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Pygmy resonances probed with electron scattering

C. A. Bertulani a∗

a Department of Physics, University of Arizona, Tucson, AZ 85721, USA

Pygmy resonances in light nuclei excited in electron scattering are discussed. These
collective modes will be explored in future electron-ion colliders such as ELISe/FAIR
(spokesperson: Haik Simon - GSI). The response functions for direct breakup are described
here with few-body models, exploring the dependence upon final state interactions. A
hydrodynamical model for collective pygmy resonances is developed for light, neutron-
rich nuclei. A comparison between direct breakup and collective models is performed.

1. INTRODUCTION

Reactions with radioactive beams have attracted great experimental and theoretical in-
terest during the last two decades [ 1]. Progresses of this scientific adventure were reported
on measurements of nuclear sizes [ 2], the use of secondary radioactive beams to obtain
information on reactions of astrophysical interest [ 3, 4], fusion reactions with neutron-rich
nuclei [ 5, 6], tests of fundamental interactions [ 7], dependence of the equation of state
of nuclear matter upon the asymmetry energy [ 8], and many other research directions.
Studies of the structure and stability of nuclei with extreme isospin values provide new
insights into every aspect of the nuclear many-body problem.

New research areas with nuclei far from the stability line will become possible with
newly proposed experimental facilities. Among these I quote the FAIR facility at the GSI
laboratory in Germany. One of the projects for this new facility is the study of electron
scattering off unstable nuclei in an electron-ion collider mode [ 9]. A similar proposal
exists for the RIKEN laboratory facility in Japan [ 10]. By means of elastic electron
scattering, these facilities will become the main tool to probe the charge distribution
of unstable nuclei [ 11, 12]. This will complement studies of matter distribution which
have been performed in other radioactive beam facilities using hadronic probes. Inelastic
electron scattering will test the nuclear response to electric and magnetic fields.

Up to now, the electromagnetic response of unstable nuclei far from the stability line has
been studied with Coulomb excitation of radioactive beams impinging on a heavy target
[ 4]. This method has been very useful in determining the electromagnetic response in
light nuclei [ 13]. For neutron-rich isotopes [ 14] the resulting photo-neutron cross sections
are characterized by a pronounced concentration of low-lying E1 strength. The onset of
low-lying E1 strength has been observed not only in exotic nuclei with a large neutron
excess, but also in stable nuclei with moderate proton-neutron asymmetry. The problem
with such experiments is that the probe is not very clean. It is well known that the nuclear
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interaction between projectile and target as well as the long range Coulomb distortion of
the energy of the fragments interacting with the target (see, e.g. ref. [ 15]) are problems
of a difficult nature. The nuclear response probed with electron does not suffer from these
inconveniences.

The interpretation of the low-lying E1 strength in neutron-rich nuclei engendered a
debate: are these “soft dipole modes” just a manifestation of the loosely-bound character
of light neutron-rich nuclei, or are they a manifestation of the excitation of a resonance?
[ 16, 17, 18, 19]. As far as I know, there has not been a definite answer to this simple
question. The electromagnetic response of light nuclei, leading to their dissociation, has a
direct connection with the nuclear physics needed in several astrophysical sites [ 3, 4, 15].
In fact, in has been shown by Goriely [ 20] that the existence of pygmy resonances have
important implications on theoretical predictions of radiative neutron capture rates in
the r-process nucleosynthesis, and consequently on the calculated elemental abundance
distribution in the universe.

2. Inelastic scattering in electron-ion colliders

Here, Ji (Jf) is the initial (final) angular momentum of the nucleus, (E,p) and
(E′,p′) are the initial and final energy and momentum of the electron, and (q0,q) =
((E − E ′)/h̄c, (p− p′) /h̄) is the energy and momentum transfer in the reaction. For low
energy excitations such that E, E ′ ≫ h̄cq0, which is a good approximation for electron
energies E ≃ 500 MeV and small excitation energies ∆E = h̄cq0 ≃ 1 − 10 MeV. These
are typical values involved in the dissociation of nuclei far from the stability line.

In the plane wave Born approximation (PWBA) and using the Siegert’s theorem, one
can show that [ 21]

dσ

dΩdEγ
=
∑

L

dN (EL)
e (E, Eγ, θ)

dΩdEγ
σ(EL)

γ (Eγ) , (1)

where σ(EL)
γ (Eγ), with Eγ = h̄cq0, is the photo-nuclear cross section for the EL-multipolarity,

given by [ 4]

σ(EL)
γ (Eγ) =

(2π)3 (L + 1)

L [(2L + 1)!!]2

(
Eγ

h̄c

)2L−1 dB (EL)

dEγ
. (2)

In the long-wavelength approximation, the response function, dB (EL) /dEγ, in eq. 2 is
given by

dB (EL)

dEγ
=

|〈Jf ‖YL (r̂)‖ Ji〉|2
2Ji + 1

[∫
∞

0
dr r2+L δρ

(EL)
if (r)

]2
ρ (Eγ) , (3)

where ρ (Eγ) is the density of final states (for nuclear excitations into the continuum)
with energy Eγ = Ef − Ei. The geometric coefficient 〈Jf ‖YL (r̂)‖ Ji〉 and the transition

density δρ
(EL)
if (r) will depend upon the nuclear model adopted.

One can also define a differential cross section integrated over angles so that

dσe

dEγ
=
∑

L

dN (EL)
e (E, Eγ)

dEγ
σ(EL)

γ (Eγ) , (4)
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where

dN (EL)
e (E, Eγ)

dEγ
= 2π

∫ θm

Eγ/E
dθ sin θ

dN (EL)
e (E, Eγ, θ)

dΩdEγ
, (5)

and θm is the maximum electron scattering angle, which depends upon the experimental
setup. Notice that the lowest limit in the above integral is θmin = Eγ/E, and not zero.
This is equivalent to the condition that the minimum momentum transfer in electron
scattering is given by ∆E/h̄c.

Eqs. 1-5 show that under the conditions of the proposed electron-ion colliders, electron
scattering will offer the same information as excitations induced by real photons. The re-
action dynamics information is contained in the virtual photon spectrum, N (EL)

e (E, Eγ, θ),
while the nuclear response dynamics information will be contained in eq. 3. The quanti-
ties dN (EL)

e /dΩdEγ can be interpreted as the number of equivalent (real) photons incident
on the nucleus per unit scattering angle Ω and per unit photon energy Eγ . Note that E0
(monopole) transitions do not appear in this formalism. As immediately inferred from eq.
3, for L = 0 the response function dB (EL) /dEγ vanishes because the volume integral of
the transition density also vanishes in the long-wavelength approximation. But for larger
scattering angles the Coulomb multipole matrix elements in are in general larger than the
electric (EL) multipoles, and monopole transitions become relevant [ 22]. Eq. 1 will not
be valid under these conditions.

It is found that that the spectrum dN (EL)
e (E, Eγ)/dEγ increases rapidly with decreasing

energies. Also, for E = 500 MeV and excitation energies ∆E = 1 MeV, the spectrum
yields the ratios dN (E2)

e /dN (E1)
e ≃ 500 and dN (E3)

e /dN (E2)
e ≃ 100. However, although

dN (EL)
e /dEγ increases with the multipolarity L, the nuclear response decreases rapidly

with L, and E1 excitations tend to dominate the reaction. For larger electron energies
the ratios N (E2)/N (E1) and N (E3)/N (E1) decrease rapidly. A similar relationship as eq. 1
also exists for Coulomb excitation [ 4] in heavy ion scattering. But for Coulomb excitation
this factorization is exact for the reason that Coulomb excitation occurs when the nuclei do
not overlap. In the electron scattering case, because the electron can also scatter through
the nuclear interior, the longitudinal and transverse components of the interaction acquire
different weights.

A comparison between the E1 virtual photon spectrum, dNe/dEγ, of 1 GeV electrons
with the spectrum generated by 1 GeV/nucleon heavy ion projectiles ws done in ref. [ 21].
In the case of Coulomb excitation, the virtual photon spectrum was calculated in ref. [ 4],
eq. 2.5.5a. The spectrum for the heavy ion case was found to be much larger than that
of the electron for large projectile charges. For 208Pb projectiles it can be of the order of
1000 times larger than that of an electron of the same energy. As a natural consequence,
reaction rates for Coulomb excitation are larger than for electron excitation. But electrons
have the advantage of being a clean electromagnetic probe, while Coulomb excitation at
high energies needs a detailed theoretical analysis of the data due to contamination by
nuclear excitation. The virtual spectrum for the electron contains more hard photons, i.e.
the spectrum decreases slower with photon energy than the heavy ion photon spectrum.
This is because, in both situations, the rate at which the spectrum decreases depends on
the ratio of the projectile kinetic energy to its rest mass, E/mc2, which is much larger for
the electron (m = me) than for the heavy ion (m = nuclear mass).
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3. Dissociation of weakly-bound systems

3.1. One-neutron halo

In a two-body model, the single-particle picture has been used previously to study
Coulomb excitation of halo nuclei with success [ 23, 24, 25, 26, 27, 28]. The ini-
tial wavefunction can be written as ΨJM = r−1uljJ(r)YlJM , where RljJ(r) is the ra-
dial wavefunction and YlJM is a spin-angle function [ 29]. The radial wavefunction,
uljJ(r), can be obtained by solving the radial Schrödinger equation for a nuclear po-

tential, V
(N)
Jlj (r). Some analytical insight may be obtained using a simple Yukawa form

for an s-wave initial wavefunction, u0(r) = A0 exp(−ηr), and a p-wave final wavefunc-
tion, u1(r) = j1(kr) cos δ1 − n1(kr) sin δ1. In these equations η is related to the neutron
separation energy Sn = h̄2η2/2µ, µ is the reduced mass of the neutron + core system,
and h̄k =

√
2µEr, with Er being the final energy of relative motion between the neu-

tron and the core nucleus. A0 is the normalization constant of the initial wavefunction.
The transition density is given by r2δρif (r) = effAiui(r)uf(r), where i and f indices
include angular momentum dependence and eeff = −eZc/A is the effective charge of a
neutron+core nucleus with charge Zc. The E1 transition integral Ililf =

∫
∞

0 dr r3 δρif (r)
is

Is→p ≃
eff h̄

2

2µ

2Er

(Sn + Er)
2

[

1 +
(

µ

2h̄2

)3/2
√

Sn (Sn + 3Er)

−1/a1 + µr1Er/h̄
2

]

, (6)

where the effective range expansion of the phase shift, k2l+1 cot δ ≃ −1/al + rlk
2/2, was

used..
The energy dependence of eq. 6 has a few unique features. As shown in previous works

[ 23, 24], the matrix elements for electromagnetic response of weakly-bound nuclei present
a small peak at low energies, due to the proximity of the bound state to the continuum.
This peak is manifest in the response function of eq. 3:

dB(EL)

dE
∝ |Is→p|2 ∝

EL+1/2
r

(Sn + Er)
2L+2 . (7)

It appears centered at the energy [ 24] E
(EL)
0 ≃ (L + 1/2)Sn/(L + 3/2) for a generic

electric response of multipolarity L. For E1 excitations, the peak occurs at E0 ≃ 3Sn/5.
The second term inside brackets in eq. 6 is a modification due to final state interac-

tions. This modification becomes important in many situations [ 21]. In fact, the strong
dependence of the response function on the effective range expansion parameters makes
it a good tool to study the scattering properties of light nuclei which are of interest for
nuclear astrophysics.

3.2. Two-neutron halo

Many weakly-bound nuclei, like 6He or 11Li, require a three–body treatment. In one of
these models, the bound–state wavefunction in the center of mass system is written as an
expansion over hyperspherical harmonics (HH), see e.g. [ 30],

Ψ (x,y) =
1

ρ5/2

∑

KLSlxly

Φ
lxly
KLS (ρ)

[
J lxly

KL (Ω5) ⊗ χS

]

JM
. (8)
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Here x and y are Jacobi vectors where x = (r1 − r2) /
√

2 and y =
√

2(A−2)
A

(
r1+r2

2
− rc

)
,

where A is the nuclear mass, r1 and r2 are the position of the nucleons, and rc is the
position of the core. The hyperradius ρ determines the size of a three-body state:
ρ2 = x2+y2. The five angles {Ω5} include usual angles (θx, φx), (θy, φy) which parametrize
the direction of the unit vectors x̂ and ŷ and the hyperangle θ, related by x = ρ sin θ
and y = ρ cos θ, where 0 ≤ θ ≤ π/2. The hyperspherical harmonics have the explicit

formJ lxly
KLML

(Ω5) = φ
lxly
K (θ) Y

lxly
LML

(x̂, ŷ) , where K = lx + ly + 2ν (ν = 0, 1, 2, · · ·), and

Y
lxly
LML

(x̂, ŷ) = [Ylx (x̂) ⊗ Ylx (ŷ)]LML
. Ylm(x̂) are the usual spherical harmonics. The hyper-

angular functions are given byφ
lxly
K (θ) = N

lxly
K sinlx θ cosly θP lx+1/2,ly+1/2

n (cos 2θ) , where

P α,β
n are the Jacobi polynomials, n = (K − lx − ly)/2 and N

lxly
K are normalization con-

stants. The hyperspherical harmonics are orthonormalized using the volume element
dΩ5 = sin2 θ cos2 θdx̂dŷ. The insertion of the three-body wavefunction, eq. 8, into the
Schrödinger equation yields a set of coupled differential equations for the hyperradial
wavefunction Φ

lxly
KLS (ρ).

For weakly-bound systems having no bound subsystems the hyperradial functions en-
tering the expansion 8 behave asymptotically as [ 31] Φa (ρ) −→ exp (−ηρ) as ρ −→ ∞,
where the two-nucleon separation energy is related to η by S2n = h̄2η2/ (2mN). This wave-
function has similarities with the two-body case, when ρ is interpreted as the distance r
between the core and the two nucleons, treated as one single particle. But notice that the
mass mN would have to be replaced by 2mN if a simple two-body (the dineutron-model
[ 4, 32]) were used for 11Li or 6He.

Since only the core carries charge, in a three-body model the E1 transition operator
is given by M ∼ yY1M (ŷ) for the final state (see also [ 34]). The E1 transition matrix
element is obtained by a sandwich of this operator between Φa (ρ) /ρ5/2 and scattering
wavefunctions. In ref. [ 33] the scattering states were taken as plane waves. I will use
distorted scattering states, leading to the expression

I (E1) =
∫

dxdy
Φa (ρ)

ρ5/2
y2xup (y)uq (x) , (9)

where up (y) = j1 (py) cos δnc − n1 (py) cos δnc is the core-neutron asymptotic continuum
wavefunction, assumed to be a p-wave, and uq (x) = j0 (qx) cos δnn − n0 (qx) cos δnn is
the neutron-neutron asymptotic continuum wavefunction, assumed to be an s-wave. The

relative momenta are given by q = (q1 − q2) /
√

2 and p =
√

2(A−2)
A

(
k1+k2

2
− kc

)
.

The E1 strength function is proportional to the square of the matrix element in eq.
9 integrated over all momentum variables, except for the total continuum energy Er =
h̄2 (q2 + p2) /2mN . This procedure gives

dB (E1)

dEr

= constant ×
∫

|I (E1)|2 E2
r cos2 Θ sin2 ΘdΘdΩqdΩp, (10)

where Θ = tan−1 (q/p).
Most integrals in eqs. 9 and 10 can be done analytically, leaving two remaining integrals

which can only be performed numerically. In ref. [ 21] it was shown that the calculation
follwoing the above prescription is able to reproduce the available scattering data, and
that final state interactions are of extreme relevance.
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As pointed out in ref. [ 33], the E1 three-body response function of 11Li can still be
described by an expression similar to eq. 7, but with different powers. Explicitly,

dB (E1)

dEr

∝ E3
r(

Seff
2n + Er

)11/2
. (11)

Instead of S2n, one has to use an effective Seff
2n = aS2n, with a ≃ 1.5. With this ap-

proximation, the peak of the strength function in the three-body case obtained from eq.
11 is situated at about three times higher energy than for the two-body case, eq. 7. In
the three-body model, the maximum is thus predicted at E

(E1)
0 ≃ 1.8S2n, which fits the

experimentally determined peak position for the 11Li E1 strength function very well [ 33].
It is thus apparent that the effect of three-body configurations is to widen and to shift
the strength function dB (E1) /dE to higher energies.

4. Collective excitations: the pigmy resonance

4.1. The hydrodynamical model

As with giant dipole resonances (GDR) in stable nuclei, one believes that pygmy reso-
nances at energies close to the threshold are present in halo, or neutron-rich, nuclei. This
was proposed by Suzuki et al. [ 37] using the hydrodynamical model for collective vibra-
tions. We will use the method of Myers et al. [ 40], who considered collective vibrations in
nuclei as an admixture of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) modes. For
light nuclei they found that Goldhaber-Teller modes dominate. But in order to reproduce
the correct position of the GDR along the periodic table both modes have to be included.

For spherically symmetric densities, the transition density, δρp (r) = δρp (r) Y10 (r̂), can
be calculated assuming a combination of the SJ and GT distributions [ 21],

δρp (r) =

√
4π

3
R

{

Z
(1)
effα1

d

dr
+ Z

(2)
effα2

K

R
j1 (kr)

}

ρ0(r), (12)

where R is the mean nuclear radius of the nucleus, and αi is the percent displacement
of the center of mass of the neutron and proton fluids in the GT (i = 1) and SJ (i = 2)
modes. For light, weakly-bound nuclei, it is appropriate to assume that the neutrons
inside the core (Ac, Zc) vibrate in phase with the protons. The neutrons and protons in
the core are tightly bound. Calling the excess nucleons by (Ae, Ze) = (A − Ac, Z − Zc),

the effective charge for the GT mode is Z
(1)
eff = (ZcAe − AcZe) /A. This effective charge

is zero if (Ac, Zc) = (A, Z) and no pigmy resonance is possible in this model, only the
usual GDR. In eq. 12, j1(kr) is the spherical Bessel function of first order, α2 the percent
displacement of the center of mass of the neutron and proton fluids in the Steinwedel-
Jensen mode, kR = a = 2.081, and K = 2a/j0 (a) = 9.93. These relations are obtained
by the condition that the radial velocity of the SJ fluid vanishes at the nuclear surface.

The hydrodynamical model can be further explored to obtain the energy and excitation
strength of the collective excitations. This can be achieved by finding the eigenvalues of the
Hamiltonian H = 1

2
α̇T α̇+ 1

2
αVα+α̇F α̇, where α = (α1, α2) is now a vector containing the

GT and SJ contributions to the collective motion. T and V are the kinetic and potential
energies 2 × 2 matrices [ 40]. The kinetic term can be calculated from the GT and SJ
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velocity fields, v1p and v2p: T = 1
2
m∗

N

∫ [
ρp (v1p + v2p)

2 + ρn (v1n + v2n)2
]
d3r, where the

effective nucleon mass m∗

N accounts for the meson exchange effects. The potential term
can be related to the stiffness parameters of the liquid-drop model adjusted to a best fit to
the nuclear masses. The stiffness of the system is due to the change in symmetry energy of
the system as it goes out of the equilibrium position: V = −κ

∫
d3r (ρp − ρn)2/(ρp + ρn),

where κ can be estimated from the semi-empirical mass formula (κ ≃ 30− 40 MeV). The
last term in the Hamiltonian is the Rayleigh dissipation term, which can be related to the
Fermi velocity of the nucleons [ 40] and yields the width of the eigenstate.

As shown by Myers et al. [ 40], the liquid drop model predicts an equal admixture of
SJ+GT oscillation modes for large nuclei. The contribution of the SJ oscillation mode
decreases with decreasing mass number, i.e. α −→ (α1, 0) as A −→ 0. This is even
more probable in the case of halo nuclei, where a special type of GT mode (oscillations
of the core against the halo nucleons) is likely to be dominant. For this special collective
motion an approach different than those used in refs. [ 40] and [ 37] has to be considered.
It is easy to make changes in the original Goldhaber and Teller [ 38] formula to obtain
the energy of the collective vibrations. One has to account for the effective mass of our
modified GT model. The resonance energy formula derived by Goldhaber and Teller [
38] changes to

EPR =

(
3ϕh̄2

2aRmNAr

)1/2

, (13)

where Ar = Ac (A − Ac) /A and a is the length within which the interaction between a
neutron and a nucleus changes from a zero-value outside the nucleus to a high value inside,
i.e. a is the size of the nuclear surface. ϕ is the energy needed to extract one neutron from
the proton environment. Goldhaber and Teller [ 38] argued that in a heavy stable nucleus
ϕ is not the binding energy of the nucleus, but the part of the potential energy due to the
neutron proton interaction. It is proportional to the asymmetry energy. In the case of
weakly-bound nuclei this picture changes and it is more reasonable to associate ϕ to the
separation energy of the valence neutrons, S. I will use ϕ = βS, with a parameter β which
is expected to be of order of one. Since for halo nuclei the product aR is proportional
to S−1, we obtain the proportionality EPR ∝ S. Due to the simplicity of the model,
the proportionality factor cannot be trusted. Using eq. 13 for 11Li , with a = 1 fm,
R = 3 fm and ϕ = S2n = 0.3 MeV, we get EPR = 1.3 MeV. Considering that the pygmy
resonance will most probably decay by particle emission, one gets Er ≃ 1 MeV for the
kinetic energy of the fragments. This is about a factor 2 larger than what is obtained in a
numerical calculation [ 21]. But it is within the right ballpark. It is possible that formula
13 for the energy of the pigmy collective vibrations can be improved using proton and
neutron density profiles obtained from microscopic calculations. It must be remembered,
however, that the hydrodynamical model is very unlikely to be an accurate model for
light, loosely-bound, nuclei and is significant only in that the correct order of magnitude
of the resonance energy is found.

The main decay channel of the pigmy resonance is the breakup of the nucleus. As shown
above, both the direct dissociation model and the hydrodynamical model yield a bump in
the response function with position proportional to S, the valence nucleon(s) separation
energy. In the direct dissociation model the width of the response function obviously
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depends on the separation energy. But it also depends on the nature of the model, i.e.
if it is a two-body model, like the model often adopted for 11Be or 8B, or a three-body
model, appropriate for 11Li and 6He. In the two-body model the phase-space depends
on energy as ρ (E) ∝ d3p/dE ∝

√
E, while in the three-body model ρ (E) ∼ E2. This

explains why the peak of dB/dE is pushed toward higher energy values, as compared to
the prediction of eq. 7. It also explains the larger width of dB/dE obtained in three-body
models. In the case of the pygmy resonance, this question is completely open.

The hydrodynamical model predicts [ 40] for the width of the collective mode Γ = h̄v/R,
where v is the average velocity of the nucleons inside the nucleus. This relation can be
derived by assuming that the collective vibration is damped by the incoherent collisions
of the nucleons with the walls of the nuclear potential well during the vibration cycles.
This approach mimics that used in the kinetic theory of gases for calculating the energy
transfer of a moving piston to gas molecules in a container. Using v = 3vF /4, where

vF =
√

2EF /mN is the Fermi velocity, with EF = 35 fm and R = 6 fm, one gets Γ ≃ 6
fm. This is the typical energy width a giant dipole resonance state in a heavy nucleus. In
the case of neutron-rich light nuclei v is not well defined. There are two average velocities:
one for the nucleons in the core, vc, and another for the nucleons in the skin, or halo,
of the nucleus, vh. One is thus tempted to use a substitution in the form v =

√
vcvh.

Following ref. [ 41], the width of momentum distributions of core fragments in knockout

reactions, σc, is related to the Fermi velocity of halo nucleons by vF =
√

5σ2
c/mN . Using

this expression with σc ≃ 20 MeV/c, we get Γ = 5 MeV (with R = 3 fm). This value is
much larger than that observed in experiments.

It seems clear that the piston model is not able to describe the width of the response
function properly. Microscopic models, such as those based on random phase approxima-
tion (RPA) calculations, are necessary to tackle this problem. The halo nucleons have
to be treated in an special way to get the response at the right energy position, and
with approximately the right width. Right now, the problem remains if the experimentlly
observed peak in dB/dE is due to a direct transition to the continuum, weighted by the
phase space of the fragments, or if it proceeds sequentially via a soft dipole collective
state.
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