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One of the hot topics in hadron physics is the study of the new exotic charmonium states
and the determination of their internal struture. Another important topic is the study of
the magnetic field produced in relativistic heavy ion collisions and its effects on observables.
In this note we show that we can use ultra-peripheral collisions to address both topics. We
compute the cross section for the production of the D+D− molecular bound state in photon-
photon collisions and also the cross section for π0 production in the target induced by the
magnetic field of the projectile. Both cross sections are sizeable and their measurement would
be very useful to elucidate the above mentioned questions.
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1 Introduction

In ultra-peripheral collisions (UPCs) target and projectile do not overlap and stay intact. As a con-
sequence only few particles are produced, the background is reduced and we can study more carefully
specific particle production processes, such as those addressed here. These features have been explored at
the large hadron collider (LHC) at CERN and at the relativistic heavy ion collider (RHIC) at Brookhaven.
In UPCs the elementary processes which contribute to particle production are photon-photon, photon-
Pomeron and Pomeron-Pomeron fusion. They are a good environment to search for particles which are
more difficult to identify in central collisions 1.

In this work we discuss two processes of particle production, which may be studied in UPCs: produc-
tion of D+D− meson molecules and production of forward pions. In the first we can gain some insight
on the nature of these exotic charmonium states and in the second we can measure the magnetic field
produced by relativistic heavy ions. In the next section we briefly describe the formalism employed to
study the production of charm molecules, in the following section we address forward pion production
and at the end we present some conclusions.

2 Production of charm meson molecules

One important research topic in modern hadron physics is the study of the exotic charmonium states
2. These new mesonic states are not conventional cc̄ configurations and their minimum quark content
is cc̄qq̄. The main question in the field is: are these multiquark states compact tetraquarks or are they
large and loosely bound meson molecules? Perhaps the largest fraction of the community tends to believe
that they are molecules. One of the frequently invoked arguments is that the masses of almost all these
states are very close to thresholds, i.e. to the sum of the masses of two well known meson states 2,3,4. A
genuine tetraquark state could in principle have any mass, including masses far from thresholds. Besides,
some problems have been detected in the calculation of tetraquark masses with QCD sum rules 5,6.
Nevertheless, so far there is no conclusive answer.

The production of hadron molecules has been discussed in the context of B decays3, in e+e− collisions,
in proton-proton 4,7,8, in proton-nucleus, in central nucleus-nucleus collisions 9 and also in UPCs 10. In
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Figure 1 – a) Feynman diagrams for the process γγ → D+D−. b) Cross sections of the process e+e− → e+e−cc̄
as a function of the energy

√
s. Points are a compilation of LEP data published in arXiv:hep-ex/0010060 [hep-ex].

Lines represent the results obtained with Eq.(15) adapted to e+e− → e+e−D+D−.

this section we focus on the D+D− molecule production in UPCs, but the method employed here is
applicable to all molecular states.

The D+D− pair is produced from two photons. This process can be described by well known
hadronic effective Lagrangians, from which we obtain the pair production amplitude. This amplitude
is subsequently projected onto the amplitude for bound state formation. If the properties of the bound
state are known, the only unknown in this formalism is the form factor, which must be attached to the
vertices to account for the finite size of the hadrons.

We will study the process γγ → D+D− with the Lagrangian densities 11

L = (Dµϕ)
∗(Dµϕ)−m2

Dϕ
∗ϕ− 1

4
FµνF

µν , (1)

and

L = −igγD+D∗−Fµνϵ
µναβ(D∗−

α ∂βD
+ − ∂βD

∗−
α D+ +D−∂βD

∗+
α − ∂βD

−D∗+
α ) , (2)

where

Dµϕ = ∂µϕ+ ieAµϕ , Fµν = ∂µAν − ∂νAµ , (3)

and ϕ, D∗ and Aµ represent the pseudoscalar charm meson (with mass mD), the vector charm meson
(with massm∗

D) and the photon field, respectively. The Feynman rules can be derived from the interaction
terms and they yield the Feynman diagrams for the process γγ → D+D− shown in Fig. 1a. In the figure
we also show the quadrimomenta of the incoming photons kµ = (Ep, 0, 0,k), k

′µ = (Ek′ , 0, 0,k′) and of
the outgoing mesons pµ = (Ep, 0, 0,p), p

′µ = (Ep′ , 0, 0,p′). The scattering amplitude can be derived
from the Feynman rules.

As usual, we include form factors, F (q), in the vertices of the amplitudes. We shall follow 12 and use
the monopole form factor given by

F (q2) =
Λ2 −m2

D(∗)

Λ2 − q2
, (4)

where q is the 4-momentum of the exchanged meson and Λ is a cut-off parameter. This choice has the
advantage of yielding automatically F (m2

D) = 1 and F (m2
D∗) = 1 when the exchanged meson is on-shell.

The above form is arbitrary but there is hope to improve this ingredient of the calculation using QCD
sum rules to calculate the form factor, as done in 13, thereby reducing the uncertainties. Taking the
square of the amplitude and the average over the photon polarizations it is straigthforward to calculate
the cross section:

σ =
1

64π2

1

ŝ

√
1−

4m2
D

ŝ

∫
|M(γγ → D+D−)|2dΩ . (5)

where ŝ = (k+k′)2. We emphasize that the only unknown in our calculation is the cut-off parameter Λ. In
what follows, we will determine it fitting our cross section to the LEP data on the process e+e− → e+e−cc̄.
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From the D+D− pair we can construct a bound state (denoted B). As in 4, we impose phase space
constraints on the mesons, forcing them to be “close together”. Here we do this through the prescription
discussed in 14. The bound state |B⟩ is defined as

|B⟩√
2EB

≡
∫

d3q

(2π)3
ψ̃∗(q)

1√
2Eq

1√
2E−q

|q,−q⟩, (6)

where EB is the bound state energy, q is the relative three momentum between D+ and D− in the state
B, E±q are the energies of D+ and D− and ψ̃(q) is the bound state wave function in momentum space.
From Eq. (6), we can write the following relation between the amplitudes:

M(γγ → B)√
2EB

=

∫
d3q

(2π)3
ψ̃∗(q)

1√
2ED+

1√
2ED−

M(γγ → D+D−), (7)

We assume that the p ≃ p′ and hence ED+ ≃ ED− = ED. Consequently, the relative momentum
q = p − p′ is close to zero. Therefore the energy ED and the amplitude M(γγ → D+D−) depend only
weakly on q and can be taken out of the integral. Moreover, since the binding energy is small we have
EB ≃ 2ED and hence

M(γγ → B) = ψ∗(0)

√
2

EB
M(γγ → D+D−) . (8)

With the amplitude above we calculate the cross section for bound state production:

dσ =
1

H

d3pB
(2π)3

1

2EB
(2π)4δ(4)(k + k′ − pB)|M(γγ → B)|2, (9)

where pB is the momentum of the produced bound state and H is the flux factor. In the center of mass
frame of the AA→ AAB collision, we have

k = (ω1, 0, 0, ω1) , k′ = (ω2, 0, 0,−ω2) , pB ≡ p+ p′ = (EB , 0, 0, ω1 − ω2) , (10)

where EB =
√
(ω1 − ω2)2 +m2

B and ω1 and ω2 are the energies of the colliding photons. The flux factor
is then given by H = 8ω1ω2. The integrated cross section reads:

σ(ω1, ω2) =
2π

2(4ω1ω2)

∫
d3pB
2EB

δ(ECM − EB)δ
(3)(k+ k′ − pB)

[
2

EB
|ψ(0)|2|M(γγ → D+D−)|2

]
(11)

where E2
CM = 4ω1ω2. To complete the calculation we need the bound state wave function at the origin

|ψ(0)|2. In 15 a similar bound state of open charm mesons was studied with the Bethe-Salpeter equation
and an expression for the wave function was derived. Here we will just quote the final expression needed
to calculate ψ(0), which is given by:

ψ(0) =
−8µπg

(2π)3/2

(
Λ0 −

√
2µEb arctan

(
Λ0√
2µEb

))
, g2 =

√
2µEb

8πµ2(arctan( Λ0√
2µEb

)−
√
2µEbΛ0

2µEb+Λ2
0
)
. (12)

In the above expressions µ is the reduced mass (µ = mD/2), Λ0 is a cut-off parameter and Eb is the
binding energy. We shall follow 16 and assume that Λ0 = 1 GeV. From 16 we see that one can compute
the (dynamically generated) mass of a bound state and then determine its binding energy. Knowing µ,
Eb and fixing Λ0, we can use (12) to calculate ψ(0). In what follows our reference value will be obtained
using mD = 1870 MeV and the mass of the bound state equal to MB = 3723 MeV, as found in 16. With
these numbers we get Eb = 17 MeV and |ψ(0)|2 = 0.008 GeV3.

The equivalent photon approximation is well known and it is described in several papers 17. In
general, when the photon source is a nucleus one has to use form factors and the calculation becomes
somewhat complicated. Here we will follow 18 and define an UPC in momentum space. The distribution
of equivalent photons generated by a moving particle with the charge Ze is 18:

n(q)d3q =
Z2α

π2

(q⊥)
2

ω q4
d3q =

Z2α

π2ω

(q⊥)
2

((q⊥)2 + (ω/γ)2)
2 d

3q (13)

where q is the photon 4-momentum, q⊥ is its transverse component, ω is the photon energy and γ is the
Lorentz factor of the photon source (γ =

√
s/2mp where mp is the proton mass). To obtain the equivalent

3
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Figure 2 – Cross sections for D+D− bound state production as a function of the energy
√
s. a) Dependence on q̂

for fixed Λ. b) Dependence on Λ for fixed q̂.

photon spectrum, one has to integrate this expression over the transverse momentum up to some value
q̂. The value of q̂ is given by q̂ = ℏc/2R, where R is the radius of the projetile. For Pb, R ≈ 7 fm and
hence q̂ ≈ 0.014 GeV. After the integration over the photon transverse momentum the equivalent photon
energy spectrum is given by:

n(ω)dω =
2Z2α

π
ln

(
q̂γ

ω

)
dω

ω
, (14)

Because of the approximations 18 the above distribution is valid when the condition ω ≪ q̂γ is fullfiled.
Using Eq. (14) we can compute the cross sections of free pair production, σP , and of bound state
production, σB . They are given by:

σP (AA→ AAD+D−) =

q̂γ∫
m2

D/q̂γ

dω1

q̂γ∫
m2

D/ω1

dω2 σP (ω1, ω2)n(ω1)n(ω2), (15)

σB(AA→ AAB) =

q̂γ∫
m2

D/q̂γ

dω1

q̂γ∫
m2

D/ω1

dω2 σB(ω1, ω2)n(ω1)n(ω2), (16)

where σP (ω1, ω2) and σB(ω1, ω2) are given by Eqs. (5) (with ŝ = 4ω1ω2) and (11) respectively.
In Fig. 1b we show the cross sections for free pair production and compare it to the existing experi-

mental data from LEP 19. In fact, the LEP data are for e+ e− → e+ e− c c̄, i.e., the measured final states
are D+D− and D0D̄0. We assume that these two final states have the same cross section and, in order to
compare with the data, we multiply our cross section σ(e+ e− → e+ e−D+D−) by a factor two. In order
to fit these data we will adapt expression (15) to electron-positron collisions. The γγ → D+D− cross
section is the same but the photon flux from the electron (and also from the positron) and the integration
limits are different 1,17,18. Comparing our formula with these data, we determine the only parameter in
the calculation, which is the cut-off Λ. In the figure, the curves are obtained substituting Eqs. (5) and
(14) into (15). In the latter q̂ = me. The band is defined by the choice of two limiting values of Λ. In
what follows we will use these values to estimate the uncertainty of our results.

In Fig. 2 we present the cross section for bound state production and study its dependence on q̂
(Fig. 2a)) and on Λ (Fig. 2b)). It is encouraging to see that at

√
sNN ≈ 5.02 TeV we have:

σ(PbPb→ PbPbB) = 3.0+0.8
−1.2 µb (17)

This number should be compared with results found in 10 and in 20. In those papers, the production cross
section of scalar states X(3940) and X(3915) in Pb Pb ultra-peripheral collisions at

√
sNN = 5.02 TeV

were calculated and the results were in the range

5 ≤ σ(PbPb→ PbPbR) ≤ 11 µb (18)

where R stands for X(3940) or X(3915). These states are heavier than the one considered here but in
both papers the X states were treated as meson molecules, as in the present work. It is reassuring to see
that, in spite of the differences, the obtained cross sections are of the same order of magnitude.
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3 Production of very forward pions

The magnetic field produced in relativistic heavy ion collisions is extremely strong 21,22. A natural place
to study the effects of this field is in ultra-peripheral relativistic heavy ion collisions 1. Since there is no
superposition of hadronic matter, the collision becomes essentially a very clean electromagnetic process.

In 23 it was argued that forward pions are very likely to be produced by magnetic excitation (ME) of
the nucleons in the nuclei. The strong classical magnetic field produced by one nucleus induces magnetic
transitions, such as N → ∆ (where N is a proton or a neutron), in the nucleons of the other nucleus.
The produced ∆ keeps moving together with the nucleus (or very close to it) and then decays almost
exclusively through the reaction ∆ → N+π. The produced pion has a very large longitudinal momentum
and very large rapidity. Since there is no other competing mechanism for forward pion production in
UPCs, the observation of these pions would be a signature of the magnetic excitation of the nucleons
and also an indirect measurement of the magnetic field. In 23 it was shown that ME has a very large
cross section. In 24 we proposed a way to test the classical approximation for the magnetic field. The
process discussed in 23, N → ∆ → N ′ π, was recalculated. In the quantum formalism the transition
was induced by photons and not by the classical magnetic field. We computed the same process using a
different formalism where the quanta of the field play the important role. We then compared the results
obtained with the two formalisms. In this contribution we review the content of 23 and 24 and expand the
discussion.

(a) (b)

Figure 3 – a) Classical magnetic transition: a moving projectile creates a magnetic field B⃗ which acts on the
target at rest (at the origin of coordinates) flipping its spin. b) Quantum version of the same transition.

A strong magnetic field can convert a hadron into another one with a different spin, by “flipping
the constituent quark spins”. Let us consider an ultra-peripheral Pb − p collision, where the proton is
at rest, as shown in Fig. 3a. Under the influence of the strong magnetic field generated by the moving
nucleus, the nucleon is converted into a ∆. For the sake of definiteness let us consider the transition
|p ↑⟩ → |∆+ ↑⟩. The amplitude for this process is given by 23:

afi = −i
∫ ∞

−∞
eiEfit

′
⟨∆+ ↑ |Hint(t

′)|p ↑⟩ dt′ (19)

where ℏ = 1 and Efi = (m2
∆ −m2

n)/2mn, where m∆ and mn are the ∆ and nucleon masses respectively.
The interaction Hamiltonian is given by:

Hint(t) = −µ⃗.B⃗(t) with µ⃗ =
∑
i=u,d

µ⃗i =
∑
i=u,d

qi
mi

S⃗i (20)

The magnetic dipole moment of the nucleon is given by the sum of the magnetic dipole moments of the
corresponding constituent quarks, qi and mi are the charge and constituent mass of the quark of type i
and S⃗i is the spin operator acting on the spin state of this quark.

In Fig. 3a we show the system of coordinates, the moving projectile nucleus and target proton at
the origin of the coordinates. We assume that the projectile-generated field is the same produced by a
point charge. The field is given by 23:

Bz(t) =
1

4π

qvγ(b− y)

((γ(x− vt))2 + (y − b)2 + z2)3/2
(21)

5
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In the above expression γ is the Lorentz factor, b is the impact parameter along the y direction, v ≃ 1 is
the projectile velocity and the projectile electric charge is q = Ze. The interaction Hamiltonian acts on
spin states. The relevant ones are:

|p ↑⟩ = 1

3
√
2
[udu(↓↑↑ + ↑↑↓ −2 ↑↓↑) + duu(↑↓↑ + ↑↑↓ −2 ↓↑↑) + uud(↑↓↑ + ↓↑↑ −2 ↑↑↓)] (22)

|∆+ ↑⟩ = 1

3
(uud+ udu+ duu)(↑↑↓ + ↑↓↑ + ↓↑↑) (23)

With these ingredients we can compute the matrix element ⟨∆+ ↑ |Hint|p ↑⟩. It can be obtained by
substituting Eq. (21) into Eq. (20) and then calculating the sandwiches of Hint with the spin states
given above. The cross section for a single N → ∆ transition is given by:

σ =

∫
|afi|2 d2b = 2π

∫
|afi|2 b db (24)

Inserting the matrix elements into (19) and using it in the above expression we find:

σ =
Z2e4

9πm2

(
Efi

vγ

)2 ∫ ∞

R

[
K1

(Efib

vγ

)]2
b db (25)

where K1 is the modified Bessel function. This is the result obtained with the semi-classical approach.
For the purpose of comparison it is enough to consider a nucleon as a target. In 23 we computed the cross
section for a nucleus-nucleus collision.

In the quantum formalism, the electromagnetic field produced by an ultra-relativistic electric charge
is replaced by a flux of photons Now, in a high energy UPC, the projectile becomes a source of almost
real photons and we replace the classical field by a collection of quanta. Thus, the cross section of the
process shown in Fig. 3b can be written in a factorized form in terms of the photon flux produced by the
projectile and the photon-nucleon cross section 1:

σ =

∫
dω

ω
n(ω)σγN→Nπ(ω) (26)

In the above expression n(ω) represents the photon spectrum generated by the source 1:

n(ω) =
Z2α

π

[
2ξK0(ξ)K1(ξ)− ξ2[K2

1 (ξ)−K2
0 (ξ)]

]
, ξ =

ω(R1 +R2)

γ
(27)

where ω is the photon energy, R1 and R2 are the radii of the projectile and the target, parametrized as
RA = 1.2A1/3fm, and γ the Lorentz boost in the target frame. From the above expression it is clear that
the average energy carried by an emitted photon increases with γ and hence with the collision energy√
s. In the LHC energy region γ ≃ 1000 and the photon average energy ω̄ may reach large values, such

as ω̄ ≃ 10 GeV.
In order to perform the calculation of the total cross section, it is necessary to know the cross section

of the process γN → Nπ. In a first approximation σγN→Nπ can be calculated evaluating the Feynman
diagram shown in Fig. 3b. We need a formula which correctly reproduces the behavior of the cross section
in the ∆ resonance region and which can be extrapolated to higher energies. This is the most important
source of uncertainty in the evaluation of (26). A simple parametrization of the π0 photoproduction cross
section can be taken from Jones and Scadron 24. Knowing σγN→Nπ, we insert it into (26) and evaluate
the cross section of the quantum process. The results are then compared with the results obtained with
the semi-classical approach (given by (25)) and presented in Fig. 4. The cross sections are plotted as a
function of the energy per nucleon (of the projectile) in the laboratory frame ELab = γ mn. We compare
the curves obtained with (25) (dashed line) and with (26) (solid lines). The band in the lower curve
represents the different choices of the decay width Γ. The difference between the curves obtained with
(25) and with (26) is small and reaches 9 % at the highest energies. These results suggest that the classical
approximation of the magnetic field reproduces most of the photon interaction in photoproduction in high
energies.

The produced charged pions will be deviated by the dipole magnets which bend the colliding beams
into the two separate beam pipes. However the neutral pions will not be bended by the magnetic field
and will fly away following a tangent trajectory and reaching the zero degree calorimeters (ZDC’s) which

6
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Figure 4 – Cross sections for pion production obtained with the semi-classical formalism, Eq.(25), dashed line,
and with the quantum formalism, Eq. (26), solid line.

are part of both the ALICE and the ATLAS set up. They will be measured exactly in the same way as
the ultra-forward neutrons produced in the electromagnetic dissociation processes already measured by
the ALICE collaboration 25. In fact, ultra-forward neutral pions have already been measured in proton-
proton collisions at

√
s = 7 TeV and in p-Pb collisions at

√
s = 5.02 TeV by the LHCf collaboration

26 but no attempt was made to separate central from peripheral collisions. This might be done in the
future.

4 Conclusion

We have calculated the cross section for the production of a D+D− molecule in ultra-peripheral collisions.
It is σB(AA → AAB) = 3.0+0.8

−1.2 µb for
√
sNN = 5.02 TeV. This number is consistent with the results

obtained for other scalar exotic charmonium molecules in Ref. 10 and in Ref. 20. The parameters of
the calculation are the hadronic form factor cut-off, the maximum transverse momentum of an emitted
photon and the binding energy. All these parameters can be constrained by experimental information
and/or by calculations and hence the precision of our calculation can be increased. The method used
here can be easily applied to other exotic states.

We have also calculated the cross section for the production of very forward pions. We have used two
methods, one with a classical magnetic field and the other with equivalent photons. Both methods yield a
similar result: a quite large cross section for forward pion production. The neutral pions can in principle
be measured. This would improve our knowledge about the validity of the classical approximation and
about the strength of the magnetic field created in these collisions.
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