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Abstract. We propose an alternative for Coupled-Channels calculations with loosely-

bound exotic nuclei(CDCC), based on the the Random Matrix Model of the statistical

theory of nuclear reactions. The coupled channels equations are divided into two sets.

The first set, described by the CDCC, and the other set treated with RMT. The resulting

theory is a Statistical CDCC (CDCCs), able in principle to take into account many pseudo

channels.

1 Statistical Continuum Discretized Coupled Channels

Continuum-Discretized Coupled-Channels calculations are a major theoretical tool to calculate ob-

servables in reactions involving rare loosely-bound nuclear isotopes [1, 2]. Such calculations are

time-consuming and may include such a huge humber of channels that they are amenable to a statisti-

cal treatment, similar to what has been used to treat neutron-induced reactions with compound nuclear

states. This is the subject of the present work.

We write the CDCC equations in a schematic model as,[
− �

2

2μ

d2

dx2
+ Vrel(x) + εn − E

]
ψn(x) +

∑
m

Vnm(x)ψm(x) = 0 (1)

We distinguish the desired channels in a conventional CDCC by the labels m, n, from the statistical

channels labeled by μ, ν. Accordingly,[
− �

2

2μ

d2

dx2
+ Vrel(x) + εn − E

]
ψn(x) +

∑
m

Vnm(x)ψm(x) +
∑
μ

Vnμ(x)ψμ(x) = 0 (2)

and [
− �

2

2μ

d2

dx2
+ Vrel(x) + εμ − E

]
ψμ(x) +

∑
ν

Vμν(x)ψν(x) +
∑

m

Vμm(x)ψm(x) = 0 (3)
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Figure 1. Strongly coupled states belonging to space

P and denoted by roman letters, are weakly coupled to

states belonging to space Q and denoted by greek letters.

The statistical nature of the μ, ν channels

is specified through the following properties

of the matrix elements,

Vμν = 0 (4)

VμνVηρ = (δμ,ηδν,ρ + δμ,ρδν,η)V2
μ,ν (5)

where the second moment V2
μ,ν can be

parametrized as,

V2
μ,ν =

ω0√
ρ(εμ)ρ(εν)

e
− (εμ+εν )2

2Δ2 (6)

with ρ(ε) being the density of states, and ω0

and Δ are adjustable parameters.

The same statistical properties are in-

voked on the matrix elements Vμ,m, etc.

Vμm = 0 (7)

VμmVηn = (δμ,ηδ(m, n) + δμ,nδn,η)V2
μ,m (8)

where the second moment V2
μ,m can be parametrized as,

V2
μ,m =

ω0

ρ(εμ)
e
− (εμ+εη )2

2Δ2
m (9)

with ρ(ε) being the density of states, and ω0 and Δ are adjustable parameters.

The above prescription should set the stage for a CDCC calculation which presents fluctuations

in the final channels and one must rely on an appropriate ensemble average: perform the calculation

several times and at the end perform an average.

2 The CDCCs equations

It is natural to expect that the CDCC equations for the m, n channels would be affected by the statistical

channels (μ, ν). Averaging the equations above is rather difficult. An easier procedure is to eliminate

the statistical channels in favor of the CDCC channels (m, n), resulting in

ψμ(x) =

∫ ∞

0

dx′Gμ(x, x′)
∑

m

Vμm(x′)ψm(x′) (10)

where Gμ(r, r′) is the diagonal elements of a matrix Green’s function defined through the equation[
[− �

2

2μ

d2

dx2
+ Vrel(x) + εμ − E]δμ,ν + Vμν(x)

]
Gμ,ν(x, x′) = δ(x − x′) (11)
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With the above Green’s function we have for the effective CDCC equations,[
− �

2

2μ

d2

dx2
+ Vrel(x) + Vpol,n(x) + εn − E

]
ψn(x) +

∑
m

Vnm(x)ψm(x) = 0 (12)

where Vpol,n(x), is given by

Vpol,n(x)ψn(x) =

∫ ∞

0

dx
∑
μ

Vnμ(x)

∫ ∞

0

dr′Gμ(x, x′)
∑

m

Vμm(x′)ψm(x′) (13)

The polarization potential fluctuates owing to the random nature of the coupling Vn,μ. Thus we

have to average this equation over the ensemble. What remains is the fluctuation contribution which

we address later.

Vpol,n(x)ψn(x) =
∑
μ

Vnμ(x)

∫ ∞

0

dx′Gμ(x, x′)
∑

m

Vμm(x′)ψm(x′) (14)

The above equation is difficult to average. What we can do is to borrow from the Optical Back-

ground Representation of KKM, and introduce the average polarization potential,

Vpol,n(x) =
∑
μ

Vnμ(x)

∫ ∞

0

dx′Gμ(x, x′)
∑

m

Vμm(x′) (15)

To perform the average above, we have to expand the Green’s function in Vμν and then consider

only even powers of V,s. This is quite lengthy and was done by Weidenmüller. Here we ignore

the fluctuations in G, and proceed to average Vnμ(x)Vμm(x′) = [δn,μδμ,m + δn,m]F(x, x′)V2
μ,m, where

F(x, x′) = e−(x−x′)2/2σ2

.

Accordingly, we have the CDCC equations with the average polarization potential,[
− �

2

2μ

d2

dx2
+ Vrel(x) + Vpol,n(x) + εn − E

]
ψn(x) +

∑
m

Vnm(x)ψm(x) = 0 (16)

The above equations are the new CDCC ones appropriate for our purpose. The fluctuation contribution

can be obtained by going back to the original equation and write Vpol,n(x) = Vpol,n(x) + V
f l

pol,n
(x). This

implies that the CDCC wave functions themselves fluctuate. However, the CDCC equations are not

the appropriate venue to obtain the fluctuation contribution. What we need is an equation for the

square of the CDCC wave functions: Master equation. This was obtained by Weidenmüller [4], and

[5]. We should mention that fluctuations in the final state has been discussed in the case of transfer

leading to the excitation of an isobaric analog resonance [6].

3 Time-dependent theory

In the c.m. of the projectile, we assume H = H0 + V , where H is composed of the non-perturbed

Hamiltonian H0 and a small perturbation V . The Hamiltonian H0 satisfies an eigenvalue equation

H0ψn = Enψn, (17)

whose eigenfunctions form a complete basis (including continuum) in which the total wavefunction

Ψ, that obeys

HΨ = i�
∂Ψ

∂t
, (18)
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can be expanded:

Ψ =

∑
n

an(t)ψne−iEnt/�. (19)

Using (17) and (19) in (18), we obtain:

i�
∑

n

ȧnψne−iEnt/�
=

∑
n

Vanψne−iEnt/�, (20)

with ȧn ≡ dan(t)/dt. Using the orthogonalization properties of the ψn, let us multiply (20) by ψ∗
k

and

integrate it in the coordinate space. From this, results the coupled-channels equations

ȧk (t) = − i

�

∑
n

an (t) Vkn (t) ei
Ek−En

�
t, (21)

where we introduced the matrix element (dτ is the volume element)

Vkn =

∫
ψ∗kVψn dτ. (22)

In order to get balance equations, we follow a method described by Bertulani and Baur for the

excitation of giant resonances in relativistic heavy Ion collisions [7] (section 3.2.3). We rewrite Eq.

(21) with explicit account of P (bound + “strongly-coupled states" in continuum - denoted by roman

letters) + Q (“weakly-coupled" states in the continuum - denoted by greek letters)

ȧk (t) = − i

�

∑
n

an (t) Vkn (t) ei
Ek−En

�
t − i

�

∑
n

aμ (t) Vkμ (t) ei
Ek−Eμ

�
t
+

∫ ∞

−∞
dt′Kk(t − t′)ak(t′), (23)

where we introduced the last term to account for decay to other channels than the breakup channel

under scrutiny. This function is given in terms of the width of the state k as

K(t − t′) = − i

4π

∫ ∞

−∞
dωeiω(t−t′)

Γk

(
ω − Ek

�

)
, (24)

For Γk equal to a constant, one obtains Kk(t − t′) = −i(Γk/2)δ(t − t′), we get

ȧk (t) = − i

�

∑
n

an (t) Vkn (t) ei
Ek−En

�
t − i

�

∑
n

aμ (t) Vkμ (t) ei
Ek−Eμ

�
t − i

Γk

2
ak(t), (25)

Since Γk � 0, the total probability P =
∑

k |ak(t)|2 is no longer conserved because a flux is now put into

the decay channels. Multiplying Eq. (25) by a∗
k

and its complex conjugate by ak(t) and subtracting the

results, we obtain for the occupation probability Pk(t) = |ak(t)|2,

Ṗk (t) =
2

�
�
⎡⎢⎢⎢⎢⎢⎣∑

n

a∗n(t)ak(t)Vkn (t) ei
Ek−En

�
t

⎤⎥⎥⎥⎥⎥⎦ + 2

�
�
⎡⎢⎢⎢⎢⎢⎣∑

n

a∗k(t)aμ (t) Vkμ (t) ei
Ek−Eμ

�
t

⎤⎥⎥⎥⎥⎥⎦ − Γk

�
Pk(t), (26)

This equation can be written as a balance equation for the probability in the form

Ṗk (t) = Gk(t) + Lk(t), (27)

where the gain term is obtained whenever

Hk(t) =
2

�
�
⎡⎢⎢⎢⎢⎢⎣∑

n

a∗n(t)ak(t)Vkn (t) ei
Ek−En

�
t

⎤⎥⎥⎥⎥⎥⎦ + 2

�
�
⎡⎢⎢⎢⎢⎢⎣∑

n

a∗k(t)aμ (t) Vkμ (t) ei
Ek−Eμ

�
t

⎤⎥⎥⎥⎥⎥⎦ , (28)
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is positive, i.e., G
(+)

k
= positive(Hk), and the loss term is obtained whenever Hk(t) is negative added to

the loss by decay,

Lk (t) = G
(−)

k
(t) − Γk

�
Pk(t). (29)

Similar equations are obtained for the occupation probability Pμ due to nμ (PQ) and νμ (QQ)

coupling. The first part on the rhs of Eq. (28) is obtained directly from solving the cc equations with

the “strongly interacting" P states. But the second term has to be averaged in a proper way. The same

needs to be done for both terms of Hμ which also contains terms proportional to aμaν. If the averaging

is possible then the cc equation can be reiterated to include the couplings involving the continuum till

convergence is achieved.

4 KKM approach to CDCCs

We consider the scattering of a projectile with center of mass energy E, which by means of the

interaction with the target and between the core and neutron (say, for 11Be → 10Be+n), may transit to

other channels. We consider scattering within a narrow band of discretized continuum states belonging

to a space P. All other states, continuum + bound states, will be assumed to belong to space Q. We

emphasize here that this decomposition of the Hilbert space is made on the final wave function which

contains the breakup channels. As such the energy mentioned above should be taken as that pertaining

to the nucleus which breaks up. If the energy is taken as the total CM one and the decomposition is

done on the total wave function, then we are dealing with the conventional compound nucleus reaction,

which is not the aim of this investigation. In the following we take E to be the energy of the subsystem.

Figure 2. Scematic representation of the P and Q spaces

in the KKM formalism.

The Schrödinger equation (SE) for this

problem is HΨ = EΨ, containing an inter-

nal (core-neutron) interaction V and the pro-

jectile interaction with the target U. Using the

Feshbach formalism, we introduce the projec-

tion operators P and Q, so that Q = 1− P and

Ψ = PΨ+QΨ. Then, for the part of the wave-

function in space P, we get(
E − HPP − HPQGQHQP

)
PΨ = 0, (30)

where

GQ ≡ GQ (E) =
1

E − HQQ + iε
. (31)

The continuum is discretized by averaging the wavefunction in the channel P over an energy

interval Δ according to the prescription

〈Ψ〉Δ =
Δ

2π

∫ ∞

−∞
dE′ ΨE′

(E − E′)2
+ Δ2/4

= Ψ

(
E + i

Δ

2

)
, (32)

where the residue theorem was used.

It is then straightforward to show that

PΨ = Ψ
Δ

P + GPVPQ

1

E − HQQ −VQPGPVPQ

VQPΨ
Δ

P, (33)
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with Ψ
Δ

P
= 〈PΨ〉Δ 
 PΨ(E + iΔ/2) being the solution of the energy average of Eq. (30), which is

obtained by replacing GQ(E) by GQ(E + iΔ/2). This follows from the assumption that solutions of

HPP and HPQ are slowly varying functions of E. In Eq. (33),

GP (E) =
1

E − HPP − HPQGQ (E + iΔ/2) HQP

, (34)

and

VPQ (E) = HPQ (E)

(
iΔ/2

E + iΔ/2 − HQQ + iε

)1/2
VQP (E) =

(
iΔ/2

E + iΔ/2 − HQQ + iε

)1/2
HQP (E) . (35)

Figure 3. Ratio between the average of the fluctuating

part and the optical part of the T-matrix.

We now consider the Hamiltonian

W = HQQ +VQPGopt

P
VPQ (36)

which describes the coupling of the Q and

P spaces, e.g. bound-state-continuum and

continuum-continuum couplings. We as-

sume that a complete set of projectile eigen-

states |ω〉, with eigenenergies Eω can be

found for W. The eigenvalue problems are

very different: Ψ
opt

P
is a solution of HPP −

HPQGQ

(
E + iΔ

2

)
HQP, whereas |ω〉 is a solu-

tion of HQQ +VQPGopt

P
VPQ.

The S-matrix, S cc′ =

〈
(PΨ)(−)

c | (PΨ)
(+)
c′
〉

can be obtained using steps similar to the

derivation of the Gell-Mann-Goldberger rela-

tion (or two-potential formula). One gets

S cc′ (E) = S cc′ (E) − i
∑
ω

γωcγωc′

E − Eω , (37)

where

γωc(E) =
√

2π
〈
ω
∣∣∣VQP (E)

∣∣∣ΨΔ

P=c

〉
. (38)

The channels c and c′ in eq. (37) denote the different channels for the scattering matrix S cc′ .

The result above splits the S-matrix into a direct part, S cc′ (E) =
〈
Ψ
Δ(−)
c | (Ψ)

Δ(+)
c′

〉
, and a multi-step

part, the second term in Eq. (37), which contains all the multiple couplings between the Q and P

spaces. Assuming that γωc are smooth functions of E, we can perform the ensemble average of the

coupling term in Eq. (37) as〈∑
ω

γωcγωc′

E − Eω

〉
Δ

=

∑
ω

γωc(E + iΔ/2)γωc′ (E + iΔ/2)

E + iΔ/2 − Eω . (39)

In the channel P, we define a continuum-discretized model wave function

ΨP = Ψ
opt

P
= 〈PΨ〉Δ 
 PΨE+iΔ/2, (40)

EPJ Web of Conferences

00020-p.6



where Ψ
opt

P
is the solution of[

E − HPP − HPQGQ

(
E + i

Δ

2

)
HQP

]
Ψ

opt

P
= 0, (41)

or
(
E −Hopt

P

)
Ψ

opt

P
= 0, with

Hopt

P
(E) = HPP + HPQGQ

(
E + i

Δ

2

)
HQP. (42)

Eq. (41) follows from an average of eq. (30), with the assumption that solutions of HPP and HPQ are

slowly varying functions of E.

Using the simple relation

GQ(E) −GQ(E + i
Δ

2
) = GQ(E)

iΔ

2
GQ(E + i

Δ

2
), (43)

and from eq. (30), by adding and subtracting Hopt

P
, one gets[

E −Hopt

P
−VPQ (E) GQ(E)VQP (E)

]
PΨ = 0, (44)

where

VPQ (E) = HPQ (E)

(
iΔ/2

E + iΔ/2 − HQQ + iε

)1/2
VQP (E) =

(
iΔ/2

E + iΔ/2 − HQQ + iε

)1/2
HQP (E) . (45)

Now we solve eq. (44) and get

PΨ = Ψ
opt

P
+ Gopt

P
VPQ

1

E − HQQ −VQPGopt

P
VPQ

VQPΨ
opt

P
, (46)

with

Gopt

P
(E) =

1

E −Hopt

P
(E)

=
1

E − HPP − HPQGQ

(
E + i I

2

)
HQP

. (47)

The Hamiltonian

W = HQQ +VQPGopt

P
VPQ (48)

describes the coupling of the Q and P spaces, i.g. bound-state-continuum and continuum-continuum

couplings.

Let us assume that a complete set of projectile eigenstates |q〉 can be found for W. That is[
HQQ +VQPGopt

P
VPQ

]
|q〉 = Eq |q〉 . (49)

Then we can insert this set into eq. (46) and it becomes

PΨ = Ψ
opt

P
+ Gopt

P
VPQ |q〉 1

E − Eq

〈q| VQP

∣∣∣Ψopt

P

〉
. (50)
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The S-matrix, S cc′ =
〈
(PΨ)(−)

c | (PΨ)
(+)
c′
〉

can be obtained from the equation above and its complex

conjugate, using steps similar to the derivation of the Gell-Mann-Goldberger relation (or two-potential

formula). The Hamiltonians are very different: Ψ
opt

P
is solution of HPP − HPQGQ

(
E + iΔ

2

)
HQP,

whereas |q〉 is solution of HQQ +VQPGopt

P
VPQ. One gets

S cc′ (E) = S cc′ (E) − i
∑

q

gqcgqc′

E − Eq

, (51)

where

gqc(E) =
√

2π
〈
q
∣∣∣VQP (E)

∣∣∣Ψopt

P=c

〉
. (52)

We first consider the eigenvalues of the operator

W0 = HQQ − HQPG0HPQ, (53)

where G0 is a free projectile Green’s function

G0
=

1

E − HPP

, (54)

and where a single particle projection operator P in the spatial representation is

P =

∑
c

∫
r2dr|r, c〉〈r, c| ≡ 1 − Q (55)

where, for the time being, |r, c〉 is to be distinguished from the initial (or final) free projectile wave-

function |φi〉 (or |φ f 〉)
(Ei − HPP)|φi〉 = 0, (56)

with 〈
r, c|r′, c′〉 = δ (r − r′)

rr′
δcc′ . (57)

Eq. (53) can be written with intrinsic nuclear state indices displayed explicitly as

Wjk ≡ 〈Qj|W0|Qk〉 = δ jkE
(Q)

j
+ HjPG0HPk, (58)

where the second term above can be expanded by virtue of the operator P in Eq. (55) as

HjPG0HPk =

∑
cc′

∫
r2dr

∫
r′2dr′Hjc(r)G0

cc′ (r, r
′)Hc′k(r′) (59)

where Hc j(r) is

Hc j(r) = 〈r, c|H|Qj〉. (60)

It is now convenient to define the matrix

Mjk (Ec) = HjPG0 (Ec) HPk, (61)

in terms of which, Eq. (58) can be cast into the form

Wjk = δ jkE
(Q)

j
+ Mjk. (62)
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Matrix Mjk can be conveniently separated into its principal value and imaginary part

Mjk (E) = HjP

P
E − HPP

HPk − iπHjPδ(E − HPP)HPk

≡ Djk(E) − i
Γ jk(E)

2
, (63)

where matrices D and Γ are defined for convenience, in a notation that alludes to resonance shifts and

widths that will be obtained by diagonalizing Wjk. A completeness relation,
∑

c

∫
dE|χ(+)

E;c
〉〈χ(+)

E;c
| = 1,

for eigenstates of HPP can be used to write Γ jk as

Γ jk (E) = 2π
∑

c

HjP|χ(+)

E;c〉〈χ
(+)

E;c|HPk,

= 2π
∑

c

∫
rr′

Hjc(r)χ
(+)

E;c(r)χ
(+)∗
E;c(r′)Hck(r′),

(64)

where for a free particle 〈r; c|χ(+)

E;c′ 〉 ≡ χ
(+)

E;cc′ (r) = δcc′χ
(+)

E;c
(r).

A dispersion relation between the real and imaginary part of Mjk in Eq. (63) yields

Djk(E) =
1

2π
P
∫ ∞

0

Γ jk(E′)dE′

E − E′ . (65)

The energy dependence of Djk(E) will come from Γ jk (E) and from the asymmetric limits of integra-

tion. Computation of the Green’s function matrix is thus simplified as it depends on (approximately)

free-particle eigenfunctions alone.

Figure 4. Number of “counts" for the ratio between the

average of the fluctuating part and the optical part of the

T-matrix.

In this work we write

Hc j(r) =
∑

k

hc jk

δ(r − rk)

rrk

, (66)

where hc jk are complex numbers obtained

from the interaction at projectile position rk,

sandwiched between states j and c. That is,

the label k in the couplings hc jk denote the lo-

cation of the spatial coordinate where the in-

teraction (66) assumes a non-zero value. The

label c, denotes the channel index. As we are

not including any other quantum number than

the energy of the channel, the discretization

of energy is the same as the label c. That is,

c labels energies varying within the an inter-

val of width Δ (the same energy interval used

in integral (32)). The label j denotes the Q-

space. In our case, it will be attached to the

energy, EQ j
≡ E j. The matrix elements be-

tween channels c and c′ will not be needed.

These are included in HPP and are part of the

T-matrix we are after.
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We now write the T-matrix Tcc′ as

Ti f = T 0
i f + 〈φi|HPQ

1

E − HQQ − HQPG0HPQ

HQP|φ f 〉, (67)

and we diagonalize the denominator of Eq. (67) in terms of the eigenfunctions |̂q〉 of W0,

(Êq − W0)|̂q〉 = 0, (68)

and use the fact that the |̂q〉’s are linear combinations of eigenstates of HQQ, (E
(Q)

j
− HQQ)|Qj〉 = 0

|̂q〉 =
∑

j

Ĉ jq|Qj〉. (69)

Then we can rewrite eq. (67) as1

Ti f = T 0
i f +

∑
q jk

Ĉ jqĤi j

1

E − Êq

Ĉkq Ĥk f , (70)

where we have defined

Ĥi j ≡ 〈φi|PH|Qj〉 (71)

=

∑
c

∫
r2drφ∗ic(r)〈r, c|H|Q j〉

=

∑
c

∫
r2drφ∗ic(r)Hc j(r). (72)

We now derive an analogous expression for the T -matrix, withΨP defined in eq. (40). (To simplify

notations we use here G ≡ Gopt):

Ti f = T i f + 〈Ψi|VPQ

1

E − HQQ −VQPGVPQ

VQP|Ψ f 〉, (73)

by using the following expression for the optical Green’s function G and the continuum discretized

ket |Ψc〉:

G = G0 (74)

+G0HPQ

1

E − HQQ − HQPG0HPQ + iΔ/2
HQPG0

|Ψ f 〉 = |φ f 〉 (75)

+G0HPQ

1

E − HQQ − HQPG0HPQ + iΔ/2
HQP|φ f 〉

Instead of diagonalizing W0 as above, we will diagonalize W, eq. (48),

W = HQQ +VQPGVPQ (76)

1We are going to use only the kinetic energy term for the scattering waves. In this case, T 0
i f
= 0.
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or in matrix notation

W jk = δ jkE
(Q)

j
+V jPGVPk (77)

where the second term can be expanded in terms of the eigenvalues |̂q〉 of W0. We have already found

V jPGVPk = V jPG0VPk +V jPG0HPQ

1

E − HQQ − HQPG0HPQ + iΔ/2
HQPG0VPk (78)

= V jPG0VPk +

∑
q j′k′

Ĉ j′qV jPG0HP j′
1

E − Êq + iΔ/2
Hk′PG0VPkĈk′q (79)

where

V jP =

√
iΔ

E − E
(Q)

j
+ iΔ/2

∑
c

∫
r2dr〈Qj|H|r, c〉〈r, c|. (80)

Using the definition of Mjk, Eq. (61), we can rewrite this equation as

V jPGVPk =

√
iΔ

E − E
(Q)

j
+ iΔ/2

√
iΔ

E − E
(Q)

k
+ iΔ/2

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩Mjk +

∑
q j′k′

Ĉ j′qMj j′
1

E − Êq + iΔ/2
Mk′kĈk′q

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (81)

Diagonalizing the denominator of Eq. (73) in terms of the eigenfunctions |q〉 of W,

(Eq − W)|q〉 = 0, (82)

Eq. (73) can be rewritten as

Ti f = Ti f +

∑
q jk

C jqV̂i j

1

E − Eq

CkqV̂k f , (83)

where we define

V̂i j ≡ 〈Ψi|PV|Qj〉

=

∑
c

∫
r2drΨic(r)〈r, c|V|Qj〉

=

√
iΔ

E − E
(Q)

j
+ iΔ/2

∑
c

∫
r2drΨ <ic(r)Hc j(r) (84)

and where we used the fact that the |q〉’s are linear combinations of the |Qj〉

|q〉 =
∑

j

C jq|Qj〉. (85)

It is then straight-forward to recognize that, in Eq. (51),

giq =

√
2π
∑

j

C jqV̂i j. (86)
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The channels c and c′ in Eq. (51) denote the different channels for the scattering matrix S cc′ . We

can perform the energy average of the coupling term in Eq. (51) as〈∑
q

gqcgqc′

E − Eq

〉
Δ




I

2π

∫ E+nΔ

E−nΔ

dE′
∑

q gqc(E′)gqc′ (E
′)/(E′ − Eq)

(E − E′)2
+ Δ2/4

=
IΔ

2π

NE∑
n=−NE

∑
q gqc(E + nΔ)gqc′ (E + nΔ)

(E + nΔ − Eq)
[
(nΔ)2

+ Δ2/4
] , (87)

where NE is the number of energy grid points in the continuum, and Δ = nΔ/NE . The integer n defines

the integration limits. This average is therefore dependent on 3 parameters: Δ, NE , and n.

To define the Q-space we need the real energies EQ j
≡ E j. The average spacing between the

continuum levels, E j, will be called D, so that D =

〈
E j+1 − E j

〉
. We will also need an energy range

for the space, which we take as E − NQΔ ≤ E(Q)
j

≤ E + NQΔ. The numbers of the energy levels will

be denoted by NL. Thus, in order to define the Q-space, we need to define the E
(Q)

j
’s, NL, and NQ (see

Ref. [8]).

In Eq. (66) the interaction in our model space is given by Hi j(r) =
∑

l hi jlδ (r − rl) /rlr, where i

and j denote the energies (channels) Ec ≡ Ei = E − E∗
c , and E j in P and Q space, respectively. E∗

c is

the excitation energy. The index l denotes the position in the coordinate space where the interaction

is active (the discrete points rl). With that, eq. (72) becomes

Ĥi j =

∑
c

∫
r2drφ∗ic(r)Hc j(r) =

Nc∑
c=1

NR∑
l=1

φ∗ic(rl)hc jl, (88)

where Nc is the number of open channels and NR is the number of rl points in the coordinate mesh.

Another parameter is needed to account for the size of the coordinate region where the interaction is

active. We call this R which has the value of a typical nuclear radius. There will be NR points at the

positions rl within 0 ≤ rl ≤ R. Thus, to calculate the integrals we need the additional parameters R

and the NR values of rl.

Similarly, the matrix element in Eq. (59) is written as

Mjk (Ec) = HjPG0HPk

=

Nc∑
c,c′=1

NR∑
l=1

NR∑
l′=1

hc jlhc′kl′G
0
cc′ (rl, rl′ ). (89)

The free particle Green’s function in the s-wave channel is given by

G0
cc′ (E; r, r′) ≡ G0(Ec, r, r

′)δcc′ = · · · , (90)

where r< (r>) is the smaller (larger) of (r,r′). We can rewrite Eq. (89) as

Mjk (Ei) =
[
HjPG0HPk

]
(Ei) = · · · . (91)

This determines the matrix Wjk in Eq. (58).
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At this point, it is worthwhile rewriting Eq. (84) by using the definition of matrices Mjk and Ĥi j,

Eqs. (61) and (71), respectively. In these terms

V̂i j(E) =

√
iΔ

E − E
(Q)

j
+ iΔ/2

{
Ĥik+

∑
k j′q

Ĉ jqĤi j

1

E − Êq + iΔ/2
Mk jĈkq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (92)

Thus, V̂i j can be easily calculated after we obtain matrices Mjk and Ĥi j, Eqs. (61) and (71),

respectively. The same applies to V jP.

A numerical test of the KKM formalism to treat a large number of channels statistically was done

in Ref. [9] with 400 equidistant q-levels, 40 channels, with 20 equidistant coordinate points where

HPQ is set to a Gaussian-distributed random interaction. The energy of the single-out P state was

taken as E = 20 MeV, and we included 100 E′ points for the Lorentzian averaging between 18 and 22

MeV. The adopted value of I = 0.5 MeV and we considered s-wave scattering only, with Γ/D 
 1.

Figures 3 and 4 show the average of the fluctuating part of the T-matrix and the optical T-matrix. It

is evident that for a large number of weakly coupled channels the KKM formalism yields a proper

treatment of the S- and T-matrices. The advantage of the formalism is that one has only to consider

the strongly coupled P-space states, with a simple average needed for the weakly coupled states which

can be numerous.

5 Conclusions

We conclude that CDDC is an important tool to describe reactions with weakly bound nuclei, for

which numerous states in the contintuum (resonant and non-resonant) have an important weight for

the reaction cross section. A drawback of the formalism is that if the number of states involved

(channels) is too large, the calculations converge too slowly or might not be feasible with present

computer resources. A possible treatment of a large number of weakly bound states is the use of

statistical methods. In this work we have proposed several possibilities to include the average over

continuum couplings: (a) solve balance equations, (b) use the optical background formalism based

on the Feshbach projection formalism, or (c) a combination of both methods. Several applications in

quantum optics, atomic and nuclear physics are possible, especially in the area of open quantum or

mesoscopic systems.
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