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Abstract. I present a brief summary of the first three decades of studies of pygmy resonances in nuclei
and their relation to the symmetry energy of nuclear matter. I discuss the first experiments and theories
dedicated to study the electromagnetic response in halo nuclei and how a low energy peak was initially
identified as a candidate for the pygmy resonance. This is followed by the description of a collective
state in medium heavy and heavy nuclei which was identified as a pygmy resonance. The role of the
slope parameter of the symmetry energy in determining the properties of neutron stars is stressed. The
theoretical and experimental information collected on pygmy resonances, neutron skins, and the numerous
correlations found with the slope parameter is briefly reviewed.

1 Introduction

1.1 Giant resonances

Collective excitation modes in nuclei are well known and
have been studied for the last 70 years. Their first unam-
biguous observation was reported by Baldwin and Klaiber
in [1, 2] while performing photo-absorption experiments.
But Bothe and Gentner [3] already had a first indica-
tion that they existed when very large cross sections were
obtained, two orders of magnitude larger than predicted
theoretically, for the photo-production of radioactivity in
several targets. The large cross sections were measured us-
ing high energy photons, of about 15MeV, and now are
understood as due to a collective nuclear response to the
electric dipole (E1) field of the photon. Such E1 collective
states had been predicted theoretically by Migdal [4]. For
a detailed description of giant resonances, see, e.g., ref. [5].

Much of what we know about the giant resonances
today was gathered in photo-absorption processes using
mono-energetic photons, as reported, e.g., in refs. [6–8].
The giant resonances in all nuclei are located above the
particle emission threshold. In medium and heavy nuclei
the large Coulomb barrier prevents charged particle decay,
and the photo-absorption cross section is usually obtained
from a measurement of neutron yields for a given γ-ray
energy [9–11].
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1.2 Origins of the pygmy resonance

Giant resonances are noticed in basically all nuclei. In
contrast, pygmy resonances have been mainly observed
in neutron-rich nuclei. Historically, the first observation
of a pygmy resonance occurred in 1961 with the discov-
ery of a significant number of unbound states identified as
a bump in γ-rays emitted following neutron capture [12].
But the first use of the name pygmy resonance, or pygmy
dipole resonance (PDR), was in 1969 when its effect on
the calculations of neutron capture cross sections was re-
ported [13]1.

The description of the PDR as a collective excitation
was first introduced in ref. [14] based on a three fluid
model consisting of protons and neutrons fluids in the
same orbitals, and neutrons accounting for excess neu-
trons interacting less strongly with the other nucleons.
The model assumed that the neutron excess would oscil-
late against the N = Z core. It was much later when the
first experimental proposal to study pygmy resonances in
Coulomb excitation experiments emerged in 1987 at the
JPARC facility in Japan [15].

2 Low energy response in neutron-rich nuclei

2.1 Nucleon knockout reactions

The abnormal size of the 11Li nucleus was first reported
in ref. [16–18] by measuring the momentum distributions

1 I thank Riccardo Raabe (KU Leuven) for this information.
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of 9Li fragments in nucleon removal reactions. A super-
position of two nearly Gaussian shaped distributions was
necessary to reproduce the experimental data. Following
the ideas laid down by Goldhaber [19], the wider peak was
linked to the removal of neutrons from a tightly bound 9Li
core, whereas the narrower peak was thought to arise from
the removal of the loosely bound valence neutrons in 11Li.
In fact, the two-neutron separation energy in 11Li is only
about 300 keV explaining why their removal only slightly
“shakes” the 9Li core, thus explaining the narrow compo-
nent of the momentum distribution. A narrow momentum
distribution implies a large spatial extent of the neutrons,
which in turn is a consequence of their small separation
energy. These conclusions were later found to be in agree-
ment with Coulomb breakup experiments [20] and with
theory [21,22].

The momentum distributions of core fragments of halo
projectiles were initially analyzed experimentally using
the simple Serber formula [23]

dσc

d3q
= C |ψ(q)|2 , (1)

where C is a kinematical constant and ψ(q) is the Fourier
transform of the ground state wave function of the nucleus.
In fact, this formalism works rather well for loosely-bound
nuclei such as 11Li and 11Be [24–26]. For nucleon removal
with larger separation energies, the Serber formalism is
not appropriate and yields inaccurate results [26–31].

2.2 Electromagnetic response

A narrow peak associated with the small separation en-
ergies was also observed in Coulomb dissociation experi-
ments [32,33], becoming the seed for subsequent intensive
investigations.

The Coulomb excitation cross section for a given mul-
tipolarity πL (π = E or M , and L = 1, 2, · · · ) and excita-
tion energy E is given by

dσ

dE
=

nπL(E)

E
σπL

γ (E), (2)

where nπL is the virtual photon number [34] and σπL
γ is

the photo-nuclear cross section, which can be written in
terms of the electromagnetic response function dBπL/dE
as [34]

σπL
γ (E) =

(2π)3(L + 1)

L[(2L + 1)!!]2

(

E

h̄c

)2L−1
dBπL(E)

dE
. (3)

2.3 Low binding energy effect

2.3.1 Two-body models

Using simple Yukawa or Hulthen functions for bound
states and plane waves for the continuum it was shown in

refs. [22, 35, 36] that a simple expression for the response
function emerges for electric multipoles, namely [36],

dBEL(E)

dE
=

2L−1

π2
(2L + 1)(L!)2

(

h̄2

μ

)L

×Z2e2
L

√
S(E − S)L+1/2

E2L+2
, (4)

where eL is the effective charge, S is the separation energy
and μ the reduced mass [22, 35, 36]. For the ubiquitous
electric dipole (E1) excitation one has

dBE1(E)

dE
=

3Z2e2
Lh̄2

μπ2

√
S(E − S)3/2

E4
. (5)

These equations are very useful as they allow simple pre-
dictions of the Coulomb response in halo nuclei in terms
of the separation energy S. They have been widely used
in experimental analyses [37,38] and for comparison with
more complex theoretical models [36, 39–46]. The above
equations predict a peak in the response function at an
excitation energy of E = 8S/5 and a width approximately
equal to 2S [36].

A certain confusion reigned in the literature during the
1990s as to whether the peak observed in the Coulomb
breakup experiments was due to a low energy resonance
or just a direct transition to the continuum, as is the case
behind the derivation of eqs. (4) and (5) [36].

Despite the appeal and usefulness of the expressions
above, it was later on recognized that in order to re-
produce many of the experimental data gathered on
Coulomb breakup of halo nuclei during the 1990s and
2000s it was necessary to incorporate higher-order inter-
actions, or final state interactions (FSI), in the theoreti-
cal calculations. The discretization of the continuum was
a crucial improvement of the theories and the so-called
continuum-discretized-coupled-channels (CDCC) calcula-
tions became a necessary theoretical method to reproduce
experimental data and to probe the structure of loosely
bound states and resonances appearing in halo systems.
The role of higher-order couplings and the nuclear con-
tribution to the breakup and comparison to experimental
data has been studied by numerous authors [47–66]. Cal-
culations based on effective field theories started to emerge
only recently [67].

2.3.2 Three-body models

Three-body models for halo nuclei such as 11Li and 6He
have obtained a similar response function as described
in the previous section [68–71], yielding dBE1(E)/dE ∝
(E−S)3/E11/2. This model shifts the three-body response
peak to larger excitation energy E than the two-body
model. Therefore, the separation energy still roughly de-
termines the peak location of the E1 response but at a
higher energy and with a larger width. It was also shown
that final state interactions can substantially change the
location of the low energy peak [57,71].
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Three-body models did not deliver much more in-
formation on the origins of the low-peak response and
its identification as a pygmy resonance. The conclusion
reached by using these models was that the observed peak
was again due to a direct transition from the ground state
of the nucleus, e.g., 11Li or 6He, to the continuum [68–71].
This does not mean however that the three-body mod-
els were not rich in physics details and predictions, much
on the contrary. They have helped us to understand new
phenomena in “Borromean” nuclei and the unravelling of
Efimov states in nuclei [69].

2.3.3 Hydrodynamical models

As the evidence accumulated of a non-negligible strength
in the low energy spectrum of dipole excitations, also
for heavier nuclei, other models for the pygmy reso-
nances emerged [14, 72, 73]. It was natural to extend
the Goldhaber-Teller (GT) [74] and Steinwedel-Jensen
(SJ) [75] hydrodynamical models to explain pygmy reso-
nances as a collective response to external fields in “soft”
neutron-rich nuclei.

Using the concepts described in ref. [76] one can show
that the radial transition density of pygmy resonances can
be described in the hydrodynamical model by the equa-
tion [71]

δρ(r) =

√

4π

3
R

[

ZGT αGT
d

dr
+ ZSJαSJ

K

R
j1(kr)

]

ρ0(r),

(6)
where Zi are the effective charges in the GT and SJ mod-
els [71], αi are admixture coefficients of the GT and SJ
collective vibration modes, such that αGT + αSJ = 1,
K = 9.93 and R is the mean nuclear radius. Here, j1(kr) is
the spherical Bessel function of order 1, and k = 2.081/R.
The transition density in eq. (6) emulates a pygmy res-
onance based on a collective dipole vibration of protons
and neutrons and is known as soft dipole mode.

If one choses αSJ = 0, Goldhaber and Teller [74] gave
a simple prescription for the resonance energy of collective
vibrations in nuclei, namely,

ER =

(

3Sh̄2

2aRmN

)1/2

, (7)

where a is the approximate size of the nuclear distribution
thickness and mN is the nucleon mass. According to Gold-
haber and Teller [74], S in the equation above is not the
separation energy of a nucleon but the energy needed to
extract one proton from the neutron environment (or one
neutron from the proton environment). It is the part of the
potential energy due to the neutron-proton interaction in
the nuclear environment, assumed to be proportional to
the symmetry energy ∝ (N − Z)/A.

Goldhaber and Teller [74] used S = 40MeV, a =
1–2 fm and got E ≃ 10–20MeV for a medium heavy nu-
cleus, consistent with the experimentally found centroids
of giant dipole resonances. For neutron rich nuclei, the ex-
tension of this theory needs to include a relation of S to

the symmetry energy. Such a relationship is only possible
with a microscopic model due to the nature of the fine-
structure of the pygmy resonance closely related to the
coupling of phonon states with complex configurations in
the nucleus. In the case of halo nuclei a hydrodynami-
cal model is likely unfit, but it works if one assumes that
S = S (here the separation energy). For halo nuclei the
product aR is also expected to be proportional to S−1,
and we obtain the proportionality EPDR ∼ βS, with β of
the order of one. Using for example 11Li, with a = 1–2 fm,
R = 3 fm, and S = 0.3MeV, one gets EPDR = 1–2MeV,
which is also compatible with experimental results.

Evidently, the hydrodynamical models are useful to
understand the physics of collective vibrations, but they
lack accuracy. Hydrodynamical models do not include
quantum mechanical and other effects which are crucial
to understand the nature of pygmy resonances. Micro-
scopic models starting from a nucleon-nucleon interac-
tion often relying on the linear response theory, e.g., the
random phase approximation, is a better approach to de-
scribe giant resonances. Such models have also been used
to study the fine-structure of the low-energy response in
nuclei [41–43,45,46].

2.3.4 Microscopic models

The random phase approximation (RPA) is a useful tool
to describe the nuclear response function in terms of mi-
croscopic degrees of freedom. In its simplest form, one can
calculate the response to a weak time-dependent field of
the form Vx(r) cos(ωt) by solving the RPA equations in
the self-consistent method [77]

δρRPA(r) =

∫

ΠRPA(r, r′)Vx(r′)d3r′, (8)

where δρRPA(r) is the self-consistent transition density
and ΠRPA(r, r′) satisfies the implicit equation

ΠRPA(r, r′) = Π0(r, r′) +

∫

d3r2d
3r3

×Π0(r, r2)
δV (r2)

δρ(r3)
ΠRPA(r3, r

′). (9)

Here, V (r) is the mean field potential, ρ(r) and Π0(r, r′)
are the corresponding densities and response function de-
fined in terms of occupied and unoccupied orbitals in the
nucleus. Other variations of the RPA exist and are ex-
plained in details elsewhere, for example using the XY-
formalism [78,79] (for a recent review, see ref. [45]).

The first application of the RPA formalism to obtain
the electromagnetic response in weakly-bound nuclei was
done in ref. [80]. This was followed up in refs. [36,39] where
a comparison with two-body models and nucleon cluster-
ing was done. In the RPA calculations a peak at small en-
ergies appears around a few MeV which was interpreted
as a pygmy resonance, or alternatively just the effect of a
small separation energy in the nuclei and of a direct tran-
sition to the continuum. At least for light nuclei. But for
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medium heavy and heavy nuclei, a fine structure of the
resonance was revealed leading to the belief that many
nucleons and many states are involved in the transition.

Since these first exploratory works, microscopic studies
based on different RPA models have been used to study
neutron-rich nuclei along the nuclear chart. All neutron-
rich nuclei seem to display a visible structure in the re-
sponse to external fields at low energies which has been
attributed to the pygmy resonance. Relativistic mean field
models have also identified pygmy resonances. To cite a
few of these works, we list refs. [81–96]. It is therefore clear
that pygmy resonances constitute a new phenomenon in
nuclear physics which appeared in the context of neutron-
rich nuclei and the effect is also enhanced in nuclei close
to the drip-line with small binding energies.

Improvements of the RPA, such as the Quasi-Particle
RPA (QRPA) in the phonon-coupling model and the Sec-
ond RPA (SRPA) [97–101] have shed some light on the
damping mechanism of the PDR as due to a coupling of a
collective mode with complex configurations. Such works
lead to the conclusion that the fragmentation of the PDR
strength provides a deeper test of advanced microscopic
model calculations.

Recently a new and powerful method has been devel-
oped to study not only pygmy resonances but also nuclear
large amplitude collective motion [102–108]. The frame-
work relies on the time dependent superfluid local den-
sity approximation (TDSLDA). This is an extension of the
Density Functional Theory (DFT) to superfluid nuclei and
can handle the response to external time-dependent fields.
All degrees of freedom are taken into account without
any restrictions with all symmetries implemented such as
translation, rotation, parity, local Galilean covariance, lo-
cal gauge symmetry, isospin symmetry and minimal gauge
coupling to electromagnetic fields [108].

As in the time-dependent Hartree-Fock-Bogoliubov
theory, the time evolution of the nucleus is governed by
the time-dependent mean field

ih̄
∂

∂t

(

U(r, t)

V (r, t)

)

=

(

h(r, t) Δ(r, t)

Δ∗(r, t) −h∗(r, t)

) (

U(r, t)

V (r, t)

)

, (10)

where h(r, t) is the single-particle Hamiltonian and Δ(r, t)
is the pairing field. Both are obtained self-consistently
from an energy functional, i.e., a Skyrme interaction. The
time-dependent external electromagnetic field A enters
the hamiltonian by means of the minimal gauge coupling
∇A = ∇ − iA/h̄c. The energy spectrum is obtained by a
Fourier transformation of the time evolution of the nuclear
density.

In ref. [106] the first TDSLDA calculations were re-
ported for relativistic Coulomb excitation in a collision of
238U+ 238U. The results show that a considerable amount
of electromagnetic strength occurs at low energies, around
Ex ∼ 7MeV. This additional structure was attributed to
the excitation of the pygmy dipole resonance (PDR).

The TDSLDA has not yet been used for systematic
studies of the PDR. However, extensive studies on pygmy
resonances have been carried out using the Time De-
pendent BCS (TD-BCS) approximation. For example, in
ref. [109] new properties of the PDR response were found,
such as its universal behavior for heavy neutron-rich iso-
topes, suggesting the emergence of decoupled PDR peaks
beyond N = 82. The low energy response is sensitive to
the underlying nuclear structure, such as the choice of the
mean field. Hence, differences in the predictions of the
PDR properties found in the literature can be partially
linked to the choice of different Skyrme potentials [109].

2.3.5 Electron scattering

For very forward electron scattering and small energy
transfers, Siegert theorem [110, 111] allows one to show
that the Coulomb and electric form factors appearing in
electron scattering differential cross sections are propor-
tional to each other and one obtains for electric multipole
excitations [71]

dσ

dΩdEγ
=

∑

L

dN
(EL)
e (Ee, Eγ , θ)

dΩdEγ
σ(EL)

γ (Eγ) , (11)

valid in the long-wavelength approximation, i.e., for ex-
citation energies Eγ ≪ h̄c/R, with Ee being the electron
energy, and the equivalent photon number is given by [71]

dN
(EL)
e (Ee, Eγ , θ)

dΩdEγ
=

4L

L + 1

α

Ee

[

2Ee

Eγ
sin

(

θ

2

)]2L−1

× cos2(θ/2) sin−3(θ/2)

1 + (2Ee/MAc2) sin2(θ/2)

×
[

1

2
+

(

2Ee

Eγ

)2
L

L + 1
sin2

(

θ

2

)

+ tan2

(

θ

2

)

]

. (12)

As with the case of Coulomb excitation, the cross sec-
tion for electron scattering in this limit, and for large elec-
tron energies, are proportional to the cross sections for
the electric multipolarity EL induced by real photons. In
both cases, this is a very useful relationship, as it is nearly
impossible to study the interactions of real photons with
radioactive nuclei in the laboratory. The conditions above
are also hard to establish, except for electron-ion collid-
ers, which have been promised as part of radioactive beam
facilities, but not yet fully realized [112,113].

The excitation of the electric pygmy dipole resonance
at large angles by inelastic electron scattering with ex-
isting facilities has been reported in this special issue by
Pomomarev et al. [114]. They demonstrate that the ex-
citation of pygmy resonance states in (e, e′) reactions is
predominantly of transversal character for large scattering
angles. They were also able to extract the fine structure
of the pygmy states at low excitation energies.

Electron scattering on halo nuclei was explored theo-
retically in ref. [115] and a comparison with fixed-target
experiments was presented. For a given electron energy
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Ee, the total cross section for the dissociation of halo nu-
clei was shown to be

σe(Ee) = 64
√

2π
e2
eff

μc2S
ln

(

Ee

S

)

, (13)

where μ is the reduced mass of the halo nucleus, treated
as a two-body cluster-like nucleus, and eeff is the effective
charge involved in the transition.

For normal nuclei, with S ≃ few MeV, the halo nu-
cleus electron-disintegration cross section is negligible.
The formula above predicts a dependence on the inverse
of the separation energy. In a hypothetical situation, with
S = 100 keV, Ee = 10MeV, eeff = e, and μ = mN ∼
103 MeV, this equation yields a non-negligible 25mb for
the dissociation cross section. The electro-disintegration
cross section increases very slowly with the electron energy
posing a challenge for future experiments. In contrast, it
was shown in ref. [115], that at low electron energies the
cross sections increase much faster with Ee. These con-
clusions are of relevance for the designing of experiments
in future electron-ion colliders and to resolve the energy
spectrum around the pygmy resonance.

2.3.6 Summary of PDR properties

Based on the facts discussed above, we conclude that the
low energy response in neutron-rich nuclei is enhanced and
has been verified in all theoretical methods involving two-
body, three-body and many-body models dealing with the
electromagnetic response of neutron-rich nuclei. It has also
been abundantly observed in experiments. It is however
not yet clear if such an enhancement is due to a collective
effect. I have only superficially listed a few theoretical and
experimental results on PDRs reported in the literature.
Therefore, the references mentioned here are not intended
to be fully representative of this vast research field during
the last few decades.

Next we discuss the relation of PDRs to astrophysics.

3 Equation of state of neutron stars

3.1 Symmetry energy

The structure of neutron stars is dependent on the equa-
tion of state (EOS) of infinite neutron matter with a small
proton component [116]. Since most of the experimental
data related to EOS is obtained with nuclei with N ∼ Z,
it is important to have an accurate description of the part
of the EOS depending on the fraction δ = (N − Z)/A,
known as symmetry energy.

The energy per nucleon in nuclear matter can be ex-
panded in a Taylor series around N = Z yielding

ǫ(ρ, δ) = ǫ(ρ, 0) + S(ρ)δ2 + · · · , (14)

where S now denotes the symmetry energy. For the infi-
nite matter in neutron stars one uses, δ = (ρn − ρp)/ρ,

where ρ = ρp +ρn is the total nuclear density. The incom-
pressibility of nuclear matter is defined as

K0 = 9ρ2
0

∂2ǫ

∂ρ2

∣

∣

∣

∣

ρ0

, (15)

and is perhaps the easiest quantity to relate infinite nu-
clear matter to experimentally observed properties such
as monopole excitations in nuclei [117].

The function S(ρ) can also be expanded around the
saturation density of nuclear matter, ρ0 ≃ 0.16 fm−3,

S(ρ) = J +
L

3

ρ − ρ0

ρ0
+ · · · , (16)

where the bulk symmetry energy is given by J = S(ρ0)
and the slope parameter is given by

L = 3ρ0
dS(ρ)

dρ

∣

∣

∣

∣

ρ0

. (17)

The binding energy per nucleon at saturation is ǫ(ρ0, 0) ≃
−16MeV. Fits to nuclear properties such as masses and
excitation energies with microscopic models have indi-
cated that J ≈ 30MeV [118]. Because the theoretical
models have been fitted to reproduce normal nuclei, it
is not easy to find out which value of L from these models
is the proper one to use in the EOS of neutron stars.

The EOS of homogeneous nuclear matter is a relation
of the pressure and density, given by

p(ρ, δ) = ρ2 dǫ(ρ, δ)

dρ
. (18)

It is strongly dependent on S, because for δ = 1, i.e., pure
neutron matter, and ρ ∼ ρ0 one obtains p = Lρ0/3. There-
fore, the slope parameter L is crucial to describe the EOS
of neutron matter. Experimental and theoretical analyses
of various kinds of nuclear structure and nuclear reactions
show that L is not well known, varying with the range 0
and 150MeV [119,120]. The explosion mechanism of core-
collapse supernovae is also dependent on the EOS of nu-
clear matter and its characteristics out of neutron/proton
symmetry [116,121–126].

3.2 TOV equation

The role of the pressure in obtaining the structure of neu-
tron stars is determined by the solutions of the equations
of hydrostatic equilibrium. They are supposed to be gov-
erned by the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions, an extension of Newton’s laws including special rel-
ativity and general relativity corrections. The TOV equa-
tions are a set of coupled differential equations of the form
(here we use c = 1)

dp

dr
= −G

ρ(r)m(r)

r2

[

1 +
p(r)

ρ(r)

] [

1 +
4πr3p(r)

m(r)

]

×
[

1 − 2Gm(r)

r

]

−1

(19)

dm(r)

dr
= 4πr2ρ(r), (20)
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where m(r) is the enclosed mass profile of the star up to
radius r and G is the gravitational constant. The solu-
tions of the TOV equations for a given EOS are able to
predict the mass and radii of neutron stars. As reported
in ref. [127], there is a large variation among observational
data and theories for masses of neutron stars.

In order to solve the TOV equations one needs to know
the relationship of pressure and energy density (EOS),
p(ρ) and as we discussed above, this relates very closely to
the slope parameter L. And how much do we know about
it? This is only part of the puzzle, but the one which might
need most improvements.

4 Slope parameter and pygmy resonances

4.1 Skyrme forces

There exist various theoretical models to describe the bulk
properties of nuclei, such as their masses and nucleon
density distributions. A widely used model relies on the
Hartree-Fock-Bogoliubov (HFB) theory using Skyrme in-
teractions [78]. The Skyrme forces are contact interactions
embodying coordinate, spin and isospin dependence. The
energy density functional ǫ[ρ] is a straightforward byprod-
uct of the model. As mentioned above, this density depen-
dence is exactly what one needs to deduce the mass and
radii of neutron stars using the TOV equations [121].

There are hundreds of Skyrme interactions that have
been devised and that are able to describe successfully a
limited number of nuclear properties. Some of them have
recently been fitted by means of a computational descrip-
tion of global masses and other nuclear properties [128].
This new era of intense developments in computational
power has allowed for a better constraint of the interac-
tions appropriate to fit global properties of nuclei. How-
ever, when extrapolated to densities below and above the
saturation density, the equations of state ǫ(ρ) tend to di-
verge [129]. Therefore, there is a strong interest in the
literature to pinpoint those Skyrme interactions that bet-
ter describe neutron matter properties. A glimpse of this
difficulty is shown in table 1 where we show some of the
predictions of the Skyrme models for the input needed to
neuron star properties. It is evident that, whereas K0 and
J tend to agree among many of the predictions, the slope
parameter L is the least constrained.

4.2 Dipole polarizability

Microscopic theories based on energy density functionals
with Skyrme forces or relativistic models suggest that the
nuclear dipole polarizability αD defined as

αD =
h̄

2π2e2

∫

σE1
γ (E)

E2
dE =

8π

9

∫

dBE1(E)

dE

dE

E
(21)

is an additional quantity able to constrain the symmetry
energy [139,140]. These are easily extracted from Coulomb
excitation experiments. The reason is simple: the virtual

Table 1. Properties of nuclear matter at the saturation den-
sity as predicted by some Skyrme models. All numbers are in
units of MeV. The parameters for the Skyrme forces were taken
from [130–137]. For more details see ref. [138].

K0 J L K0 J L

SIII 355. 28.2 9.91 SLY5 230. 32.0 48.2

SKP 201. 30.0 19.7 SKXS20 202. 35.5 67.1

SKX 271. 31.1 33.2 SKO 223. 31.9 79.1

HFB9 231. 30.0 39.9 SKI5 255. 36.6 129.

photon numbers entering eq. (2) have a nE1 ∼ ln(1/E) de-
pendence with energy, which together with the 1/E term
favors the low energy part of the spectrum where pygmy
resonances are located. Hence, a measurement of Coulomb
dissociation (or electron scattering) is nearly proportional
to the dipole polarizability.

Experiments exploring Coulomb excitation, and po-
larized proton scattering off neutron-rich nuclei to extract
the dipole polarizability and its relation to the slope pa-
rameter have been reported in a several publications in
refs. [97, 98, 140–161], just to cite a few of them. To date,
there is a large variation in the measurements of αD in the
order of 20–30%. This is still too large to constrain most
of the energy functionals stemming from Skyrme and rela-
tivistic models. Developments on nuclear reaction theory
are also necessary to obtain the desired accuracy in the
experimental analyses [162].

A correlation between αD, the strength of pygmy res-
onances, and the neutron skin in nuclei,

Δrnp =
〈

r2
n

〉1/2 −
〈

r2
p

〉1/2
, (22)

was also shown to exist in refs. [94, 163]. Several corre-
lations have been found among neutron skin, dipole po-
larizability, and the slope parameter [129, 163–166]. The
neutron excess in a nucleus builds up a neutron pressure
that is larger than the pressure due to the protons. The
neutron pressure also contributes to the energy per nu-
cleon which is a function of the nuclear density and its
nucleon asymmetry. Therefore, neutron skins in nuclei are
expected to be naturally correlated to the symmetry en-
ergy.

Experiments dedicated to the measurement of neutron
skins have also been the subject of large experimental
interest, ranging from electron scattering (with the par-
ity violation part of the interaction), anti-proton anni-
hilation, and heavy ion collisions [140, 161, 163, 167, 168].
An electron-ion collider directly using the electromagnetic
interaction as a probe would be an ideal tool, but are
still far from being fully realized with neutron-rich nu-
clei [112, 113]. It is possible that the neutron skin can be
accessed in fragmentation reactions using inverse kinemat-
ics, as proposed in ref. [168]. These are rather easy exper-
iments using present radioactive beam facilities. The pro-
posal is based on the measurement of neutron-changing
cross sections by the detection of all fragments with at
least one neutron removed [168]. Another proposal sug-
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gests that a subtle but well-known phenomenon, the Maris
effect, could be used to access information on the neutron
skin [169]. These could be achieved with polarized proton
targets in quasi-free (p, 2p) reactions.

5 Nucleosynthesis

The physics cases discussed in the previous sections both
for Coulomb excitation by heavy ions and also by elec-
tron scattering are useful to assess information on ra-
diative capture reactions in stars, such as (n, γ) and
(p, γ) [170–176]. So far, the pygmy resonances have been
mainly probed using electromagnetic excitation (see, e.g.,
eq. (2)) from which one can extract the photodissociation
cross section (3). Using the detailed balance theorem, it
was proposed in ref. [177] that radiative capture reactions
of relevance for astrophysics could be obtained in elec-
tromagnetic dissociation experiments. This was proved
to be a very useful tool in numerous experiments, e.g.,
refs. [178–183] and became a state of the art tool in nu-
clear accelerator facilities.

The impact of the pygmy resonances in nuclear as-
trophysics is also imprinted in the energy balance of the
reactions in the stellar medium. It has been shown, and
up to now little explored, that the energy balance in the
nuclear reaction networks may change the nuclear abun-
dances appreciably if one includes pygmy resonances [170].

6 Beyond pygmy resonances and neutron

skins

Experiments with nuclei on earth are very limited by beam
intensities, detection efficiencies, etc. Guidance by theory
is crucial for experimental success, but this symbiosis also
has limitations. Besides, nuclei are not prototypes of neu-
tron stars. Perhaps the closest examples of neutron stars
on earth are neutron rich nuclei. But neutron stars are
bound by gravity and not by the strong interaction.

Theorists are limited by computational power and by
the lack of knowledge of crucial parts of the physics in-
gredients necessary for their goals such as an accurate de-
scription of the interface of quarks, gluons and nucleon
degrees of freedom. Based on the information collected in
relativistic nuclear collisions, there is increasing evidence
that a phase transition exists between a quark-gluon mat-
ter and the nucleons in nuclei even at low temperatures.

If there is a phase transition in the core of neutron
stars due to a large density, then the symmetry energy ob-
tained with nucleonic degrees of freedom is not enough to
model the structure of neutron stars. There is a long way
for experimentalists to improve their devices and theorists
to refine their models of nuclear matter. Accumulated ex-
perience obtained in the last decades tells us that every
so often an idea such as the relation of spectra of pygmy
resonances and of neutron skins to the symmetry energy
helps us to pave the way.

I am honored to have met Pier Francesco. I wish to thank him
for his dedication to nuclear physics and the education of a new
generation of nuclear scientists. Maybe I will do this personally
in another universe. This work was supported in part by the
U.S. DOE grant DE-FG02-08ER41533 and the U.S. National
Science Foundation Grant No. 1415656.
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