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We observe photons and neutrinos from stars. Based on these observations, complemented by
measurements of cosmic rays energies and composition, we have been able to constrain several
models for the Big Bang and for stellar evolution. But that is not enough. We also need to help this
effort with laboratory experiments. We are still far from being able to reproduce stellar environ-
ments in a terrestrial laboratory. But in many cases we can obtain accurate nuclear reaction rates
needed for modeling primordial nucleosynthesis and hydrostatic burning in stars. The relevant
reactions are difficult to measure directly in the laboratory at the small astrophysical energies.
In recent years indirect reaction methods have been developed and applied to extract low-energy
astrophysical S-factors. These methods require a combination of new experimental techniques
and theoretical efforts, which are the subject of this review.
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1. Astrophysics: what we can and what we can’t do

1.1 Hot plasmas on Earth

Evidently, we cannot reproduce in the laboratory conditions existing during the Big Bang and
during stellar evolution. But efforts to reproduce such conditions on a limited scale on Earth are
underway. A good example are experiments being carried out at the National Ignition Facility
(NIF) in Livermore. In this facility the intense energy of 192 giant laser beams is focused on a
small spherical pellet containing a few milligrams of fusion fuel, typically a mix of deuterium and
tritium. The energy heats the surface of the pellet into a plasma, exploding off its surface, driving
the remaining portion of the target inwards, and compressing it into a high density. A shock wave
travels towards the center of the compressed fuel from all sides, further heating and compressing it
so that fusion reactions will occur and release energy, creating temperatures and pressures similar
to those that exist only in the cores of stars and giant planets and inside nuclear weapons [1].

Another example is ITER, a large-scale international laboratory located in France that aims
to demonstrate that it is possible to produce commercial energy from fusion. ITER is based on
the “tokamak" concept of magnetic confinement, in which the plasma is contained in a doughnut-
shaped vacuum vessel. A mixture of deuterium and tritium is heated to temperatures of 150 million
◦C, forming a hot plasma. Strong magnetic fields are used to keep the plasma away from the walls.
From 50 MW of input power, the ITER machine is designed to produce 500 MW of fusion power.
ITER runs on a predicted 15 billion euros building cost, whereas NIF already costs roughly US$
5 billions. So, these are not cheap machines at all. It is very hard to reproduce conditions within
stars. And the prospects of generating energy for commercial use with similar projects in the
future are still uncertain. As for helping us understanding features of the Big Bang and of stellar
evolution, ITER will not be able to tell us much. It will mainly access questions on atomic and
material science associated with confining a plasma at huge temperatures within a vessel and the
interactions of the plasma with the walls of the vessel. While it is undeniable that this experiment
will fill a knowledge gap needed for further developments in science, it will not answer crucial
questions of relevance for astrophysics [2]. Maybe ITER-2 will, if we can afford it.

To avoid sounding too negative, I mention that NIF has a good plan to provide results on atomic
and nuclear physics for stellar evolution. I give a couple of examples. In the theoretical modeling
of stellar evolution one relies strongly on calculations of radiation propagation through hot stellar
plasmas. The coefficient entering the radiation propagation equation is called the “opacity". It
accounts for the interaction of photons with atoms and effects such as excitation and ionization of
ground-state, excited, or ionized atomic species present in the medium. For many years we have
relied on a huge effort to calculate all of the atomic physics needed for stellar evolution codes in
the form of opacity tables [3]. Stellar modelers have not questioned much the reliability of such
tables, as one simply can’t do better than that. But it would be a great knowledge improvement
if we could effectively “measure" opacity in the laboratory. The NIF X-ray opacity platform will
enable detailed studies of the radiative properties of hot dense matter over a photon energy range
of 200 - 10,000 eV, also important in astrophysics [4]. It will allow benchmarking opacities used
in the standard solar model and in stellar equilibrium codes (relevant to exoplanet habitability
assessment) and absorption/emission spectroscopy of photoionized plasmas scaled to black hole
and neutron star accretion-disk conditions. The development of pulsed power and high power
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lasers opens a brand new perspective for the study of opacities in several dense plasmas including
modeling of the atmospheres of very cool white dwarf stars [5].

2. Nuclear reactions

Stars are powered by nuclear reactions at very low energies and, in many situations, at very
high densities. Usually, one needs to know what happens during binary encounters between nuclei
(a counter-example is the celebrated triple-α reaction). The effects of the environment electrons
are still a disputed research topic. But the main problem here is really to know the reaction rates
at the energies required for stellar modeling. For example, in our Sun the reaction 7Be(p,γ)8B
plays a major role for the production of high energy neutrinos from the β -decay of 8B. These
neutrinos come directly from the center of the Sun and are ideal probes of the sun’s structure. John
Bahcall frequently said that this was the most important reaction in nuclear astrophysics [6]. Our
knowledge about this reaction has improved considerably due to new radioactive beam facilities.
Another example, the reaction 12C(α,γ)16O, is extremely relevant for the fate of massive stars. It
determines if the remnant of a supernova explosion becomes a black-hole or a neutron star. These
two reactions are just two examples of a large number of reactions which are not yet known with
the required accuracy needed in astrophysics.

NIF has reported the first cross section and spectral measurements of the T(t,2n)4He reaction
that is an important mirror reaction to the 3He(3He,2p)4He reaction (which is part of the proton-
proton chain in hydrogen burning stars). These direct measurements, which were conducted at
energies inaccessible by conventional accelerator-based techniques, are not affected by electron
screening. Measurements of the differential cross section for the elastic n-3H and n-2H scattering
at 14.1 MeV have also been published [7]. The accurate determination of this reaction rate is
essential for understanding how the fuel is assembled in an implosion, and for the demonstration
of thermonuclear ignition and net energy gain at NIF. It also opens the door for planning the use of
NIF and other laser powered facilities to obtain information on nuclear reaction rates at the energies
occurring in stars.

The extremely low cross sections for reactions induced by charged particles and the inherent
difficulty to obtaining reaction cross sections induced by low energy neutrons leads to enormous
hurdles to develop reliable stellar evolution models and computer codes. Chains of low energy
nuclear reactions lead to complicated phenomena such as nucleosynthesis, supernovae explosions,
and energy production in stars. An example is that approximately half of all stable nuclei observed
in nature in the heavy element region, A > 60, are produced during the “r–process". The exact site
of the r–process is not known, but one believes that it occurs in environments with large neutron
densities leading to neutron capture times much smaller than the beta-decay half–lives, τn� τβ ,
of the nuclei involved. The most neutron–rich isotopes along the r–process path have lifetimes of
less than one second; typically 10−2 to 10−1 s. Cross sections for most of the nuclei involved are
hard to measure experimentally. Sometimes, theoretical calculations of the capture cross sections
and of the beta–decay half–lives are the only source of input for r–process modeling.

Nucleosynthesis in stars is also complicated by the presence of electrons. They screen the
nuclear charges, therefore increasing the fusion probability by reducing the Coulomb repulsion.
Evidently, the fusion cross sections measured in the laboratory have to be corrected by the electron
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screening when used in a stellar model. This is a purely theoretical problem as one can not exactly
reproduce the conditions at stellar interiors in the laboratory. At least for now.

A simpler screening mechanism occurs in laboratory experiments due to the bound atomic
electrons in the nuclear targets. This case has been studied in great detail experimentally, as one
can control different charge states of the projectile+target system in the laboratory [8, 9, 10, 11, 12].
The experimental findings disagree systematically by a factor of two or more with theory. This is
surprising as the theory for atomic screening in the laboratory relies on our basic knowledge of
atomic physics. At very low energies one can use the simple adiabatic model in which the atomic
electrons rapidly adjust their orbits to the relative motion between the nuclei prior to the fusion
process. Energy conservation requires that the larger electronic binding (due to a larger charge of
the combined system) leads to an increase of the relative motion between the nuclei, thus increasing
the fusion cross section. As a matter of fact, this enhancement has been observed experimentally.
The measured values are however not compatible with the adiabatic estimate [8, 9, 10, 11, 12].
Dynamical calculations have been performed, but they obviously cannot explain the discrepancy as
they include atomic excitations and ionizations which reduce the energy available for fusion. Other
small effects, like vacuum polarization, atomic and nuclear polarizabilities, relativistic effects, etc.,
have also been considered [13]. But the discrepancy between experiment and theory remains [13,
10].

A possible solution of the laboratory screening problem was proposed [14, 15]. Experimen-
talists often use the extrapolation of stopping power tables [16] to obtain the average value of the
projectile energy due to stopping in the target material. The stopping is due to ionization, electron-
exchange, and other atomic mechanisms. However, the extrapolation is challenged by theoretical
calculations which predict a lower stopping. Smaller stopping was indeed verified experimentally
[10]. At very low energies, it is thought that the stopping mechanism is mainly due to electron
exchange between projectile and target. This has been studied in Ref. [17] in the simplest possible
situation: proton+hydrogen collisions. The calculated stopping power was added to the nuclear
stopping power mechanism, i.e. to the energy loss by the Coulomb repulsion between the nuclei.
The obtained stopping power is proportional to vα , where v is the projectile velocity and α = 1.35.
The extrapolations from stopping power tables predict a smaller value of α . Although this re-
sult seems to indicate the stopping mechanism as a possible reason for the laboratory screening
problem, the theoretical calculations tend to disagree on the power of v at low energy collisions
[18].

Another calculation of the stopping power in atomic He++He collisions using the two-center
molecular orbital basis was reported in Ref. [19]. The agreement with the data from Ref. [18] at
low energies is excellent. The agreement with the data disappears if nuclear recoil is included. In
fact, the unexpected “disappearance" of the nuclear recoil was also observed in Ref. [20]. This
seems to violate a basic principle of nature, as the nuclear recoil is due to Coulomb repulsion
between projectile and target atoms [16]. After several attempts, sometimes with elaborate theo-
retical models, little theory activity in this field has been reported. Some models have been praised
as solving the stellar screening problem (see, e.g. [21]). I believe that this praise is more due to
the use of quantum-field theoretical tools, which tends to impress low-energy experimentalists and
theorists who know little about those theoretical techniques. The fact is that the present situation on
screening of nuclear reactions is confusing. Either experimentalists are publishing wrong analysis,
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or all aspects of theory might not have been considered yet [22].
I have discussed above a few ongoing efforts in nuclear astrophysics, some expensive invest-

ments to get solutions, as well as some problems that might not even be possible to study on Earth.
Actually, much of the knowledge required for understanding the physics of the Big Bang and of
stellar evolution can be accessed by means of indirect methods in nuclear physics. The goal of
these theoretical methods, and laboratories that use them, is to take a detour following a much
harder work of putting pieces together from several, sometimes seemingly unrelated, experiments.
In this article I will review some of these methods and what has been and can be accomplished with
them.

3. Understanding fusion cross sections

3.1 Fusion

All approaches to understand fusion reactions involve two prongs: a) Calculate an ion-ion
(usually one-dimensional) phenomenological potential (Wood-Saxon, proximity, folding, Bass,
etc.) using frozen densities, or microscopic, macroscopic-microscopic methods using collective
variables (CHF, ATDHF, empirical methods), and b) employ quantum mechanical tunneling meth-
ods for the reduced one-body problem (WKB, IWBC), incorporating quantum mechanical pro-
cesses by hand, including neutron transfer and excitations of the entrance channel nuclei (CC).
Only for very light ions, involving nuclei lighter than oxygen it is possible to devise more micro-
scopic methods, based on binary nucleon-nucleon interactions, to obtain the fusion reaction cross
sections of interest for nuclear astrophysics [23].

Fusion cross sections can be calculated from the equation

σF(E) = πλ
2
∑
`

(2`+1)P̀ (E), (3.1)

where E is the center of mass energy, λ =
√

h̄2/2mE is the reduced wavelength and ` = 0,1,2, · · ·.
The cross section is proportional to πλ 2, the area of the quantum wave. Each part of the wave
corresponds to different impact parameters having different probabilities for fusion. As the impact
parameter increases, so does the angular momentum, hence the reason for the 2`+ 1 term. P̀ (E)
is the probability that fusion occurs at a given impact parameter, or angular momentum. The
barrier penetration method (BPM) assumes that fusion occurs when the particle (with mass m)
penetrates the Coulomb barrier and P̀ is calculated in a one-dimensional potential model, e.g. by
using the WKB approximation or alike. From σ` = πλ 2(2`+ 1)P̀ one can calculate the average
value of ` from 〈`(E)〉= ∑` `σ`/∑σ` and many other relevant quantities. Sometimes, for a better
visualization, or for extrapolation to low energies, one uses the concept of astrophysical S-factor,
redefining the cross section as

σF(E) =
1
E

S(E)exp [−2πη(E)] , (3.2)

where η(E) = Z1Z2e2/h̄v, with v being the relative velocity. The exponential function is an approx-
imation to P0(E) for a square-well nuclear potential plus Coulomb potential, whereas the factor 1/E
is proportional to the area appearing in Eq. 3.1.
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P2n ~ 3 (P1n)2 

P3n ~ P2n P1n 

P4n ~ (P2n)2 

P1n 

96Zr+40Ca 

Figure 1: Left - Fusion cross section of 64Ni+64Ni as a function of the center of mass energy [24]. The
dashed (solid) curve is a BPM (coupled-channel) calculation. Right - Transfer probabilities for multineutron
transfer in 96Zr+40Ca [44].

In order to use Eq. 3.1 one needs the nucleus-nucleus potential. This is a badly known beast.
It includes the effects of non-fusion channels, which might be hardly known. As it cannot be
calculated from first principles, one adds an imaginary part to the real potential and it becomes
much more than a beast; something really abnoxious. Some have tried to tame this thing from first
principles. But, except for few heroic attempts, we seem to have given up. We just fit whatever we
can fit and we get whatever parameters of a potential function we can. Then we simply call it the
“optical potential".

3.2 Many reaction channels

The situation is worse, as Eq. 3.1 does not work in most situations. A good example is shown
in figure 1 (left), taken from Ref. [24]. Only by including coupling to other channels, the fusion
cross sections can be reproduced. In coupled channels schemes one expands the total wavefunction
for the system as

Ψ = ∑
i,k

ai(α,qk)φ(α,qk), (3.3)

where φ form the channel basis, α is a dynamical variable (e.g., the distance between the nuclei),
and qk are intrinsic coordinates. Inserting this expansion in the Schrödinger equation yields a set
of CC equations in the form

dak

dα
= ∑

j
a j 〈φk |U |φ j〉 eEα α/h̄, (3.4)

where U is whatever potential couples the channels k and j and Eα = E(k)
α −E( j)

α is some sort
of transition energy, or transition momentum. In the presence of continuum states, continuum-
continuum coupling (relevant for breakup channels) can be included by discretizing the continuum.
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This goes by the name of Continuum Discretized Coupled-Channels (CDCC) calculations. There
are several variations of CC equations, e.g., a set of differential equations for the wavefunctions,
instead of using basis amplitudes. Coupled channels calculations with a large number of channels
in continuum couplings, is one of the least controllable calculations. Anything can happen because
of the phases of matrix elements: the couplings can add destructively or constructively, depend-
ing on the system and on the nuclear model. Such suppressions or enhancements are difficult to
understand.

3.3 Radiative capture

For reactions involving light nuclei, only a few channels are of relevance. In his case, a real
potential is enough for the treatment of fusion. For example, radiative capture cross sections of the
type n+ x→ a+ γ and πL (π = E,(M) =electric (magnetic) L-pole) transitions can be calculated
from (see, e.g., [25])

σ
d.c.
EL,Jb

= const.×|〈lc jc ‖OπL‖ lb jb〉|2 , (3.5)

where OπL is an EM operator, and 〈lc jc ‖OπL‖ lb jb〉 is a multipole matrix element involving bound
(b) and continuum (c) wavefunctons. For electric multipole transitions (OπL = rLYLM),

〈lc jc ‖OEL‖ lb jb〉= const.×
∫

∞

0
dr rLub(r)uc(r), (3.6)

where ui are radial wavefunctions. The total direct capture cross section is obtained by adding all
multipolarities and final spins of the bound state (E ≡ Enx),

σ
d.c.(E) = ∑

L,Jb

(SF)Jb σ
d.c.
L,Jb

(E) , (3.7)

where (SF)Jb are spectroscopic factors.

3.4 Asymptotic normalization coefficients

In a microscopic approach, instead of single-particle wavefunctions one often makes use of
overlap integrals, Ib(r), and a many-body wavefunction for the relative motion, uc(r). Both Ib(r)
and uc(r) might be very complicated to calculate, depending on how elaborated the microscopic
model is. The variable r is the relative coordinate between the nucleon and the nucleus x, with all
the intrinsic coordinates of the nucleons in x being integrated out. The direct capture cross sections
are obtained from the calculation of σd.c.

L,Jb
∝ |
〈
Ib(r)||rLYL||Ψc(r)

〉
|2.

The imprints of many-body effects will eventually disappear at large distances between the
nucleon and the nucleus. One thus expects that the overlap function asymptotically matches (r→
∞),

Ib(r) = C1
W−η ,lb+1/2(2κr)

r
for protons, Ib(r) = C2

√
2κ

r
Klb+1/2(κr) for neutrons, (3.8)

where the binding energy of the n + x system is related to κ by means of Eb = h̄2
κ2/2mnx, Wp,q

is the Whittaker function and Kµ is the modified Bessel function. In Eq. 3.8, Ci is the asymptotic
normalization coefficient (ANC).
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Figure 2: Left. - Potential model calculation for the reaction 7Li (p, γ)8Be. Experimental data are from Ref.
[26]. Right. - Single-particle model calculations for the reaction 7Be(p,γ)8B. The dashed-dotted line is the
calculation for the M1 resonance at Ecm = 0.63 MeV and the dotted line is for the non-resonant capture.
Experimental data are from Refs. [27, 28, 29, 30, 31, 32]. The total S factor is shown as a solid line.

In the calculation of σd.c.
L,Jb

above, one often meets the situation in which only the asymptotic
part of Ib(r) and Ψc(r) contributes significantly to the integral over r. In these situations, uc(r)
is also well described by a simple two-body scattering wave (e.g. Coulomb waves). Therefore
the radial integration in σd.c.

L,Jb
can be done accurately and the only remaining information from the

many-body physics at short-distances is contained in the asymptotic normalization coefficient Ci,
i.e. σd.c.

L,Jb
∝ C2

i . We thus run into an effective theory for radiative capture cross sections, in which
the constants Ci carry all the information about the short-distance physics, where the many-body
aspects are relevant. It is worthwhile to mention that these arguments are reasonable for proton
capture at very low energies, because of the Coulomb barrier.

As the overlap integral, Eq. 3.8, asymptotically becomes a Whittaker function, so does the
single particle bound-state wavefunction uα . If we call the single particle ANC by bi, then the
relation between the ANC obtained from experiment, or a microscopic model, with the single
particle ANC is given by (SF)ib2

i = C2
i . This becomes clear from Eq. 3.7. The values of (SF)i

and bi obtained with the simple potential model are useful telltales of the complex short-range
many-body physics of radiative capture reactions [25].

Many reactions of interest for nuclear astrophysics involve nuclei close to the dripline. To de-
scribe these reactions, a knowledge of the structure in the continuum is a crucial feature. One basic
theoretical problem is to what extent we know the form of the effective interactions for threshold
states. It is also hopeless that these methods can be accurate in describing high-lying states in the
continuum. In particular, it is not worthwhile to pursue this approach to describe direct nuclear
reactions.

3.5 Resonating group method

One immediate goal can be achieved in the coming years by using the Resonating Group
Method (RGM) or the Generator Coordinate Method (GCM). These are a set of coupled integro-
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Figure 3: World data on 7Be(p,γ)8B compared to theoretical calculations.

differential equations of the form

∑
α ′

∫
d3r′

[
HAB

αα ′(r,r
′)−ENAB

αα ′(r,r
′)
]

gα ′(r′) = 0, (3.9)

where HAB
αα ′(r,r

′) = 〈ΨA(α,r)|H|ΨB(α ′,r′)〉 and NAB
αα ′(r,r

′) = 〈ΨA(α,r)|ΨB(α ′,r′)〉. In these
equations H is the Hamiltonian for the system of two nuclei (A and B) with the energy E, ΨA,B is
the wavefunction of nucleus A (and B), and gα(r) is a function to be found by numerical solution
of Eq. 3.9, which describes the relative motion of A and B in channel α . Full antisymmetrization
between nucleons of A and B are implicit. Modern nuclear shell-model calculations, including
the No-Core-Shell-Model (NCSM) are able to provide the wavefunctions ΨA,B for light nuclei
[23]. But the Hamiltonian involves an effective interaction in the continuum between the clusters
A and B. Overlap integrals of the type IAa(r) = 〈ΨA−a|ΨA〉 for bound states has been calculated
within the NCSM. This is one of the inputs necessary to calculate S-factors for radiative capture,
Sα ∼ |〈gα |OEM|IAa〉|2, where OEM is a corresponding electromagnetic operator. The left-hand side
of this equation is to be obtained by solving Eq. 3.9. For some cases, in particular for the p+7Be
reaction, the distortion caused by the microscopic structure of the cluster does not seem to be cru-
cial to obtain the wavefunction in the continuum. The wavefunction is often obtained by means of
a potential model. The NCSM overlap integrals, IAa, can also be corrected to reproduce the right
asymptotics [34, 35], given by IAa(r) ∝ W−η ,l+1/2(2k0r), where η is the Sommerfeld parameter, l
the angular momentum, k0 =

√
2µE0/h̄ with µ the reduced mass and E0 the separation energy.

A step in the direction of reconciling structure and reactions for the practical purpose of ob-
taining astrophysical S-factors, along the lines described in the previous paragraph, was obtained
in Ref. [34]. The wavefunctions obtained in this way were shown to reproduce very well the
momentum distributions in knockout reactions of the type 8B+A −→ 7Be+X . The astrophysical
S-factor for the reaction 7Be(p,γ)8B was also calculated and excellent agreement was found with
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the experimental data in both direct and indirect measurements [34, 35]. The low- and high-energy
slopes of the S-factor obtained with the NCSM is well described by the fit

S17(E) = (22.109 eV.b)
1+5.30E +1.65E2 +0.857E3

1+E/0.1375
, (3.10)

where E is the relative energy (in MeV) of p+7Be in their center-of-mass. This equation corre-
sponds to a Padé approximant of the S-factor. A subthreshold pole due to the binding energy of 8B
is responsible for the denominator [36, 37]. Figure 3 show the world data on 7Be(p,γ)8B compared
to a few of the theoretical calculations. The recent compilation published in Ref. [22] recommends
S17 = 20.8±0.7 (expt)±1.4 (theor) eV b.

4. Direct reactions and the role of radioactive beams

4.1 Transfer reactions

Transfer reactions A(a,b)B are effective when a momentum matching exists between the trans-
ferred particle and the internal particles in the nucleus. Thus, beam energies should be in the range
of a few 10 MeV per nucleon. Low energy reactions of astrophysical interest can be extracted
directly from breakup reactions A+a−→ b+ c+B by means of the Trojan Horse method (THM)
[38]. If the Fermi momentum of the particle x inside a = (b + x) compensates for the initial pro-
jectile velocity va, the low energy reaction A + x = B + c is induced at very low (even vanishing)
relative energy between A and x. To show this, one writes the DWBA cross section for the breakup
reaction as

d3σ

dΩbdΩcdEb
∝

∣∣∣∣∣∑lm Tlm(ka,kb,kc)SlxYlm(kc)

∣∣∣∣∣
2

,

where
Tlm =< χ

(−)
b Ylm fl|Vbx|χ+

a φbx > .

The threshold behavior Ex for the breakup cross section σA+x→B+c = (π/k2
x)∑l(2l + 1)|Slx|2 is

well known: since |Slx| ∼ exp(−2πη), then σA+x→B+c ∼ (1/k2
x) exp(−2πη). In addition to the

threshold behavior of Slx, the breakup cross section is also governed by the threshold behavior of
fl(r), which for r −→∞ is given by flx ∼ (kxr)1/2 exp(πη) K2l+1(ξ ), where Kl denotes the Bessel
function of the second kind of imaginary argument. The quantity ξ is independent of kx and is
given by ξ = (8r/aB)1/2, where aB = h̄2/mZAZxe2 is the Bohr length. From this one obtains that
(d3/dΩbdΩcdEb)(Ex→ 0)≈ const.. The coincidence cross section tends to a constant which will
in general be different from zero. This is in striking contrast to the threshold behavior of the two
particle reaction A+x = B+c. The strong barrier penetration effect on the charged particle reaction
cross section is canceled completely by the behavior of the factor Tlm for η → ∞. Basically, this
technique extends the method of transfer reactions to continuum states. very successful results
using this technique have been reported [39, 40].

Another transfer method, coined as Asymptotic Normalization Coefficient (ANC) technique
[41, 42, 43] relies on fact that the amplitude for the radiative capture cross section b+ x−→ a+ γ

is given by
M =< Ia

bx(rbx)|O(rbx)|ψ(+)
i (rbx) >,
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where
Ia
bx =< φa(ξb, ξx, rbx)|φx(ξx)φb(ξb) >

is the integration over the internal coordinates ξb, and ξx, of b and x, respectively. For low energies,
the overlap integral Ia

bx is dominated by contributions from large rbx. Thus, what matters for the
calculation of the matrix element M is the asymptotic value of Ia

bx ∼ Ca
bx W−ηa,1/2(2κbxrbx)/rbx,

where Ca
bx is the ANC and W is the Whittaker function. This coefficient is the product of the

spectroscopic factor and a normalization constant which depends on the details of the wave function
in the interior part of the potential. Thus, Ca

bx is the only unknown factor needed to calculate the
direct capture cross section. These normalization coefficients can be found from: 1) analysis of
classical nuclear reactions such as elastic scattering [by extrapolation of the experimental scattering
phase shifts to the bound state pole in the energy plane], or 2) peripheral transfer reactions whose
amplitudes contain the same overlap function as the amplitude of the corresponding astrophysical
radiative capture cross section.

To illustrate this technique, let us consider the proton transfer reaction A(a,b)B, where a =
b + p, B = A + p. Using the asymptotic form of the overlap integral the DWBA cross section is
given by

dσ/dΩ = ∑
JB ja

[
(Ca

Ap)
2

β 2
Ap

][
(Ca

bp)
2

β 2
bp

]
σ̃

where σ̃ is the reduced cross section not depending on the nuclear structure, βbp (βAp) are the
asymptotic normalization of the shell model bound state proton wave functions in nucleus a(B)
which are related to the corresponding ANC’s of the overlap function as (Ca

bp)
2 = Sa

bpβ 2
bp. Here Sa

bp
is the spectroscopic factor. Suppose the reaction A(a,b)B is peripheral. Then each of the bound
state wave functions entering σ̃ can be approximated by its asymptotic form and σ̃ ∝ β 2

Apβ 2
bp.

Hence dσ/dΩ = ∑ ji(C
a
Ap)

2(Ca
bp)

2RBa where RBa = σ̃/β 2
Apβ 2

bp is independent of β 2
Ap and β 2

bp. Thus
for surface reactions the DWBA cross section is actually parameterized in terms of the product of
the square of the ANC’s of the initial and the final nuclei (Ca

Ap)
2(Ca

bp)
2 rather than spectroscopic

factors. This effectively removes the sensitivity in the extracted parameters to the internal struc-
ture of the nucleus. One of the many advantages of using transfer reaction techniques over direct
measurements is to avoid the treatment of the screening problem [39, 43].

But do we really understand transfer reactions well enough? Let us take an example from
literature [44]. Assuming that α in Eq. 3.4 is simply the time t, and using the first-Born approx-
imation (i.e, taking ak ∼ a0δk0), the amplitude to excite the channel φk from an initial channel φ0

is given by ak = −ih̄
∫
〈φ0|U |φk〉exp[i(Ek−E0)t/h̄]. The Born approximation can be applied to

transfer reactions. The probability to transfer a nucleon in nucleus A from channel α to a nucleon
in nucleus B in channel β is given by

Pβα ∼
∣∣∣∣−ih̄

∫
∞

−∞

dtFβα(R)exp
[

i
Eβ −Eα)t

h̄
+(· · ·)

]∣∣∣∣2 , (4.1)

where R is the nucleus-nucleus distance and Fβα(R) is the from factor given by

Fβα(R) =
∫

d3reiQ·r
φβ (R+ r)(V1−〈U〉)φα(r), (4.2)
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where Q is the momentum transfer in the reaction, U is the total (optical) potential, and V1 is the
potential of the nucleon with one of the nuclei. Why not V2? In the literature, using V1 (V2) goes
by the name “prior" (“post)-form. It has been shown in the past that the post and prior forms of
breakup and transfer reactions lead to the same result.

In figure 1 (right) one sees the probabilities for multinucleon transfer in 96Zr+40Ca, as a func-
tion of the closest approach distance D = (Z1Z2e2/2E)[1 + 1/sin(θ/2)]. Transfer is most likely
to occur when the nuclei are at their closest point, D. The tunneling probability depends exponen-
tially on this distance, Ptr/sin(θ/2) ∼ exp(−2αD). This approximation arises from Eqs. 4.1 and
4.2. If one neglects correlations, two-nucleon transfer probabilities are given in terms one-nucleon
transfer probabilities: P2n = (P1n)

2. For three-nucleon transfer P3n = P1nP2n, and so on. These are
shown by the straight lines in figure 1 (Right). All seems to work well, except that one needs an
enhancement of a factor 3 to get P2n from theory [45]. That is what happens when theorists do not
know what to do [44].

4.2 Intermediate energy Coulomb excitation

At low-energies, the theory of Coulomb excitation is very well understood [46]. A large num-
ber of small corrections are now well known in the theory and are necessary in order to analyze
experiments on multiple excitation and reorientation effects. At the other end, the Coulomb excita-
tion of relativistic heavy ions is characterized by straight-line trajectories with impact parameter b
larger than the sum of the radii of the two colliding nuclei [48]. It was also shown that a quantum
theory for relativistic Coulomb excitation leads to modifications of the semiclassical results [49].
In Refs. [51, 50] the inclusion of relativistic effects in semiclassical and quantum formulations of
Coulomb excitation was fully clarified.

Recently, the importance of relativistic effects in Coulomb excitation of a projectile by a target
with charge Z2, followed by gamma-decay, in nuclear reactions at intermediate energies was studied
in details. The Coulomb excitation cross section is given by

dσi→ f

dΩ
=
(

dσ

dΩ

)
el

16π2Z2
2e2

h̄2 ∑
πλ µ

B(πλ , Ii→ I f )
(2λ +1)3 | S(πλ ,µ) |2, (4.3)

where B(πλ , Ii→ I f ) is the reduced transition probability of the projectile nucleus, πλ = E1, E2,

M1, . . . is the multipolarity of the excitation, and µ =−λ ,−λ +1, . . . ,λ .
The relativistic corrections to the Rutherford formula for (dσ/dΩ)el has been investigated in

Ref. [47]. It was shown that the scattering angle increases by up to 6% when relativistic corrections
are included in nuclear collisions at 100 MeV/nucleon. The effect on the elastic scattering cross
section is even more drastic: up to 13% for center-of-mass scattering angles around 0-4 degrees.

The orbital integrals S(πλ ,µ) contain the information about relativistic corrections. Inclu-
sion of absorption effects in S(πλ ,µ) due to the imaginary part of an optical nucleus-nucleus
potential where worked out in Ref. [50]. These orbital integrals depend on the Lorentz factor
γ = (1−v2/c2)−1/2, with c being the speed of light, on the multipolarity πλ µ , and on the adiabac-
ity parameter ξ (b) = ω f ib/γv < 1, where ω f i = (E f −Ei)/h̄ is the excitation energy (in units of h̄)
and b is the impact parameter.

Ref. [52] has shown that at 10 MeV/nucleon the relativistic corrections are important only at
the level of 1%. At 500 MeV/nucleon, the correct treatment of the recoil corrections is relevant

12



P
o
S
(
X
X
X
I
V
 
B
W
N
P
)
0
2
2

Nuclear physics in the cosmos Carlos A. Bertulani

on the level of 1%. Thus the non-relativistic treatment of Coulomb excitation [46] can be safely
used for energies below about 10 MeV/nucleon and the relativistic treatment with a straight-line
trajectory [48] is adequate above about 500 MeV/nucleon. However at energies around 50 to 100
MeV/nucleon, accelerator energies common to most radioactive beam facilities, it is very important
to use a correct treatment of recoil and relativistic effects, both kinematically and dynamically. At
these energies, the corrections can add up to 50%. These effects were also shown in Ref. [51] for
the case of excitation of giant resonances in collisions at intermediate energies.

A reliable extraction of useful nuclear properties, like the electromagnetic response (B(E2)-
values, γ-ray angular distribution, etc.) from Coulomb excitation experiments at intermediate en-
ergies requires a proper treatment of special relativity [52, 53]. The dynamical relativistic effects
have often been neglected in the analysis of experiments elsewhere (see, e.g. [55]). The effect is
highly non-linear, i.e. a 10% increase in the velocity might lead to a 50% increase (or decrease)
of certain physical observables. A general review of the importance of the relativistic dynamical
effects in intermediate energy collisions has been presented in Ref. [56, 54].

4.3 The Coulomb dissociation method

The Coulomb dissociation method is quite simple. The (differential, or angle integrated)
Coulomb breakup cross section for a + A −→ b + c + A follows from Eq. 4.3. It can be rewrit-
ten as

dσπλ
C (ω)
dΩ

= Fπλ (ω;θ ;φ) . σ
πλ
γ+a → b+c(ω), (4.4)

where ω is the energy transferred from the relative motion to the breakup, and σπλ
γ+a → b+c(ω)

is the photo nuclear cross section for the multipolarity πλ and photon energy ω . The function
Fπλ depends on ω , the relative motion energy, nuclear charges and radii, and the scattering angle
Ω = (θ ,φ). Fπλ can be reliably calculated [49] for each multipolarity πλ . Time reversal allows
one to deduce the radiative capture cross section b+c−→ a+γ from σπλ

γ+a → b+c(ω). This method
was proposed in Ref. [57] and has been tested successfully in a number of reactions of interest
for astrophysics. The most celebrated case is the reaction 7Be(p,γ)8B [58], followed by numerous
experiments in the last decade (see e.g. Ref. [59]).

Eq. 4.4 is based on first-order perturbation theory. It also assumes that the nuclear contribution
to the breakup is small, or that it can be separated under certain experimental conditions. The
contribution of the nuclear breakup has been examined by several authors (see, e.g. [60]). 8B has
a small proton separation energy (≈ 140 keV). For such loosely-bound systems it had been shown
that multiple-step, or higher-order effects, are important [61]. These effects occur by means of
continuum-continuum transitions. Detailed studies of dynamic contributions to the breakup were
explored in refs. [62, 63] and in several other publications which followed. The role of higher
multipolarities (e.g., E2 contributions [64, 65, 66] in the reaction 7Be(p,γ)8B) and the coupling to
high-lying states has also to be investigated carefully. It has also been shown that the influence of
giant resonance states is small [67].

4.4 Charge exchange reactions

During core collapse, temperatures and densities are high enough to ensure that nuclear statis-
tical equilibrium is achieved. This means that for sufficiently low entropies, the matter composition
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is dominated by the nuclei with the highest binding energy for a given Ye. Electron capture reduces
Ye, driving the nuclear composition to more neutron rich and heavier nuclei, including those with
N > 40, which dominate the matter composition for densities larger than a few 1010 g cm−3. As
a consequence of the model applied in collapse simulations, electron capture on nuclei ceases at
these densities and the capture is entirely due to free protons. To understand the whole process it
is necessary to obtain Gamow-Teller matrix elements which are not accessible in beta-decay ex-
periments. Many-body theoretical calculations are right now the only way to obtain the required
matrix elements. This situation can be remedied experimentally by using charge-exchange reac-
tions. Charge exchange reactions induced in (p,n) reactions are often used to obtain values of
Gamow-Teller matrix elements, B(GT ), which cannot be extracted from beta-decay experiments.
This approach relies on the similarity in spin-isospin space of charge-exchange reactions and β -
decay operators. As a result of this similarity, the cross section σ(p, n) at small momentum transfer
q is closely proportional to B(GT ) for strong transitions [68],

dσ

dq
(q = 0) = KND|Jστ |2B(α), (4.5)

where K is a kinematical factor, ND is a distortion factor (accounting for initial and final state
interactions), Jστ is the Fourier transform of the effective nucleon-nucleon interaction, and B(α =
F,GT ) is the reduced transition probability for non-spin-flip,

B(F) = (2Ji +1)−1|〈 f ||∑
k

τ
(±)
k ||i〉|

2,

and spin-flip,
B(GT ) = (2Ji +1)−1|〈 f ||∑

k
σkτ

(±)
k ||i〉|

2,

transitions.
Eq. 4.5, valid for one-step processes, was proven to work rather well for (p,n) reactions (with

a few exceptions). For heavy ion reactions the formula might not work so well. This has been
investigated in refs. [69, 70, 71]. In Ref. [69] it was shown that multistep processes involving
the physical exchange of a proton and a neutron can still play an important role up to bombarding
energies of 100 MeV/nucleon. Refs. [70, 71] use the isospin terms of the effective interaction
to show that deviations from the Taddeucci formula are common under many circumstances. As
shown in Ref. [72], for important GT transitions whose strength are a small fraction of the sum rule
the direct relationship between σ(p, n) and B(GT ) values also fails to exist. Similar discrepancies
have been observed [73] for reactions on some odd-A nuclei including 13C, 15N, 35Cl, and 39K and
for charge-exchange induced by heavy ions [71, 74]. Undoubtedly, charge-exchange reactions such
as (p,n), (3He,t) and heavy-ion reactions (A,A±1) can provide information on the B(F) and B(GT )
values needed for astrophysical purposes [75].

4.5 Knock-out reactions

Exotic nuclei are the raw materials for the synthesis of the heavier elements in the Universe,
and are of considerable importance in nuclear astrophysics. Modern shell-model calculations are
also now able to include the effects of residual interactions between pairs of nucleons, using forces
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that reproduce the measured masses, charge radii and low-lying excited states of a large number
of nuclei. For very exotic nuclei the small additional stability that comes with the filling of a par-
ticular orbital can have profound effects upon their existence as bound systems, their lifetimes and
structures. Thus, verifications of the ordering, spacing and the occupancy of orbitals are essential
in assessing how exotic nuclei evolve in the presence of large neutron or proton imbalance and
our ability to predict these theoretically. Such spectroscopy of the states of individual nucleons in
short-lived nuclei uses direct nuclear reactions.

The early interest in knockout reactions came from studies of nuclear halo states, for which the
narrow momentum distributions of the core fragments in a qualitative way revealed the large spatial
extension of the halo wave function. It was shown [76] that the longitudinal component of the
momentum (taken along the beam or z direction) gave the most accurate information on the intrinsic
properties of the halo and that it was insensitive to details of the collision and the size of the target.
In contrast to this, the transverse distributions of the core are significantly broadened by diffractive
effects and by Coulomb scattering. For experiments that observe the nucleon produced in elastic
breakup, the transverse momentum is entirely dominated by diffractive effects, as illustrated [77]
by the angular distribution of the neutrons from the reaction 9Be(11Be,10Be+n)X. In this case, the
width of the transverse momentum distribution reflects essentially the size of the target [78].

Most practical studies of medium corrections in nucleon-nucleon scattering are carried out by
considering the effective two-nucleon interaction in infinite nuclear matter. This is known as the
G-matrix method, an is obtained from a solution of the Bethe-Goldstone equation

〈k|G(P,ρ1,ρ2)|k0〉= 〈k|vNN |k0〉−
∫ d3k′

(2π)3
〈k|vNN |k′〉Q(k′,P,ρ1,ρ2)〈k′|G(P,ρ1,ρ2)|k0〉

E(P,k′)−E0− iε
,

(4.6)

with k0, k, and k′ the initial, final, and intermediate relative momenta of the NN pair, k = (k1−
k2)/2 and P = (k1 + k2)/2. If energy and momentum is conserved in the binary collision, P
is conserved in magnitude and direction, and the magnitude of k is also conserved. vNN is the
nucleon-nucleon potential. E is the energy of the two-nucleon system, and E0 is the same quantity
on-shell. Thus E(P,k) = e(P + k)+ e(P−k), with e the single-particle energy in nuclear matter.
It is also implicit in Eq. 4.6 that the final momenta k of the NN-pair also lie outside the range of
occupied states.

In Ref. [89] the numerical calculations have been performed to account for the geometric
effect of Pauli blocking. A parametrization has been devised which fits the numerical results. The
parametrization reads

σNN(E,ρ1,ρ2) = σ
f ree

NN (E)
1

1+1.892
(

2ρ<

ρ0

)(
|ρ1−ρ2|

ρ̃ρ0

)2.75

×


1− 37.02ρ̃2/3

E , if E > 46.27ρ̃2/3

E
231.38ρ̃2/3 , if E ≤ 46.27ρ̃2/3

(4.7)

where E is the laboratory energy in MeV, ρi is the local density of nucleus i, ρ< = min(ρ1,ρ2) and
ρ̃ = (ρ1 +ρ2)/ρ0, with ρ0 = 0.17 fm−3.
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Figure 4: Total knockout cross sections
for removing the l = 0 halo neutron of
15C, bound by 1.218 MeV, in the reac-
tion 9Be(15C,14Cgs). The solid curve is
obtained with the use of free nucleon-
nucleon cross sections. The dashed curve
includes the geometrical effects of Pauli
blocking. The dashed-dotted curve is the
result using the Brueckner theory, and
the dotted curve is a phenomenological
parametrization.

The Brueckner method goes beyond a treatment of Pauli blocking, and has been presented in
several works, e.g. in Ref. [90, 91], where a simple parametrization was given, which we will from
now on refer as Brueckner theory. It reads (the misprinted factor 0.0256 in Ref. [91] has been
corrected to 0.00256)

σnp =
[
31.5+0.092

∣∣20.2−E0.53∣∣2.9
] 1+0.0034E1.51ρ2

1+21.55ρ1.34

σpp =
[
23.5+0.00256

(
18.2−E0.5)4.0

] 1+0.1667E1.05ρ3

1+9.704ρ1.2 (4.8)

A modification of the above parametrization was done in Ref. [92], which consisted in com-
bining the free nucleon nucleon cross sections parametrized in Ref. [93] with the Brueckner theory
results of Ref. [90, 91].

To test the influence of the medium effects in nucleon knockout reactions, we consider the
removal of the l = 0 halo neutron of 15C, bound by 1.218 MeV, and the l = 0 neutron knockout
from 34Ar, bound by 17.06 MeV. The reaction studied is 9Be(15C,14Cgs). The total cross sections
as a function of the bombarding energy are shown in figures 4. The solid curve is obtained with
the use of free nucleon-nucleon cross sections. The dashed curve includes the geometrical effects
of Pauli blocking. The dashed-dotted curve is the result using the Brueckner theory, and the dotted
curve is the phenomenological parametrization of the free cross section.

In figure 5 we plot the longitudinal momentum distributions for the reaction 9Be(11Be,10Be),
at 250 MeV/nucleon [89]. The dashed curve is the cross section calculated using the NN cross
section from the Brueckner theory and the solid curve is obtained the free cross section. One sees
that the momentum distributions are reduced by 10%, about the same as the total cross sections,
but the shape remains basically unaltered. If one rescales the dashed curve to match the solid one,
the differences in the width are not visible [94].

5. Conclusions

There were many questions not addressed in this review, such as the role of central nucleus-
nucleus collisions in determining phase transition, equation of state, and a quark-gluon plasma, all
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Figure 5: Longitudinal momen-
tum distribution for the residue in
the 9Be(11Be,10Be), reaction at 250
MeV/nucleon. The dashed curve is the
cross section calculated using the NN
cross section from the Brueckner theory
and the solid curve is obtained the free
cross section.

topics or relevance in astrophysics. The review was more focused on the role of short-lived, exotic
nuclei. The important scientific questions to be addressed both experimentally and theoretically
in nuclear physics of exotic nuclei with relevance for astrophysics comprise: (a) How do loosely-
bound systems survive and what are the general laws of their formation and destruction? (b) Are
new types of radioactivity possible? (c) Are new types of nuclear symmetry and spatial arrangement
possible? (d) What are the limits of nuclear existence? (e) How do the properties of nuclear matter
change as a function of density, temperature and proton-to-neutron ratio? (f) How do thermal and
quantum phase transitions occur in small systems? (g) What determines the shape and symmetry
properties of an exotic nucleus? (h) How does quantum tunneling of composite particles occur
in the process of reactions and decay? (i) What are the manifestations of fundamental forces
and symmetries in unusual conditions? (j) How were the elements heavier than iron formed in
stellar explosions? (k) How do rare isotopes shape stellar explosions? (l) What is the role of
rare isotopes in neutron stars? These questions provide extreme challenges for experiments and
theory. On the experimental side, producing the beams of radioactive nuclei needed to address
the scientific questions has been an enormous challenge. Pioneering experiments have established
the techniques and present-generation facilities have produced first exciting science results, but the
field is still at the beginning of an era of discovery and exploration that will be fully underway once
the range of next- generation facilities becomes operational. The theoretical challenges relate to
wide variations in nuclear composition and rearrangements of the bound and continuum structure,
sometimes involving near-degeneracy of the bound and continuum states. The extraction of reliable
information from experiments requires a solid understanding of the reaction process, in addition to
the structure of the nucleus. In astrophysics, new observations, for example the expected onset of
data on stellar abundances, will require rare-isotope science for their interpretation.
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