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Abstract. The investigation of many astrophysical processes is dependent upon
an understanding of nuclear reaction rates. However, nuclear capture reactions
of astrophysical interest occur at extremely low energies, taking place at the
Gamow energy within the stellar environment. Hence, they are hard to study
experimentally due to Coulomb repulsion. They may also involve compound
resonances stemming from a delicate interplay of many quantum states in the
colliding bodies. The multi-channel algebraic scattering (MCAS) method is one
that addresses both of these challenges; it has a history of successfully mod-
elling narrow compound resonance structures, incorporating as many channels
as are important for a given problem, but is also proven in recreating the low-
energy, non-resonant elastic scattering cross sections needed for these astro-
physics problems. We provide an overview of MCAS’ techniques of modelling
elastic scattering reactions, how these may be extended to capture reactions, and
current work in this area.

1 Introduction

Many astrophysical processes are governed by nuclear capture reaction rates. Examples in-
clude X-ray bursts from accreting neutron stars [1] and white dwarfs in binary star systems,
which detonate nova or supernova explosions, and may rotate in decreasing orbits, producing
gravitational waves [2].

The principle challenge in measuring these reactions is that they occur at extremely low
energies, taking place at the Gamow energy within the stellar environment, where Coulomb
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repulsion dominates. Thus, to understand these reactions, theoretical methods must be em-
ployed to match the data that exists at higher energies (though these come with increasing
uncertainty as energy reduces), and extrapolate down into the Gamow window. For exam-
ple, a recent overview of existing data for the important reaction 12C(α, γ)16O can be found
in Ref. [3], and in the near future many laboratories across the world will begin measuring
lower energy data, pushing towards but never reaching astrophysical energies [4–11].

The challenge for calculating observables is that the reaction may also involve compound
resonances stemming from a delicate interplay of many quantum states in the colliding bod-
ies. For example, whereas the 8Be(α, γ)12C reaction famously depends mainly on the Hoyle
state, the 12C(α, γ)16O rate is known to depend on many broad and thus overlapping reso-
nances as well as non-resonant reaction components [3].

The multichannel algebraic scattering (MCAS) method of calculating nuclear scattering
observables addresses the challenge of complex state interplay and accuracy in recreating
low-energy cross sections. MCAS may consider as many channels as are necessary, and
has a method of calculating both broad and narrow compound-state resonances [12]. Recent
calculations have proven its capacity to recreate low-energy, non-resonant elastic scattering
cross sections within keV of the scattering threshold [13].

2 Multi-channel Algebraic Scattering (MCAS)
MCAS calculates scattering observables in the low-energy range for nucleons and α-particles
scattering with target nuclei where the low-energy spectrum may be described by a pre-
dominant mode of excitation. It does this by first solving the coupled-channels Lippmann-
Schwinger equations in momentum space:

Tcc′ (p, q; E) = Vcc′ (p, q) +
2µ
ℏ2


open
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 , (1)

where the c are indicies denoting the quantum numbers that identify each channel uniquely.
The open and closed channels have wave numbers kc and hc for E > ϵc and E < ϵc, respec-
tively, and µ is the reduced mass.

The Vcc′ are interaction potentials between the target and projectile, derived from models
of nuclear structure for the target. In principle, any structure model may be used, but to
date we have used Tamura collective models of rotor or vibrator character [14]. It is this
nuclear structure information which sets the method apart from methods like the R-matrix,
which relies on a simple fit to compound-system resonance widths without a description of
the underlying nuclear potential.

Solutions of these Lippmann-Schwinger equations are found by expanding the potential
matrix elements into a finite number of energy-independent separable terms called sturmi-
ans, χ. The details of how these terms are defined in terms of the potential, preserving the
nuclear structure information, is outlined in Ref. [15]. This method allows the location of all
resonance centroids and widths of the compound system (as needed for certain astrophysical
reactions).

In terms of these sturmians, the S-matrix is defined as follows. It is from this that observ-
ables which may be experimentally measured are calculated.

S cc′ = δcc′ − ilc′ −lc+1πµ
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This has the ability to determine all subthreshold bound states by taking advantage of
the momentum-space formalism wherein the use of negative projectile energies is possible.
Importantly, there is a mechanism to incorporate the Pauli principle, even with collective
models [15]. This becomes necessary for coupled-channels calculations, as deformation only
accounts for the Pauli principle in single-channel calculations with the target ground state.
Additionally, MCAS has a means of accounting for particle-instability of the target nucleus’
states [16].

3 Preliminary results of nucleon-56Ni elastic scattering

MCAS, to date, has been designed to account for elastic scattering and (energetically) in-
elastic scattering. Immediate future development will be to expand it to account for radiative
capture reactions.

56Ni(p, γ)57Cu has been identified as a reaction whose uncertainty will, alone, affect the
interpretation of data for X-ray bursts on the surface of accreting neutron stars, when using
the Single-zone X-Ray Burst Model [1]. 56Ni has a low-energy spectrum suggestive of col-
lective excitation. These features makes it a good candidate for a future MCAS capture-rate
calculation.

The process for studying such a reaction will be to first study the elastic scattering case
in order to calibrate the parameters of the collective-model interaction potential. This will
then generate sturmians for use in the subsequent capture reaction calculation. If the reac-
tion of interest is (p, γ), as for this example, we first perform the (n, n) calculation with the
mirror nucleus of the target (which in this case is itself), allowing for the nuclear potential
to be determined without a Coulomb potential. Preliminary results for the spectrum of the
57Ni compound nucleus are shown in Fig. 1, using an interaction of vibrator character. The
neutron emission threshold of 57Ni is ∼10.2 MeV, so the states shown here represent negative
projectile energies.

To model the (p, p) reaction, a Coulomb potential is applied, based upon a 3pF charge
distribution [18]. While the 3pF model includes three parameters, it has been shown [19] that
the values of these do not affect the resulting spectrum of compound states, so long as the
chosen values reproduce the experimentally measured root-mean-square charge radius [20].
Preliminary results for the spectrum of the 57Ni compound nucleus are shown in Fig. 2. 57Cu
is only bound to proton emission by 0.69 MeV, so the states shown are all resonances of the
compound system, except the ground state which represents a negative projectile energy in
the calculation.

The next step to be taken in the study of this system is to more extensively search the
parameter space of the nuclear interaction potential for a better match to data. Once finalised,
this will yield a calculated elastic scattering cross section. However, as the ground and first
two excited state centroids are well-placed in this preliminary study, we may expect an accu-
rate elastic and subsequent capture cross sections.
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Figure 2. Experimental spectrum of
57Cu [17] compared to the resonances
and subtheshold bound states of a
preliminary MCAS 56Ni(p, p)56Ni
calculation.

4 Methods of calculating electromagnetic transition in single
photon emission

In this section, we briefly outline how we may incorporate radiative capture in MCAS. First,
we require co-ordinate space wave functions to be generated from the sturmians of above-
threshold resonances and the subthreshold bound states they will decay to in the event of
capture. These are defined in Ref. [21],

Ψ
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incorporates the sturmian form factors, χ̂cn, as per the elastic scattering version of MCAS. c
are the channel indices, n is the sturmian index, and N is the number of sturmians used. ηn

are sturmian eigenvalues. R is the radius from the scattering site, P is the 2-body centre of
mass momentum, and L is the relative orbital angular momentum of the projectile relative
to the target. µ is the reduced mass. σL(P) is the Coulomb phase shift, FL(PR) are the
Ricatti-Bessel or Ricatti-Coulomb functions, GL(PR) are the Coulomb irregular functions,
and OR(+)

L (PR) = GL(PR) + iFL(PR). χF
cn(PR) are sturmian form factors integrated from
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is an inverse matrix.

From here we may proceed to the calculation of cross sections with an elegant method of
separable potentials that was recently used for proton and neutron capture by carbon-12 [22],
based upon an earlier elastic scattering formalism [23, 24]. Therein, the co-ordinate space
wave functions are ingredients of reduced matrix elements,
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where subscript 0 denotes bound states, and equivalent quantities without denote continuum
wavefunctions. eL is an effective charge:
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These are then used in the scattering cross sections,
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This will require modification if the projectile is not a nucleon.

5 Conclusions

The multi-channel algebraic scattering formalism has recreated observed elastic scattering
observables over many years, including successfully predicting several nuclear states sub-
sequently identified by experiment. The next focus for development is to expand MCAS
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The multi-channel algebraic scattering formalism has recreated observed elastic scattering
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to evaluate radiative capture reaction data, and make predictions down to the Gamow win-
dow for reactions of astrophysical interest. The first planned candidates for this formalism
are 12C(α, γ)16O, 56Ni(p, γ)57Cu, 12C(p, γ)13N (which was recently measured at LUNA [25]
with their newly-upgraded BGO detector [26], and for which sturmians have already been
found [27]) and 20Ne(p, γ)21Na (currently being measured at LUNA).
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