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Abstract
We study radiative capture reactions using quasi-separable potentials. This
procedure allows an easier treatment of non-local effects that can be extended
to three-body problems. Using this technique, we calculate the neutron and
proton radiative capture cross sections on 12C. The results obtained are shown
to be in good agreement with the available experimental data.

Keywords: radiative proton capture, radiative neutron capture, separable
potentials, elastic scattering
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1. Introduction

Separable potentials have been widely used in the literature to study nucleon–nucleon as well
as nucleon-nucleus scattering problems [1–7]. Short range nuclear interactions by nature are
non-local and can be treated in separable forms However, this non-locality is often weak and
therefore equivalent local potentials, e.g., of Woods–Saxon (WS) type, can be used to replace
non-local potentials to a good extent [8]. Although separable potentials have found extensive
use in nuclear physics, they have also been used in other branches of physics. In nuclear
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physics their main application is in the realm of three or few-body scattering problems [9, 10],
where local potentials increase computational efforts. Actually, in three-body problems one
has to find the ‘off-energy-shell’ scattering amplitude, which can be handled more easily and
in a more transparent manner, with separable potentials. Separable potentials help to convert
the three-body into effective two-body problems [10], thus simplifying the problem.

Our interest in this work is to invoke separable potentials to calculate cross sections for
direct radiative nucleon capture reactions of importance for nuclear astrophysics. We make
use of experimental phase shifts obtained from nucleon-nucleus scattering considering non-
local potentials of separable form. We will closely follow the quasi-separable potential
technique developed in [5, 6]. In the literature there are a large number of separable potentials
available which have been proven to work very well in different energy ranges. We refer to at
least three of these given in [5–7, 10]. The first potential set given in [5, 6] explains very well
nucleon+12C experimental phase shifts for L�2 in the low energy range (below
∼5–7MeV), whereas the second potential set of [7] yields good agreement with experiments
at higher energies. The third set, used in [10], is constructed in such a way so as to improve
shortcomings observed in the first two sets to a satisfactory extent.

As we are interested in astrophysical reactions, which take place at low energies, the first
set of potential is suitable for our purposes. Furthermore, the complication in the case of
charge-particle scattering can be taken care of in a simple and accurate manner using this
potential. The potential parameters required for proton-nucleus scattering are almost the same
as those for neutron-nucleus scattering. Therefore, as an application of the method we cal-
culate direct neutron and proton capture cross sections for 12C(n, γ)13C and 12C(p, γ)13N
reactions.

The nuclei under interest, 13C and 13N are very important in astrophysical scenarios.
They are formed in the CNO cycle, where a proton capture on 12C (following the triple-α
process) leads to 13N, which then decays by positron emission and forms 13C [11, 12]. This is
also known as the cold CNO cycle and takes place in massive main-sequence stars in the
reaction chain 12C(p, γ)13N(β+, ν)13C(p, γ)14N(p, γ)15O(β+, ν)15N(p, α) 12C. However, in
high temperature conditions occurring in novae and x-ray bursts, the 13N formed after the first
step undergoes proton capture and yields a new cycle, known as the hot CNO cycle 12C(p,
γ)13N(p, γ)14O(β+, ν)14N(p, γ)15O(β+, ν)15N(p, α) 12C. 13C also leads to neutron formation
and acts as a neutron source in helium burning asymptotic giant branch stars by means of the
13C(α, n)16O reaction [13]. In neutron rich environments, 12C can also undergo neutron
capture processes and start a neutron induced CNO cycle that leads to the formation of other
heavier elements and hence a breakout of the CNO cycle.

Neutron capture cross sections on 12C have been measured at thermal as well as at
neutron energies between 10 and 550MeV [14–17]. The cross section has contributions from
four low-lying states of 13C and deviates from the usual 1/v law [16]. Its energy dependence
has been studied within different theoretical models [18–21] and it has been found that the
capture is dominated by the transition to the first excited state (e.s.) of 13C, which is a weakly
bound halo state [22]. The 12C(p,γ)13N cross sections have also been measured at long energy
interval 70–2500 keV [23–26] and are well explained theoretically using direct capture plus
resonant contributions. In fact, many different direct capture models have been used to
calculate the nucleon capture cross sections which differ in the way one chooses initial and
final states. In this context, the present work adds an additional method to obtain the nucleon
capture reactions. Such reactions are of enormous interest for nuclear astrophysics (see, e.g.
[27]). As separable potentials are easier to handle non-local effects, they would enable
improvements in numerical calculations of cross sections used to determine element pro-
duction in several astrophysical scenarios involving both two-body and three-body reactions.
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Another goal of this work is to test the behavior of the continuum wavefunction obtained with
the adopted separable potential so as to use it in Faddeev-AGS equations for three-body
systems.

This paper is organized in the following way. In section 2, we briefly describe our
formalism to use non-local nucleon-nucleus potentials to obtain a feasible calculation of
nucleon capture cross sections. In section 3, we present our results, including a phase-shift
analysis to reproduce experimental results. Our conclusions are presented in section 4.

2. Formalism

2.1. Radiative capture in the potential model

For the direct radiative capture reaction g+  +b c a , where c is a nucleon, the cross
section is given by (see, e.g., [28–30])
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where, π L stands for electric or magnetic transition of multipolarity L, and Eγ=Ec.m.+ò,
with Ec.m. being the center of mass energy of the b−c system with binding energy ò. k is the
momentum corresponding to Ec.m. and Ia, Ib and Ic are the intrinsic spins of the respective
particles.

Here, the relative angular momentum l of the pair b−c couples with the spin of nucleon
Ic to yield j, so that + =l I jc . This then couples with the intrinsic spin of the ‘core’ Ib to
yield the initial total angular momentum = +J j Ib. l0, j0 and J0 denote the corresponding
bound state quantum numbers. In equation (1), ⟨ ∣∣ ∣∣ ⟩plj O l jL 0 0 is the reduced matrix element.
For electric multipole transitions, which is the case of our interest, it is given by [28, 29] (see
also equation A2.23 of [31])
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where eL is the effective charge given by ( ) ( )= - +e Z e m m Z e m mL b c a
L

c b a
L, with mi and

Zi being the masses and charges of the respective particles. ( )u rl j
J
0 0

0 and ( )u rlj
J are the bound

state and continuum wavefunction, respectively.
Here, there is no advantage of using a separable potential and the bound state wave-

function can be calculated by solving the Schrödinger equation with a WS potential, where
the potential depth is adjusted to get the corresponding binding energy of the state. We have
verified this assertion by using the result of the potential model as described above, and
compared to calculations for the bound state using the separable potential defined below using
the code PSEUDO [32]. As shown, e.g., in [29], it is necessary to change the WS potential
parameters to calculate the continuum wavefunctions and to reproduce in a reasonable fashion
the experimental values of the radiative cross sections and astrophysical S-factors. Instead,
here we calculate the continuum wavefunction to obtain the proper scattering matrix (S-
matrix) for nucleon-nucleus scattering using the quasi-separable potential technique described
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in [5, 6]. The advantage of the method is that it allows us a consistent reproduction of the
experimental phase shifts and at the same time the radiative capture cross sections, using
separable potentials for both situations. Moreover, separable potentials allow an easy
implementation of three-body calculations which is our next goal. We will briefly discuss
how to implement S-matrix calculations with this formalism for neutron-nucleus and proton-
nucleus scattering.

2.2. S-matrices and wavefunctions from quasi-separable potentials

If we represent the initial state of the b+c system in partial wave form as ∣ ⟩aljJM , where α is
the channel number representing the core state so that =aI Ib (with the convention that α= 1
represents the elastic channel) and l, j, J are the quantum numbers as explained above with M
being the z-component of total angular momentum J, then the nuclear interaction in a quasi-
separable form can be written as
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coupling between the channels and the coupling matrix is considered to be symmetric i.e.,
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In the above equation ( ) ( )= - -G z z H0 0
1 is the resolvent for unperturbed Hamiltonian

H0. Equation (5) is the S-matrix in a quasi-separable potential form for the case when c is a
neutron and there is no Coulomb interaction. In the case of proton-nucleus scattering, one has
to take care of the Coulomb potential Vc along with the nuclear potential V. The transition
operator can be written as the sum of the pure Coulomb (t) and Coulomb modified nuclear (τ)
transition operators, i.e T=t+τ, where τ is given by
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( ) ( ) ( )t = + +V G T G V1 1 , 9c c c c c

with ( ) ( )= - - -G z z H Vc c0
1 being the Coulomb-perturbed resolvent and Tc satisfies the

equation = +T V VG Tc c c.
The reduced S-matrix expression in this case has a similar form as in equation (5), with

all the quantities replaced by their Coulomb corrected form. That is,
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where the Coulomb corrected matrices, C and TC satisfy a similar relation as in equation (6),
i.e.,
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For more detailed derivations of the quantities described above one is referred to [5, 6].
The elastic component of the S-matrix, i.e., ¢ ¢

PS lj l j
J

1 ,1 , is used to obtain the phase shifts δlJ
which are related by = dS e2i . Two steps are needed; the first one is to find the possible values
of the parameters b and λ that reproduce all the resonances at right positions. These values
are further improved by fitting to the experimental phase shifts. Once the potential parameters
are all set, we solve the Schrödinger equation to obtain the scattering wavefunction which
asymptotically behaves as,

( )( ) [ ( ) ( )] ( )
p

d d ¥ = - +du r r F G
2

e cos sin , 14lj
J

l lJ l lJ
i lJ

where Fl and Gl are regular and irregular Coulomb wavefunctions.

3. Results and discussions

3.1. Phase-shifts

Neutron and proton radiative capture on 12C lead to the formation of 13C and 13N, respec-
tively. Given that the total neutron capture cross section has contributions from four low-lying
states of 13C [16], we calculate the neutron capture cross section to the states with spin parity
Jπ=1/2− for the ground state, 1/2+ for the 1st e.s., 3/2− for the 2nd e.s., and 5/2+ for the
3rd e.s., respectively. These states are formed by coupling of the 0+ ground state of 12C with
the neutron in the 1p1/2, 2s1/2, 1p3/2 and 1d5/2 orbital with one neutron removal energy, Sn,
equal to 4.95, 1.86, 1.27 and 1.09MeV, respectively. The proton capture cross section on the
other hand is only calculated for capture to the ground state of 13N with Jπ=1/2−, formed
by coupling the 1p1/2 proton to the 0+ ground state of 12C, with a binding energy of
Sp=1.94MeV. In order to calculate the bound state wavefunctions of 13C, we use the WS
parameters of [19], i.e., r0=1.236 fm, a=0.62 fm and Vso=−7MeV. The values of the
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potential depth required to reproduce the binding energy for the states 1/2−, 1/2+, 3/2− and
5/2+ are 41.35, 56.90, 28.81 and 56.85MeV, respectively. For 13N, we use r0=1.25 fm,
a=0.65 fm and Vso=−10MeV (same as in [29]) and the potential depth in this case is
41.65 MeV. We adopted the WS potentials here for convenience, to implement our radiative
capture numerical calculations using the code RADCAP [28]. As we have stated before, for
bound states, equivalent separable potentials can be found leading basically to the same
wavefunctions for these reactions. We thus emphasize that our calculations are consistent
with the use of separable potentials for bound and continuum states.

For both of these capture reactions the E1 multipolarity dominates [16, 25, 29]. Hence,
we use proper initial angular momenta states in the continuum leading to E1 transitions to the
corresponding bound states of each nucleus. For transitions to the ground state of 13C, the
proper continuum states have s1/2 and d3/2 angular momenta, for the 1st e.s. they are p1/2 and
p3/2, for the 2nd e.s. they are s1/2, d3/2 and d5/2 and for the 3rd e.s. it is just the p3/2 angular
momentum, respectively. Similarly, for E1 transitions to the ground state of 13N, the con-
tinuum states taken to be s1/2 and d3/2.

The calculations of continuum wavefunctions depend upon the phase shifts and hence the
scattering matrix, which are obtained by the procedure given in the previous section. As we
need only elastic component of S-matrix to calculate the phase shifts, we will only use one
single channel, i.e., only the ground state of the target (12C), to calculate the S-matrix. A
multi-channel formalism could be taken in order to study the effect of inclusion of more target
states on the capture cross sections, provided the fit parameters would be known for all
channels under consideration. We use the same set of parameters b, λ as those obtained in
[5, 6]. For two cases, discussed later in this section, we employ changes in order to get the
best fit with the experimental data. We also generated our own best fit parameters for the p3/2
state of 13C by fitting it to the experimental phase shift. In tables 1 and 2, we give the
parameters b and λ, respectively, used to obtain the different phase shifts.

Table 1. Fitting parameter blj . They are the same for both 13C and 13N.

l j blj (fm
−1)

0 1/2 0.57
1 1/2 1.76
1 3/2 1.22
2 3/2 2.16
2 5/2 2.96

Table 2. Strength parameter la b
p

¢ ¢lj l j
J

, used in equation (3), for 13C and 13N.

Phase shift α l j; β l′j′ 13C 13N

la b
p

¢ ¢lj l j
J

, la b
p

¢ ¢lj l j
J

,

s1/2 10 ; 101
2

1
2

0.8464 0.9801

p1/2 11 ; 111
2

1
2

73.445

p3/2 11 ; 113
2

3
2

98.8

d3/2 12 ; 123
2

3
2

268.9 277.2

d5/2 12 ; 125
2

5
2

2684 2770
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The results of our phase-shift calculations for 13C and 13N are presented in figures 1 and
2, respectively. In both of these figures we plot the phase shifts δ, in degrees, as a function of
the laboratory energy Elab. In these figures solid, dotted–dotted–dashed, dotted, dashed and
dotted–dashed lines represent the calculated s1/2, p1/2, p3/2, d3/2 and d5/2 phase shifts,
respectively, whereas filled circles, upper triangles, square boxes, open circles and diamond
boxes represent the corresponding experimental data taken from [33–35] for n-12C scattering
and from [36–41] for p-12C scattering, respectively. For both of these nuclei, we are able to
reproduce the results presented in [5]. The calculated phase shifts match well the experimental

Figure 1. s, p, d phase shifts for n-12C scattering. Solid, dotted–dotted–dashed, dotted,
dashed and dotted–dashed lines represent the calculated s1/2, p1/2, p3/2, d3/2 and d5/2
phase shifts, respectively, whereas filled circles, upper triangles, square boxes, open
circles and diamond boxes represent the corresponding experimental data which are
taken from [33–35].

Figure 2. s, d phase shifts for p-12C scattering (solid lines). The symbols and lines are
the same as in figure 1. The experimental data are taken from [36–41].

J. Phys. G: Nucl. Part. Phys. 43 (2016) 125203 Shubhchintak et al

7



data. Furthermore, some narrow resonances for d5/2 and d3/2 states, both for proton and
neutron scattering are found to be of compound nature and can only be explained by con-
sidering target excitations to the 2+ state as in [6]. We also want to point out that for the
proton case, the parameter b0 1

2
given in table 1 is slightly corrected to 0.5723 fm−1 to yield

a 1/2+ resonance at the right position, i.e., at 0.422MeV in the c.m., and for a better fit
of the experimental phase-shift data, as seen in figure 2. A slight change is also needed for b1 1

2

in the case of 13C, where it is modified from 1.72 fm−1 to 1.76 fm−1 in order to obtain a
best fit.

Figure 3. Radiative neutron capture cross sections for capture to the four low-lying
states in 12C. Filled Square boxes and filled triangles are the experimental data from
[16] and [17], respectively.

Figure 4. Astrophysical S-factor for the 12C(p, γ)13N reaction. Experimental data are
from [25].
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3.2. Capture cross sections

Once the phase shifts have been obtained, we now proceed to calculate the continuum
wavefunctions with the asymptotic behavior described in equation (14). We calculate the
neutron and proton capture cross sections using equations (1) and (2), as all the quantities are
now established.

Given that the continuum wavefunctions are obtained from phase shifts that reproduce
experimental data, we expect that our numerical calculations for capture cross sections are
more reliable than standard potential models. Figure 3 shows our calculations of neutron
capture cross sections (solid line) for capture to different states of 13C compared with
respective experimental data. The square boxes in all figures represent data from [16],
whereas the upper triangles correspond to experimental data from [17] where the cross
sections were measured only at the 0.55MeV laboratory energy. The spectroscopic factor
(C2S) used for the ground state, the 1st e.s., the 2nd e.s. and the 3rd e.s. are 0.77, 1.0, 0.14,
0.58, respectively. They have been taken from [42], except for the 1st e.s. where C2S equal to
1.0 in our case. This value explains the data very well. It is clear from the figure that the cross
section obtained by this method are in good agreement with the experimental data, especially
at low energies.

Figure 4 shows the S-factor for proton capture to the ground state of 13N (solid line). The
experimental data (open circles) are from [25]. The spectroscopic factor C2S in this case was
chosen to be 0.21, which is quite different than the one used for ground state of 13C.
As mentioned earlier, the E1 transition to the ground state of 13N (1/2−) takes place from
s or d continuum wave. The dominant contributions to the cross sections come from the
s continuum wave, where there is a resonance at 0.422MeV, as mentioned earlier.
This resonance yields a peak in the cross section which can be seen in the figure 4. Clearly,
our calculations again yield a good agreement with the experimental data over the present
energy range.

4. Conclusions

We have discussed the utility of quasi-separable potentials to describe nucleon-nucleus
scattering and applications to nuclear astrophysics. We have shown how this method can be
used to calculate radiative capture cross sections for astrophysical important reactions. As
an example, we have considered the case of neutron and proton scattering from 12C, where
the scattering phase shifts are used to infer the scattering wavefunctions. The scattering
wavefunctions corresponding to the scattering potential parameters determined from phase
shifts analysis of the experimental data are used as input to calculate neutron and proton
capture cross sections. Our results are in good agreement with the available experimental data
in the energy range considered in this work.

This technique can be used to obtain the continuum wavefunctions with a better
description of phase-shifts and radiative capture cross sections than the usual potential
models. A limitation of using WS or separable potential models (or even any microscopic
model) is that, to be consistent, one also needs to reproduce scattering phase shifts or
elastic scattering cross sections. While in the WS and separable potential models this is
an easy task, just amounting to redefine the potential parameters, in microscopic models it
can be a formidable task. The advantage of using separable potentials over WS potential
models is the ability to include non-local features. Non-local dependence is of relevance
for the treatment of three-body systems, as well as simplifying the calculations enormously.
The multi-channel formalism briefly discussed in this paper, can also be used to study
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the effects of inclusion of numerous target states on the capture cross sections. The use of a
single channel is limited to lower mass nuclei, up to 16O. With the increase of the nuclear
mass, the nuclear structure becomes more complicated and one needs to take into con-
sideration the effect of other channels in order to explain the resonances which also become of
non-single-particle nature. Applications of this technique to deuteron-induced reactions are in
progress.
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