides us with parameters to evaluate the charge symmetry breaking of the short-range interaction as a whole. This breakthrough
rompts the proposal of a novel paradigm in the study of charge symmetry breaking, aligning with the current understanding that,
n a fundamental level, the charge dependence of nuclear forces arises from differences in the masses of up and down quarks and
lectromagnetic interactions among quarks.

4.3.6. Status of the 12C+12C fusion measurements and the THM experiment
The 12C+12C fusion is a critical phenomenon in various scenarios involving carbon-rich environments. One notable example is

its impact on the late-stage evolution and nucleosynthesis of intermediate-mass and massive stars (≥ 8 M⊙) [179]. It also influences
the lower mass threshold for carbon ignition, which distinguishes between the progenitors of white dwarfs, novae, and type Ia
supernovae on one hand, and those of core-collapse supernovae, neutron stars, and stellar-mass black holes on the other. This
reaction is considered the ignition process for type Ia supernovae and superbursts, particularly if resonances are found to contribute

ithin the Gamow peak [180]. Furthermore, it affects the weak component of the s-process, responsible for producing elements
anging from iron to strontium. Quiescent carbon burning occurs at temperatures ranging from 0.8 to 1.2 GK, corresponding to sub-

Coulomb center-of-mass energies of 1 to 3 MeV, where the cross-section rapidly decreases below the nanobarn range. Consequently,
the cross-section of this process has never been measured below a center-of-mass energy (E𝑐 𝑚) of 2 MeV. The compound nucleus
(CN) 24Mg is formed at an excitation energy above the 12C+12C decay threshold.

The primary channels involved in 12C + 12C fusion at astrophysical energies are those that emit protons and 𝛼 particles. These
hannels have been studied by detecting the charged particles and/or the 𝛾 decay. Among them, the most significant branching
ccurs during the de-excitation of the first excited states of 23Na and 20Ne, as well as their ground states. Measuring the 12C +

12C cross-section at low energies presents significant challenges due to the exponential decrease in cross-section, resulting in a
ery low counting rate. Thus, it is crucial to carefully account for any natural or beam-induced background to ensure accurate

measurements. A detailed explanation of these challenges can be found in Ref. [181], which provides the first measurement of
he cross-section down to 𝐸c.m. = 2.14 MeV, the lowest energy ever reached for this reaction. The obtained astrophysical 𝑆-factor
eveals new resonances below 3 MeV, including a substantial increase at the lowest energies. This discovery has stimulated further
xperimental investigations. Here, we summarize recent studies that present the total 𝑆-factor as the final result. In Ref. [182], a
easurement was conducted using a sphere array of 100 Compton-suppressed Ge detectors in coincidence with silicon detectors.
his measurement pushed down to 𝐸c.m. = 2.84 MeV and 2.96 MeV for the proton and 𝛼 channels, respectively. Significant progress

n direct experiments was made in the study presented in [183], where a measurement down to 𝐸c.m. = 2.2 MeV was reported.
This was achieved using the particle-𝛾 coincidence technique. Charged particles were detected using annular silicon strip detectors,

hile 𝛾-ray detection was performed using an array of LaBr3(Ce) scintillators. Further advancements were published in [184], where
similar techniques were employed on thick targets. Specifically, 𝑝 and 𝛼 particles were detected using a silicon detector array,

hile 𝛾-ray detection was carried out using a high-efficiency HPGe detector. Recent results from this collaboration are reported in
[185]. Significant target deterioration caused by beam accumulation highlights an urgent need for new target technology for such
experiments. Another measurement of proton and alpha particles at 𝐸c.m. > 2.5 MeV [186], challenges the typical assumption of
sotropic angular distributions.

The hindrance effect. The challenges associated with accurately predicting the low-energy extrapolation of fusion reactions involving
12C+12C and other light ions were further complicated by the suggestion that the low-energy cross section might be reduced due
to a ‘‘hindrance’’ effect, defined as the steepening of the exponential slope of the fusion excitation function at deep sub-barrier
energies [187]. The ‘‘hindrance’’ in the fusion cross section appears to be a systematic behavior for reactions with Q𝑣𝑎𝑙 <0 [188,189]
and it can be attributed to various factors, including the incompressibility of nuclear matter [190]. Alternative explanations for the
sudden decrease in cross section data towards very low energies in heavy ion fusion systems include deformation, which has been
observed in medium-mass systems at very low sub-Coulomb energies [191–193], as well as a possible cluster-structure effect, as
shown in [194,195]. However, the extent of this effect in light ion fusion systems having Q𝑣𝑎𝑙 >0, is not clear, and in particular,
in reactions like 12,13C+12,13C or 16O+16O, has not been experimentally verified [196]. In particular, results from [196] rules out
the existence of the maximum in the astrophysical S(E) factor predicted by the hindrance model, while confirming its rising trend
towards lower energies. The ‘‘hindrance’’ effect is not confirmed theoretically either, as it is not observed in time-dependent Hartree–
Fock (TDHF) calculations [193] or in a combination of mean-field and cluster models [197]. The hindrance factor in 12C+12C fusion
is predicted to have a significant impact on the low-energy extrapolation of the cross section, as given by several stellar model
simulations [198–201].

While hindrance may reduce the overall transmission probability through the Coulomb barrier, it cannot be considered in
isolation and needs to be examined in the context of possible low-energy resonances. Due to the extremely rapid decline in the
low cross section, it is unlikely that direct experimental measurements of fusion will provide significant insights into very low
nergies, despite ongoing efforts by the experimental community.
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Fig. 4.7. Fusion excitation function for 6Li+120Sn vs. �̄� (open symbols) and E𝑒𝑓 𝑓 (closed symbols), respectively. The solid black line represents the result of the
deconvolution procedure [202], while the blue shaded region indicates the uncertainty associated with the procedure.

It is also important to remind here that an experimental challenge in measuring low energy fusion cross sections, where one has
a very strong energy dependence of the cross section due to Coulomb barrier penetrability, is to associate the mean measured cross
section with a properly determined effective interaction energy ER. If this is not carefully done, one generates an uncertainty in
the extracted excitation function and, as a consequence, also on the presence of possible ‘‘hindrance’’ effects. Indeed, as discussed
in detail in [202], each measured cross section is a mean value of the cross section, averaged over the probability D(E,t) of finding
a beam particle of energy E inside the target of thickness t. D(E,t), in turn, depends on the beam energy distribution before the
target, on the energy loss and straggling processes inside the target and also on the target uniformity. This last point depends
on the type of target chemical composition and on the used deposition procedures and may have non negligible effects [202]. As
demonstrated in [202], plotting the experimentally determined mean cross section as a function of an effective energy E𝑒𝑓 𝑓 , obtained
by weighting the beam energy in the target with the exponentially varying cross section, can lead to an incorrect determination of
the excitation function. When dealing with homogeneous targets, it is expected that the effective energy (E𝑒𝑓 𝑓 ) will consistently shift
towards higher values compared to the simple mean beam energy (𝐸). This shift occurs due to the weighted average considering
the exponential growth of the cross-section. This phenomenon is illustrated in Fig. 4.7, which displays the measured sub-barrier
fusion excitation function for 6Li+120Sn plotted against 𝐸 (open symbols) and E𝑒𝑓 𝑓 (closed symbols), respectively. The solid black
line represents the outcome of the deconvolution procedure [202], while the blue shaded region indicates the associated uncertainty
linked to the procedure.

When non-uniformities are present in the target, even predicting this shift becomes more complex, and it has been observed that
the magnitude of the shift varies from one target to another. Unfortunately, the above aspects are often not thoroughly discussed
in published papers, leaving potential doubts on the uncertainties affecting the final results. For these reasons, it would be useful
for the community if future experimental studies on this interesting topic will report more details on all of the above aspects.

The 12C+12C THM measurement. To overcome the limitations imposed by the low counting rate, an indirect measurement was
performed using the Trojan Horse Method (THM) [203]. The measurement relies on the quasi-free (QF) kinematics of 14N + 12C
with 2H as the spectator, which leads to 12C + 12C reactions. The 𝛼 or 𝑝 particles were detected in coincidence with the spectator
𝑑 particle using silicon telescopes on either side of the beam directions, covering the angular regions of the QF kinematics for
the relevant breakup process. The THM measurement provided the two-body cross section for four channels: 20Ne+𝛼0, 20Ne+𝛼1,
23Na+𝑝0 and 23Na+𝑝1 in the entire astrophysical region of interest from 𝐸c.m. = 2.7 MeV down to 0.8 MeV, revealing well-resolved
resonance structures. These THM results were normalized to available direct data at 𝐸c.m. = 2.5–2.63 MeV. The normalization error
for the obtained results is 5%. Details can be found in [203].

The results are shown in Fig. 4.8 in terms of total modified S(E) factor, S(E)∗ [30]. The black middle line represents the best fit
curve while the gray band is the result of modified R-matrix calculations with lower and upper values of the resonance parameters
as resulting from their uncertainties. Several existing direct data points below 𝐸c.m. = 4 MeV are presented as follows: gray filled
circles [181], purple filled triangles [204], blue empty squares [205], blue filled stars [206], blue filled triangles [207], red filled
29
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Fig. 4.8. THM total S(E)∗ factor (black solid line). The gray band represents the region spanned by modified R-matrix calculations with lower and upper values
of the resonance parameters. Available direct data in the E𝑐 .𝑚. range below 4 MeV are reported as gray filled circles [181], purple filled triangles [204], blue
empty squares [205], blue filled stars [206], blue filled triangles [207], red filled diamonds [208], green filled triangles [209], green filled squares [182], black
filled squares [183] and blue filled squares [184].

diamonds [208], green filled triangles [209], green filled squares [182], black filled squares [183], and blue filled squares [184].
It is worth noting that, except for the data from [181,183,184], the lower energy limit of these data points is determined by the
background caused by hydrogen contamination in the targets. When excluding these instances, the agreement between the THM
data and the direct data is apparent, within the experimental uncertainties, except for the direct data’s low-energy limit around
2.14 MeV. Contrary to the claim of a strong resonance at that energy, the THM data suggest the presence of a nearby resonance at
2.095 MeV. This finding aligns with spectroscopy studies documented in [210,211], which demonstrate a pronounced dip at 2.14
MeV and no notably robust alpha state around 2.1 MeV. Additionally, the agreement remains satisfactory with data down to an
energy of 𝐸c.m. = 2.15 MeV from [212] for the 12C(12C, 𝑝0,1)23N reactions. The obtained result is also consistent within experimental
errors with the total 𝑆(𝐸)∗ from recent studies [182–184], although the upper limit for the proton channel below 𝐸c.m. = 3 MeV
eported in [184] is significantly lower than the other results.

Following these results [203], theoretical calculations [213] based on a distorted wave Born approximation (DWBA) approach
were presented. The authors’ claim was the need to include Coulomb distortions through the introduction of a renormalization factor.
This has the effect of lowering the THM astrophysical factors by many orders of magnitude, regardless of the existence of resonances
nd in apparent contradiction with the experimental data. However, the convergence of the calculations involving a transfer to an
nbound system is not obvious and from a careful examination, it turns out that, on top of other things, the numerical stability of the

proposed theory is not guaranteed. This implies that results are very sensitive to details of the model space and the calculated trend
of the THM S(E)∗ is questionable. Theory calculations employing the Feynman path-integral method [214] have produced S(E)
actor values that exhibit agreement with the THM (two-step multichannel) results. However, these values are inconsistent with
he Coulomb correction applied to the THM results in [213]. This discrepancy serves as a cautionary note regarding extrapolation

procedures that do not take into account the contributions from resonant states. In [215], coupled channel calculations effectively
haracterize the 12C+12C fusion resonances near the Coulomb barrier energies. They incorporate a weak absorption mechanism that
epends on angular momentum and has been adjusted to match the experimental fusion data. A more recent study [216] utilized

the antisymmetrized molecular dynamics (AMD) model combined with R-matrix to investigate the behavior of the 24Mg CN using
different cluster configurations. The study indicates the presence of prominent molecular states formed by the combination of 12C
and 12C nuclei. These states subsequently undergo fragmentation, resulting in numerous narrower resonances, primarily consisting of
0+ and 2+ states, due to the influence of channel coupling. These results align with the THM experimental spectrum of multiple states
bserved at low energies, though significantly lower than the current experimental trend of the S(E) factor. However, calculations
till need to include other contributions, such as the non-resonant one or potential interference effects.

Impact of the 12C+12C THM rate in astrophysics. Fig. 4.9 illustrates the THM reaction rate divided by the reference rate from [217]
at relevant temperatures.

Below 2 GK, the rate experiences a significant increase, ranging from a factor of 1.18 at 1.2 GK to more than 25 at 0.5 GK. In
he regime of hydrostatic carbon burning, which spans from 0.6 to 1.2 GK, this rate increase has implications for the ignition of
arbon in massive stars. Stellar modeling studies presented in [199] indicate that for a 25 solar mass star undergoing core carbon
urning, the ignition temperature and density would decrease by approximately 10% and 30% respectively. The substantial increase
bserved at 0.5 GK, primarily driven by the resonant structure around Ec.m. = 1.5 MeV, aligns with the conjectured value proposed
n [218]. This value suggests that theoretical superburst ignition depths in accreting neutron stars could be reduced by a factor
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Fig. 4.9. Ratio between the total THM12C+12C reaction rate (black line) from [203] and the reference one (red line) from [217]. The gray shading defines the
region spanned considering the ±1𝜎 uncertainties. The designated color shades represent typical temperature ranges associated with carbon burning in various
scenarios: the light blue shade corresponds to superbursts occurring in accreting neutron stars, the light red shade represents hydrostatic carbon burning in
massive stars, and the light green shade refers to explosive carbon burning.
Source: The figure is adapted from Ref. [30].

of 2, assuming a realistic range of crust thermal conductivities and core Urca neutrino emissivities. This change is consistent with
the superburst ignition depths inferred from observations, implying that carbon burning can indeed trigger superbursts. Recent
investigations conducted in [219] explore the impact of the new carbon fusion cross-sections on Type Ia Supernovae. The progenitor
systems of these supernovae, which are not yet fully understood, include the popular double-degenerate (DD) scenario, attributing
Type Ia Supernovae to mergers of white dwarf binaries. The resonance-induced decrease in the carbon burning ignition temperature
may facilitate accretion-induced collapse and increase the birthrate of Galactic neutron stars. Consequently, the contribution of the
DD scenario to the Type Ia Supernovae rate becomes even smaller. The effects of the THM reaction rate on the upper bound for the
progenitor mass of carbon-oxygen white dwarfs (Mup) and the lower bound for the progenitor mass of normal Type II supernovae
(M∗) have been analyzed in [220]. The results show that Mup is reduced from 8 to 7.5 solar masses, while M∗ approaches 10 solar
masses. Recently, we explored the impact of the 12C+12C THM measurement on the compactness of a star [200]. Specifically, we
examined how this measurement affects the binding energy of the inner mantle during the onset of core collapse. The findings reveal
a significant alteration in the relationship between compactness and initial mass compared to previous results obtained by using
the classical reference cross section given in [217]. In this case, we observe a non-monotonic but well-defined behavior, and there
is no scattering of the compactness around the main trend. This occurrence has potential implications for the possibility of stellar
explosions.

5. Advances addressing next challenges

In advanced stages of stellar nucleosynthesis, the study of reactions between medium to heavy nuclei is crucial. The study of these
reactions faces significant challenges due to the presence of the Coulomb barrier, as the astrophysical energies involved are typically
several MeV below it. Multiple decay channels contribute to the each reaction, usually tackled through the 𝛾-particle coincidence
technique to reduce the background. This technique prevents access to the exit channels where the reaction products are in their
ground states. In this context, the Trojan Horse Method (THM) is regarded as the sole viable approach to investigate and gain access
to these desired exit channels. To successfully apply the Trojan Horse Method (THM) in these cases, it is first necessary to carefully
select appropriate Trojan Horse nuclei that can transfer composite clusters like 12C, 16O, and 22Ne. After the well-known 12C+12C
fusion reactions, other relevant processes such as 12C+16O, 16O+16O, and 22Ne(𝛼,n) are currently being investigated. These studies
require parallel efforts from both experimental and theoretical perspectives. From the experimental standpoint, it is essential to verify
the accuracy of the factorization of the reaction cross section compared to more sophisticated approaches that consider the three-
body nature of the final states and fully account for the final state interactions between the nuclei. Consequently, experimental setups
and data analysis must be conducted meticulously and selectively. Strict kinematic conditions need to be imposed, and only a fraction
of the available data can be utilized to satisfy the specific requirements of cross section factorization while still obtaining sufficient
statistical information. Ongoing advancements in theory are currently being evaluated starting from the ‘‘Surrogate Method’’, aiming
to incorporate distorted waves in a coherent manner, particularly in processes described as transfers to the continuum. These
developments seek to enhance the understanding and description of the studied reactions. In the next paragraphs, a taste of such
advancements is given.
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5.1. Astrophysical cross sections from the surrogate method

5.1.1. Reminder of the surrogate method
The surrogate method (SRM) provides an alternative method to indirectly extract cross sections for a process of the form

𝑥 + 𝐴 → 𝑐 + 𝐶 from the auxiliary (‘‘surrogate’’) reaction 𝑎 + 𝐴 → 𝑏 + 𝑐 + 𝐶. The method assumes that the two processes take place
via the formation of an intermediate CN 𝐵 that subsequently decays into the desired final channel, i.e., 𝑎+𝐴→ 𝑏+𝐵∗ → 𝑏+ 𝑐 +𝐶.
A detailed review of the method can be found in Ref. [221]. A brief outline is provided here. Following Bohr’s hypothesis, it is
assumed that in these reactions the formation and decay of a CN take place independently of each other. For the process of interest,
this allows us to write the cross section as:

𝜎(𝑥 + 𝐴→ 𝑐 + 𝐶) =
∑

𝐽𝑇 ,𝜋
𝜎𝐶 𝑁𝑥+𝐴→𝐵(𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) , (5.1)

where 𝜎𝐶 𝑁𝑥+𝐴→𝐵(𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) is the cross section for the CN formation for a given angular momentum 𝐽𝑇 , parity 𝜋 and excitation
energy E𝑒𝑥 and 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) the branching ratio for the decay in the channel 𝑐 + 𝐶. The objective of the surrogate method is to
experimentally determine or constrain the decay probabilities 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋), which are often difficult to calculate accurately.

In the surrogate reaction, the same 𝐵∗ nucleus is formed and the decay product of interest (𝑐 + 𝐶) is measured in coincidence
with the outgoing particle 𝑏. The probability for this process can be written as:

𝑃𝑆 ,𝑐+𝐶 (𝐸𝑒𝑥) =
∑

𝐽𝑇 ,𝜋
𝐹𝐶 𝑁𝑆 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) , (5.2)

where the subscript 𝑆 denotes the specific surrogate reaction (in our case, the transfer reaction 𝑎+𝐴→ 𝑏+𝑐+𝐶), 𝐹𝐶 𝑁𝑆 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) is the
probability of forming 𝐵∗ in this surrogate reaction (with specific values of 𝐸𝑒𝑥, 𝐽 and 𝜋) and 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) is the same branching
ratio appearing in the direct reaction (5.1). The probability 𝑃𝑆 ,𝑐+𝐶 (𝐸𝑒𝑥) can be obtained experimentally as the ratio between the
number of coincidences between the 𝑏 particle and the decay particle 𝑐, 𝑁𝑆 ,𝑐+𝐶 , and the total number of surrogate events, 𝑁𝑆 , i.e.:

𝑃 𝑒𝑥𝑝𝑆 ,𝑐+𝐶 (𝐸𝑒𝑥) =
𝑁𝑆 ,𝑐+𝐶

𝑁𝑆 × 𝜖𝑐+𝐶
, (5.3)

where 𝜖𝑐+𝐶 is the efficiency of detecting the exit-channel 𝑐 + 𝐶 for the reactions in which 𝑏 is detected.
Ideally, if a reliable prediction of 𝐹𝐶 𝑁𝑆 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) is possible, with an accurate determination of 𝑃 𝑒𝑥𝑝𝑆 ,𝑐+𝐶 (𝐸𝑒𝑥) for a range of energies

and angles of 𝑏, it might be possible to extract 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) which can then be used to calculate the desired cross section using
(5.1). In practice, this approach is not always feasible due to the lack of some of this required information and the approach has
relied on additional approximations. In particular, most practical applications have made use of the so-called ‘‘Weisskopf–Ewing
approximation’’, which assumes that the branching ratios 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) are independent of the angular momentum and spin,
giving rise to the simplified cross section:

𝜎(𝑥+𝐴→𝑐+𝐶)(𝐸) = 𝜎𝐶 𝑁𝑥+𝐴→𝐵(𝐸𝑒𝑥) 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥) , (5.4)

where 𝜎𝐶 𝑁𝑥+𝐴→𝐵(𝐸𝑒𝑥) is to be understood as the CN cross section summed over all possible 𝐽𝑇 , 𝜋 values. Applying the same
approximation to the surrogate reaction, and using ∑

𝐽𝑇 ,𝜋
𝐹𝐶 𝑁𝑆 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋) = 1 we have

𝑃𝑆 ,𝑐+𝐶 (𝐸𝑒𝑥) = 𝐺𝐶 𝑁𝑐+𝐶 (𝐸𝑒𝑥) , (5.5)

allowing the determination of the desired cross section as

𝜎𝑥+𝐴→𝑐+𝐶 (𝐸) = 𝜎𝐶 𝑁𝑥+𝐴→𝐵(𝐸𝑒𝑥) 𝑃𝑆 ,𝑐+𝐶 (𝐸𝑒𝑥) , (5.6)

which avoids the need of the probabilities 𝐹𝐶 𝑁𝑆 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋).

5.1.2. Determination of the formation probability in the IAV model
When the Weisskopf–Ewing assumption is not fulfilled, one needs to return to the more general expression (5.2), which depends

n the formation probabilities 𝐹𝐶 𝑁𝑆 (𝐸𝑒𝑥, 𝐽𝑇 , 𝜋). In some recent applications of the SRM method [222], the authors propose to evaluate
this quantity with the help of the Ichimura–Austern–Vincent (IAV) model [223]. This model was originally devised to evaluate the
singles cross section for inclusive breakup reactions of the form 𝑎 + 𝐴 → 𝑏 + 𝐵∗ in which only the 𝑏 particle is detected in the final
channel. The model has been recently revisited and applied by several groups [224–227]. We give a brief description here and refer
the reader to the latter references for further details. We consider the scattering of a two-body projectile (𝑎 = 𝑏 + 𝑥) off a target
𝐴. We assume that 𝑏 behaves as a spectator so that the 𝑏 + 𝐴 interaction is described with some optical potential, while the 𝑥 + 𝐴
interaction is given by a microscopic potential. Therefore, the full Hamiltonian of the system is expressed as

𝐻 = 𝑇𝑎𝐴 + 𝑉𝑥𝐴(𝑟𝑥, 𝜉𝐴) + 𝑈𝑏𝐴(𝑟𝑏𝐴) + 𝑇𝑏𝑥 + 𝑉𝑏𝑥(𝑟𝑏𝑥), (5.7)

where 𝜉𝐴 denotes the degrees of freedom of the target nucleus and 𝑇𝑎𝐴, 𝑇𝑏𝑥 are kinetic energy operators for the 𝑎 + 𝐴 and 𝑏 + 𝑥
elative motions, respectively. The interactions 𝑉𝑥𝐴 and 𝑈𝑏𝐴 are the microscopic and optical potential between 𝑥 + 𝐴 and 𝑏 + 𝐴,
espectively.

In DWBA, the differential breakup cross section for the population of an excited state of the 𝑥 + 𝐴 system as a function of the
angle of the observed fragment 𝑏 and the kinetic energy of the final channel 𝐸𝑏𝐵 is given by

𝑑2𝜎 = 2𝜋 𝜌(𝐸𝑏𝐵)
∑

𝛿(𝐸𝑎𝐴 − 𝐸𝑏𝐵 − 𝐵𝑎 − 𝐸𝑥𝐴)|⟨𝜒
(−)
𝑏𝐵 (�⃗�𝑏)𝛷

𝑓
𝑥𝐴|𝑉post |𝜒𝑎𝐴𝜙𝑎𝜙𝐴⟩|

2, (5.8)
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where 𝜌(𝐸𝑏𝐵) is the density of states of 𝑏 particles, where 𝑉post = 𝑉𝑏𝑥 + 𝑈𝑏𝐴 − 𝑈𝑏𝐵 with 𝑈𝑏𝐵 an auxiliary and, in principle, arbitrary
otential generating the distorted wave 𝜒 (−)

𝑏𝐵 , 𝛷𝑓
𝑥𝐴(𝑟𝑥, 𝜉𝐴) are the states of the 𝑥+𝐴 system, 𝜙𝑎(𝑟𝑏𝑥) and 𝜙𝐴(𝜉𝐴) represent the ground

tate wave functions of the projectile and target, respectively, and 𝜒𝑎𝐴 is a distorted wave, solution of a potential 𝑈𝑎(�⃗�), typically
escribing 𝑎+𝐴 elastic scattering. The delta function ensures energy conservation, with 𝐸𝑖 = 𝐸𝑓 = 𝐸𝑏𝐵 +𝐸𝑥𝐴 ≡ 𝐸. By expressing the

energy-conserving delta function in Eq. (5.8) as the imaginary part of an energy denominator, the sum over final 𝑥+𝐴 states can be
erformed using completeness of these states, leading to a closed-form expression for the inclusive breakup cross section. For many
pplications, it is convenient to separate the elastic breakup (EBU) and nonelastic breakup (NEB) cross sections, distinguishing the
ituation in which the target is left in its ground state from the case in which it undergoes some kind of excitation. This separation
an be formally done using the techniques proposed by Kasano and Ichimura [228]. The final formula for the NEB part results

𝑑2𝜎NEB

𝑑 𝛺𝑏 𝑑 𝐸𝑏𝐵
= − 2𝜋

ℏ𝑣𝑖
𝜌(𝐸𝑏𝐵)⟨𝜑𝑥(�⃗�𝑏)|𝑊𝑥𝐴|𝜑𝑥(�⃗�𝑏)⟩ , (5.9)

where 𝑣𝑖 is the relative velocity in the entrance channel, 𝑊𝑥𝐴 is the imaginary part of the 𝑥+𝐴 optical potential 𝑈𝑥𝐴 and 𝜑𝑥(�⃗�𝑏, ⃗𝑟𝑥)
the so-called 𝑥-channel wave function

𝜑𝑥(�⃗�𝑏, ⃗𝑟𝑥) = 𝐺opt (+)
𝑥𝐴 ⟨𝑟𝑥𝜙𝑏𝜒

(−)
𝑏 (�⃗�𝑏)|𝑉post |𝜒 (+)

𝑎 𝜙𝑎⟩ (5.10)

with

𝐺opt (+)
𝑥𝐴 (𝐸 − 𝐸𝑏𝐵) = 1

(𝐸+ − 𝐸𝑏𝐵 − 𝑇𝑥𝐴 − 𝑈𝑥𝐴)
(5.11)

The 𝜑𝑥(�⃗�𝑏, ⃗𝑟𝑥) function describes the relative motion between the captured particle (𝑥) and the target, when the spectator particle
is scattered with momentum �⃗�𝑏. Asymptotically, this function has the usual spherical outgoing wave behavior.

The NEB accounts for breakup processes that involve any kind of nonelastic process of the 𝑥 + 𝐴 system, including transfer to
ound states, projectile dissociation (𝑎 = 𝑏+ 𝑥) accompanied by target excitation or the formation of some 𝐴+ 𝑥 CN. In the present
ork, we are interested in this latter process. This suggests that, for practical applications of the method, one might replace the full

maginary part 𝑊𝑥𝐴 by a short-ranged imaginary potential that simulates the 𝑥+𝐴 fusion. Work is currently in progress to implement
he aforementioned strategy to extract cross sections of astrophysical interest combining the SRM and IAV models. These results

can provide valuable insights that may lead to refinements and advancements in THM theory.

6. Summary and outlook

In this comprehensive review, we delve into two commonly employed indirect techniques for extracting information about
astrophysical reactions, the ANC and the THM, which utilize transfer reactions to determine reaction cross sections that are relevant
in the field of nuclear astrophysics. The ANC method primarily focuses on determining the normalization of the tail of the overlap
function. It is particularly useful for evaluating the direct capture reaction rate associated with a specific nuclear level. The THM
offers a means of determining the reaction rate for rearrangement reactions by extracting the cross section for a binary process using
a surrogate ‘‘Trojan Horse’’ particle. This method provides valuable insights into such reactions without directly measuring them.
We have presented the theoretical formulations of these methods in a comprehensive and instructive manner, highlighting their
adaptability to experimental requirements. While the employed approximations have proven successful, further investigations using
refined approaches in future calculations can explore their validity in greater detail. Both the ANC and THM have demonstrated
their effectiveness in various experiments related to astrophysical phenomena. Here we have provided a sample deriving from
recent experimental works. Looking ahead, with the emergence of next-generation rare isotope facilities, the ANC and THM are
poised to become even more powerful tools. These methods will play a crucial/unique role in addressing new challenges in nuclear
astrophysics, such as the study of neutron captures on unstable nuclei or, apparently more trivially, decay channels that involve
nuclei in their ground states where the typical 𝛾-particle coincidence technique to reduce the background cannot be applied. This
last plays a role of primary importance in astrophysical reactions between medium-heavy ions that are crucial in late evolutionary
stages of massive stars in terms of energy generation and production of heavy elements. By utilizing these techniques, researchers
can make significant advancements in understanding the intricate processes that occur in stellar environments.
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