
RELATIVISTIC CORRECTIONS IN

HEAVY ION ELASTIC

SCATTERING

A Thesis

By

George Phillip Robinson

Submitted to the Office of Graduate Studies
Of Texas A&M University-Commerce

In fulfillment of the requirements
For the degree of

MASTERS OF SCIENCE
August 2017



RELATIVISTIC CORRECTIONS IN

HEAVY ION ELASTIC

SCATTERING

A Thesis

By

George Phillip Robinson

Approved by:

Adviser: Carlos Bertulani

Committee: Bao-An Li

William Newton

Head of Department: Matt Wood

Dean of the College: Brent Donham

Dean of Graduate Studies: Mary Beth Sampson



iii

Copyright c© 2017

George Phillip Robinson



iv

ABSTRACT

RELATIVISTIC CORRECTIONS IN

HEAVY ION ELASTIC

SCATTERING

George Phillip Robinson, MS
Texas A&M University-Commerce, 2017

Advisor: Carlos Bertulani, PhD

Relativistic effects of heavy ion scattering were investigated at interme-

diate collision energies, at or above about 50 MeV/n. Two methods for

evaluating these effects were compared for their validity. The first method

involves a full account of the retardation of the Coulomb potential by solu-

tion of the covariant equations of motion for charged particles. The second

method involved the expansion of the effective Lagrangian, including the elec-

tromagnetic Darwin Lagrangian, in orders of (v/c). This study allowed for

the determination of the degree of involvement of effects such as relativistic

magnetic interactions, kinematic corrections, and relativistic mass increase

in the motion of the heavy charge particles. It was shown that the numeric

solutions of the coupled differential equations presented were not necessary as

the analytic formulations sufficiently describe all of the scattering parameters

needed for nuclear experimentation.
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Introduction

In modern radioactive beam facilities, Coulomb excitation is used to

probe phenomenon such as dipole polarizeability, pygmy dipole resonance,

neutron skin thickness, equations of state of nuclear material, and general

nuclear structure. This is done because Coulomb interactions are well

understood. Experimentally, it is presumed that Coulomb scattering

dominates in small angle scattering especially in the non-head-on elastic

scattering of heavy ions. Many of the beam experiments are performed at

appreciably high kinetic energies. Due to this, it is crucial that relativistic

effects be accounted for in order to properly address relativistic kinematics,

any number of possible internal excitations, and any other relativistic

reaction dynamics. We sought to investigate the best method to account for

relativistic effects in elastic Coulomb scattering of heavy ions. To do this,

we explored two different proposed methods for assessing relativistic

scattering. The first involved a solution to the covariant equations of motion

for a charged particle moving in the electric and magnetic field of another.

The second used an expansion of the effective Lagrangian to determine the

extent of the relativistic velocities. Both numeric and analytic solutions

were given using each method, and both were compared for validity. First

however, it is necessary to discuss some background material.
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Chapter 1

DARWIN LAGRANGIAN

1.1 Electrodynamics with Retardation

In classical electrodynamics, the Lagrangian for multiple charged

particles can be written as follows:

L = T − U (1)

where T is the kinetic energy, and U is the potential energy.

S =

∫
−mcds =

∫
Tdt (2)

where S is the classical action and ds = cdt
√

1− v2

c2
. Therefore:

T = −mc2

√
1− v2

c2
(3)

while the potential follows easily from the Force(F = q[E + (v ×B)]) as:

U =
q

2

(
V (r)−A(r) · v

c

)
(4)
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(these terms are defined later when we discuss Maxwell’s equations, where

they are more relevant) bringing us to the final Lagrangian:

L =
∑
n

[
−mnc

2

√
1− v2

n

c2
+
qn
2

(vn
c
·A(rn)− V (rn)

)]
(5)

The Darwin Lagrangian is a term based on the expansion of the

classical electrodynamic’s Lagrangian above for two relativistic charged

particles interacting in free space. It was originally derived in 1920 by

Charles Darwin by expansion of the Lienard-Wiechert potential (we differ

from the original derivation, as explained below). The term accounts for

the reaction of one particle to the magnetic field created by the other. The

Darwin Lagrangian follows from the expansion to the order of v2/c2 , but

higher orders are required to account for retardation effects. To find this

Lagrangian term, we begin with Maxwells equations:

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E

∂t

(6)
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We take the curl of the third Maxwell’s equation:

∇× (∇× E) = ∇×
(
−∂B
∂t

)
∇(∇ · E)−∇2E = −∂(∇×B)

∂t
∇ρ
ε0
−∇2E =

∂

∂t

(
µ0J + µ0ε0

∂E

∂t

) (7)

making the electric field wave equation with the inclusion of source terms:

�2E =
∇ρ
ε0

+ µ0
∂J

∂t
(8)

where �2 = ∇2 − 1
c2

∂2

∂t2
. We can now integrate the Green’s function (9) and

the sources to find the electric field:

G(r, t, r′, t′) = − δ(t− t′)
4π |r − r′|

(9)

E(r, t) =

∫
d3r′dtG(r, t, r′, t′)

[
∇′ρ(r′, t′)

ε0
+ µ0

∂J(r′, t′)

∂t′

]
(10)

Through integration by parts, and the unique properties of derivatives

of the Greens function(−∇G = ∇′G), we have the following emerge:

E(r, t) = −∇V − ∂A

∂t
(11)

where the scalar potential and the vector potential are respectively defined
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by:

V (r, t) =
1

4πε0

∫
ρ(r′, tr)

R
d3r′ (12)

A =
µ0

4π

∫
J(r′, tr)

R
d3r′ (13)

Similar manipulations of the magnetic field term from Maxwell’s

equations, and following the same procedure just performed for E leads to:

B(r, t) = ∇×A (14)

In this case, both the E and B field equations include the term for

the retarded time, tr = t− R
c

where R is the position term, |r − r′| from the

Green’s function, and c is the speed of light. Additionally, ρ and J are the

charge and current distributions respectively.

It is then evident that the E field differs from the electrostatic case by

the addition of the time derivative of the vector potential term, while the B

field seems to remain the same as the magneto-static case. The B field term

does change however, due to the inclusion of the position dependence of the

retarded time (as well as R) when the curl is evaluated. This leads to

multiple terms through a chain rule, clearly making it different from the

magneto-static case.

We will discuss the Lagrangian that arises from this derivation, but

this is a convenient place to stop and discuss the Lienard-Wiechert Potential

that we use later. So we digress shortly, and will return to this topic after.
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1.2 Lienard-Wiechert Potential

Our goal in this section is to find the potential at some location from

a charged particle moving through an arbitrary path. So we begin, as we

do, with the definition of terms represented in Figure 1.

Figure 1: Lienard-Wiechert Potential for a particle moving through an arbi-
trary path

As shown above, a particle of charge q is moving through an arbitrary

path traced by rq at a velocity vq(t). Additionally, we define, the same as

above, a vector from the particle to the point P which we will simplify by

calling it R. We can also quite easily define a trivial charge density

ρ(r, t) = qδ(r− rq(t)) and a current J(r, t) = qvqδ(r− rq(t)). Although we

previously derived terms for V (r, t) and A(r, t) only in terms of of a

volumetric integral, we will revert back to the time dependent, more generic
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versions because we now would like to explicitly solve the time integral

rather than take it for granted. We begin with the Scalar Potential:

V (r, t) =
1

4πε0

∫
d3r′dt′ρ(r ′, t′)

δ(t− t′ − R
c
)

R

=
q

4πε0

∫
d3r′dt′

δ(r ′ − rq(t
′))δ(t− t′ − R

c
)

R

=
q

4πε0

∫
dt′

δ(t− t′ − Rq(t)

c
)

Rq(t)

(15)

where Rq(t) = |r− rq(t)|, which it should be obvious from this notation

that Rq is time dependent while the original R was independent of time.

So to solve the integral, we must first examine some unique properties of

delta functions:

δ[f(t)] =
∑
i

δ(t− ti)
|f ′(ti)|

(16)

In this, f(t) is any arbitrary function of t, and atf(ti) = 0 while

f ′(ti) 6= 0 and in this case, f(t′) = t− t′ − Rq(t′)
c

. Therefore, t′0 = t− Rq(t0)

c

and f(t′0) = 0, but t0 is quite obviously the retarded time tr. We also need

the derivative of f : f ′(t′) = Rq(t′)·vq(t′))
Rq(t′)c

− 1. Now returning to the integral:

V (r, t) =
q

4πε0

∫
dt′

δ(t− tr − Rq(t)

c
)

Rq(t)

=
q

4πε0

∫
dt′

δ(t− tr)
(1− Rq(t′)

Rq(t′)
· vq(t′)

c
)Rq(t)

V (r, t) =
q

4πε0

[
1

Rq − Rq ·vq

c

]
retarded time

(17)
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Similarly, the vector potential A can be washed through the same

steps to obtain the following:

A(r, t) =
µ0q

4π

[
vq

Rq − Rq ·vq

c

]
retarded time

(18)

These two equations for the scalar and vector potentials are the

Lienard-Wiechert Potentials, but it is no longer necessary to use the q

subscript, so we can simplify by writing both as follows:

V (r, t) =
q

4πε0

[
1

R(1− β · R̂)

]
retarded time

A(r, t) =

[
V (r, t)

β

c

]
retarded time

(19)

1.3 Darwin Lagrangian

Prior to the Lienard-Wiechert Potential explanation, we came up

with a term for the E and B, and from these we can write the Lagrangian

for the relativistic interaction of a particle of charge q within an

electromagnetic field as:

L = −q∇V +
q

c
(v ·A) (20)

where v is the velocity of the charged particle.

Applying the Coulomb Gauge, (∇ ·A = 0), and removing 1
c2
∂2A
∂t2
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because A is of order v2

c2
, we can write the following from Maxwells laws:

∇2A− 1

c

(
∇∂V
∂t

)
= −4π

c
Jt (21)

where Jt is the transverse current created by the movement of the second

charge. This indicates that the currents divergence is zero throughout. It

should be noted that the original derivation done by Darwin did not use

this method, however, this method, as performed by Jackson [2], leads to

an exact Coulomb potential V and transfers the approximation to the

vector potential, A. which becomes:

A(r) =

∫
d3r′

|r− r′|

(
1

c
J(r′)− 1

4πc
∇′V (∂r′)

∂t

)
(22)

We can write J(r′) for n particles as qnvnδ
3(r′ − rn) and V as qn

|r′−r′n|

A(r) =

∫
d3r′

|r− r′|

[
qnvn
c

δ3(r′ − rn)− qn
4πc
∇′
(
vn · (r′ − rn)

|r′ − rn|3

)]
(23)

Then by integrating by parts, and removing the surface at infinity,

while also utilizing the property of greens functions where ∇′ ≈ −∇:

A(r) =
qnvn

c |r− rn|
+

qn
4πc

∫
d3x′

(
vn · (r′ − rn)

|r′ − rn|3

)
∇′ 1

|r− r′|
(24)

A(r) =
qnvn

c |r− rn|
− qn

4πc
∇
∫
d3(r′ − rn)

vn · (r′ − rn)

|r′ − rn|3
1

r′ − r
(25)
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Finally, by evaluating this non-trivial integral, we reach:

An =
qn
2cr

vn +
rvn · r
r

(26)

where r = |vr|. If we multiply qv
c

to take into account the second (or

incidentally, any number by including a subscript to account for the n-th)

charged particle, and correct the original free particle Lagrangian by saying

that −mc2γ−1 +mc2 ≈ 1
2
mv2[1 + 1

4
v2

c2
] We arrive at the finalized Darwin

Lagrangian:

∑
i 6=j

1

2
miv

2
i +

1

8c2
miv

4
i +

qiqj
rij

[
−1

2
+

1

4c2
(vi · vj + (vi · r̂ij)(vj · r̂ij))

]
(27)

where we have used a different index here merely for convenience, and to

avoid confusing subscripts.

This Lagrangian is useful when radiation can be neglected, but was

originally derived under the assumption of non-relativistic speeds, although

that assumption should not be necessary because radiation is due to

acceleration. A Lagrangian that both neglects radiation and the

assumption of low speeds was proposed by H. Essén [3] and leads to a

succinct interaction Lagrangian for the interaction of two particles as:

L12 = g

(
v2

c2

)
e1e2

r21

v2

c2
− e1e2

r21

(28)

where g(x) ≡ 1
1+
√

1−x , r21 = |r2 − r1|, and e is the particle’s charge. The
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term g can be expended in terms of v2

c2
and at the limit of v → c, g(x) = 1,

and the related force is zero. This method allows for all retardation

dependencies to be accounted for, which eliminates the assumption of low

velocities as required by the original Darwin derivation.
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Chapter 2

RUTHERFORD SCATTERING

In May of 1911, Ernst Rutherford published his findings from a

scattering experiment in which alpha particles were fired at a thin sheet of

gold foil [4]. The atomic models of the time did not conform with the

findings of his experiment, as a high percentage of alpha particles were

unexpectedly back-scattered at angles greater than 90o. It was this

conclusion that led to our current understanding of the ultra-dense

positively charged center to atoms, which we now know as the nucleus,

surrounded by a large volume, negatively charged space occupied by the

electrons. The following are the derivations associated with Rutherford’s

Scattering model.

Scattering being integral to this subject, it seems prudent to discuss

it in some detail. We begin with a few definitions in classical scattering:

An incoming particle, the projectile, is incident on another particle,

the target, which we will assume has a very large mass as compared to the

incident one so we can neglect recoil of the target. We will discuss removing

this assumption later, but for now we will use it to discuss the simpler case.

The incoming particle approaches with an impact parameter, b, which we

define as the perpendicular distance from the direction of motion of the

incoming projectile, and the center of the target. The incident particle will

have an initial velocity v0. After interacting with the target, the projectile
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emerges at an angle θ, as measured from the projectile’s original direction

of motion, and it will have a velocity denoted v∞ for its velocity as t→∞.

Figure 2: Simple 2-D Scattering

To obtain Rutherford’s Scattering equation, we must begin with some

assumptions, (in addition to having the mass of the target be much larger

than that of the projectile): first, we assume that the only interaction

between the projectile and the target is the Coulomb repulsion; this implies

azimuthal symmetry. We will also only consider a single projectile and only

a single target. And lastly, (and most importantly for this paper) we will

consider only non-relativistic speeds (for now).

So from these assumptions and the above definitions, we can now

begin to solve for a relationship between the impact parameter b and the

scattering angle θ. (these being the best adjustable and measurable

parameters respectively for experimentalists in the lab setting). We begin
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with the Coulomb Force:

F =
Z1Z2e

2

4πε0r2
(29)

where Ze is the charge of the particle, and r is the vector that traces the

projectile’s motion. We then consider the conservation of angular

momentum. We know that because angular momentum is conserved, then

the angular momentum itself must be equal to some constant, C:

|L| ≡ |r× p| = |mrv| sinφ = C (30)

Where L is the angular momentum, p is the linear momentum, and φ

is the angle between r and v. We must then consider the initial angular

momentum, where the projectile has not yet experienced any deflection

from the Coulomb repulsion. At this time, sinφ = b
r
, so L0 = mv0b = C. So

we now have a term for the constant C.

Combining the Coulomb Force (29) with our understanding of

angular momentum, we can write

r2 = bv0(
dφ

dt
)−1 (31)

Then by writing the force in Cartesian coordinates.

Fx = F cosφ =
Z1Z2e

2

4πε0r2
cosφ =

Z1Z2e
2

4πε0bv0

dφ

dt
cosφ =

mdvx
dt

Fy = F sinφ =
Z1Z2e

2

4πε0r2
sinφ =

Z1Z2e
2

4πε0bv0

dφ

dt
sinφ =

mdvy
dt

(32)
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solving this integral for vi :

vx(φ) =
Z1Z2e

2

4πε0mbv0

sinφ+ v0

vy(φ) =
Z1Z2e

2

4πε0mbv0

(− cosφ+ 1)

for 0 ≤ φ ≤ π − θ

(33)

Now we take a look at the conservation of energy, which tells us that

the magnitude of the initial and final energy must be equal (v0 = v∞) and

at t→∞, φ = π − θ, so (focusing only on the y-direction):

Z1Z2e
2

4πε0mbv0

(− cos(π − θ) + 1) = v0 sin θ

Z1Z2e
2

4πε0mbv0

(cos(θ) + 1) = v0 sin θ

Z1Z2e
2

4πε0mbv0

= v0
sin θ

cos θ + 1

Z1Z2e
2

4πε0mbv0

= v0 tan
θ

2

(34)

one final rearrangement brings us to b as a function of θ.

b(θ) =
Z1Z2e

2

4πε0v2
0m tan( θ

2
)

(35)

Now, we take into account the more appropriate three dimensional

version of classical scattering with a beam of incoming projectiles rather

than only a single projectile. The projectile incident in a cross-sectional

area element dσ = 2πbdb at the cylindrically symmetric impact parameter b
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will scatter to a correlating solid angle element dΩ = 2π sin θdθ. From

these, we can define a so called differential scattering cross-section, dσ
dΩ
.

Figure 3: Classical scattering by a central potential

We can say that the number of incoming particles that pass through

this differential cross section dσ with an intensity, I, must be equal to the

number of particles that scatter through the differential solid angle dΩ:

I · 2πbdb = I · dσ
dΩ

dΩ (36)

and plugging in what we know about dσ and dΩ we can rearrange to find
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an expression for the differential scattering cross section in terms of b and θ:

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ (37)

Finally, we can plug in b(θ) (35) and its derivative with respect to θ

into (37) to obtain a term for the differential cross section solely in terms of

θ. ∣∣∣∣dbdθ
∣∣∣∣ =

Z1Z2e
2

16πε0K0 sin2( θ
2
)

(38)

dσ

dΩ
=

(
Z1Z2e

2

8πε0K0

)2
1

2 sin θ tan θ
2

sin θ
(39)

where K0 is the initial kinetic energy, K0 = 1
2
mv2

0. Then by simply using

the trigonometric identity: sinx = 2 sin x
2

cos x
2
, we arrive at last, at the

elegant formula:

dσ

dΩ
=

(
Z1Z2e

2

16πε0K0

)2
1

sin4
(
θ
2

) (40)
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Chapter 3

THE INCLUSION OF RETARDATION IN COULOMB SCATTERING

In 1987, R. Matzdorf and G. Soff published a paper describing the

collisions of simi-relativistic heavy ions [5]. In which, they derived a set of

coupled equations for the motion for relativistic charged particles. Their

method does intentionally neglect radiative corrections. We will use their

method in conjunction with a method outlined in a paper written by C. E.

Aguiar et al. [6] which is discussed in the following section. Matzdorf begins

with the covariant equations of motion that describe a charged particle

moving in the external electromagnetic field of another charged particle.

Assuming the projectile is moving in the x̂ direction, the covariant

equation of motion for the two particle system moving under the influence

of their own electric fields and magnetic fields:

dpα

dτ
=
q

c
FαβUβ (41)

where field strength tensor, Fαβ can be written as:

dpα

dτ
=
q

c



0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


Uβ (42)

where pα is the 4-momentum and Uβ is the 4-velocity. τ is the proper time.
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The E and B fields are then derived from the Lienard Wiechert potentials

(19). Then plugging those back into (42), and produce three relevant

equations for the velocities which can be expressed as:

γ4


γ−2 + u2

1 u1u2 u1u3

u1u2 γ−2 + u2
2 u2u3

u1u3 u2u3 γ−2 + u2
3

 u̇ =
q(p)γ

m
(p)
0 c


E

(t)
1 −B

(t)
3 u2 +B

(t)
2 u3

E
(t)
2 +−B(t)

3 u1 −B(t)
1 u3

E
(t)
3 −B

(t)
2 u1 +B

(t)
1 u2


(43)

This method produces a fourth equation

γ4(u, u̇) = q(p)

m
(p)
0

− γ
(
−E(t)

1 u1 − E(t)
2 u2 − E(t)

3 u3

)
, but it provides no

additional information, so it is disregarded.

We denote u = v
c

as the normalized velocity to the speed of light, and

γ = (1− β2)
−1
2 . The subscript 1, 2, and 3 denote the direction component

as in (x1, x2, x3). In addition, p and t refer to the projectile and target

respectively (although the distinction is nonessential because the reference

frame can simply be switched to that of the motionless projectile and

moving target and all remains the same).

To solve for u̇, a mathematically straightforward matrix manipulation

is performed. Although it is straightforward, it is also fairly lengthy, so it is

not shown here. By confining the scattering plane to the x-y plane, and

solving for u̇ we can reduce the 3×3 matrix to a 2×2 matrix involving only

u1 and u2 terms.

Using the target’s frame of reference, the scalar and vector potentials
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can be expressed as:

A = 0

V =
q

R

(44)

Performing a Lorentz transformation into the laboratory reference

frame, we find E and B can be expressed as:

E =q
n

γ2 [1− β2 + (n · β)2]
3
2 R2

B =β × E
(45)

Then plugging in the non-vanishing terms, after the restriction to two

dimensions, E1, E2, and B3, can be expressed as:

E1 =q
n1

γ2 [1− β2 + (n · β)2]
3
2 R2

E2 =q
n2

γ2 [1− β2 + (n · β)2]
3
2 R2

B3 =β1E2 − β2E1

where β2 =β2
1 + β2

2

(46)

Lastly, Matzdorf restricts the Coulomb field to be purely classical (i.e.

E = q n
R2 and B = 0 ) and, due to its essentially negligible contribution, on

the order of only a single percent difference at speeds less than 0.99c, the

magnetic field’s relativistic contribution is omitted.

This leads to the finalized equation for the normalized accelerations
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in each direction.

u̇1 =
q(p)q(t)

m
(p)
0 γ3

(γ−2 + u2
2)n1 − u1u2n2

R2[(γ−2 + u2
1)(γ−2 + u2

2)− u2
1u

2
2]

u̇2 =
q(p)q(t)

m
(p)
0 γ3

(γ−2 + u2
1)n2 − u1u2n1

R2[(γ−2 + u2
1)(γ−2 + u2

2)− u2
1u

2
2]

(47)

where R is the magnitude of the radius vector considering the target at

time t, and n represents the unit vector in its respective direction. These

equations, (43) and (47), are only soluble numerically as they are obviously

interdependent upon one another. The numerical methods are discussed in

Chapter 5 and the solutions are discussed in Chapter 6.

In addition to this, the scattering angle can be solved if the target

begins at the origin at rest at t = −∞, and the projectile moves originally

in the x̂ direction, then the solution for the scattering angle can be found

by use of the solution to (47) and:

θ(t→∞) = arctan

(
u2

u1

)
= arctan

(
dy(t)

dx(t)

)
(48)

The next step, and the ultimate goal of all collision calculations,

would be to use these equations to find a relationship between the impact

parameter b and the scattering angle θ. This is exactly what we do.

Following a method presented by Sommerfeld [7], where they describe the

orbital motion of a relativistic electron, and simply change signs to account

for the positively charged projectile we wish to use. We then transform the
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non-relativistic relationship for the angle, which we denote as ψ, to its

relativistic counterpart, φ. In this formalism, ψ0 is simply equal to the

arccos of the inverse of the eccentricity. This eccentricity is a function of

the non-relativistic angular momentum, and because the goal is to

transform everything into the relativistic domain, it was therefore necessary

to also rewrite the non-relativistic angular momentum, L0 in terms of the

relativistic angular momentum, L = L0γ. This led to the description of φ0

as:

φ0 =
1√

1− (ZpZte2)2

c2L2

arccos

 ZpZte2

Lv∞√
1 +

(
ZpZte2

Lv∞

)2

 (49)

For succinctness, the simplification, k(b) = ZpZte2

Lv∞
= d

2b

√
1− β2 is

made. The parameter d is defined as the collision diameter as: d = 2ZpZte2

m
(p)
0 v2∞

.

This leads to the condensation:

φ0 =
1√

1− k(b)2β2
arccos

(
k(b)√

1 + k(b)2

)
(50)

A conversion from φ0 into θ,

θ = π − 2 arccot(k(b))√
1− k(b)2β2

(51)

and plugging this into a rearranged (37) where db
dθ

= dk
dθ

db
dk

. This produces
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the ultimate goal of this endeavor:

dσ

dΩ
=

b2

sin θ

∣∣∣∣∣ [1 + k(b)2][1− k(b)2β2]

2[1 + k(b)2]k(b)2β2
(
π−θ

2

)
− 2k(b)

√
1− k(b)2β2

∣∣∣∣∣ (52)

It is this, equation (52), and the equations of normalized velocity

components, equations (47), that are numerically evaluated in [5] and by

ourselves. Matzdorf additionally claims an accuracy of 10−4 in a collision of

a proton with a Uranium atom.

Although it was passed over without comment earlier, the magnetic

field contribution, or more appropriately, the lack thereof, should be

discussed. Matzdorf showed that the magnetic field does not contribute

heavily enough to the motion of the relativistic motion of charged particles

to be considered on the range from 0.1c to 0.99c. This in and of itself is not

exceptionally interesting, but it has intriguing consequences. The

relativistic mass correction must then be quite significant. They reported

this specifically for Xe+ U collisions.
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Chapter 4

SOLUTION OF THE ELECTROMAGNETIC TWO-BODY

SCATTERING WITH AN EFFECTIVE LAGRANGIAN EXPANSION

Similar to the Matzdorf paper, C. E. Aguiar, A. N. F. Aleixo, and C.

A. Bertulani [6], sought to find an equation to describe the motion of

charged particles in the relativistic domain interacting with one another

through the Coulomb field. Unlike Matzdorf, Aguiar et al. attempted to

solve the problem beginning with the Darwin Lagrange, or more accurately,

an expansion of the effective Lagrangian including the Darwin Lagrange.

The derivation of the Darwin Lagrangian was discussed in Section 1.3. We

begin with the full Lagrangian written as:

L = L (0) + L (2) (53)

where L (0) is the classical, or zeroth-order Lagrangian and is simply

described as:

L (0) =
µv2

2
− Z1Z2e

2

r
(54)

and L (2) is the second-order Lagrangian correction, or the Darwin term,

which is written in terms of c−2 as:

L (2) =
µ4v4

8c2

[
1

m3
1

+
1

m3
2

]
− µ2Z1Z2e

2

2m1m2c2r
(v2 + v2

r) (55)

In both (54) and (55), µ refers to the reduced mass, and in (55),



24

vr = v · r/r. It is clear here that there is a missing third and higher-orders

in the Lagrangian. The third-order term describes the dipole radiation

emission. Aguiar explains that this term is usually obtained through the

Abraham-Lorentz Formalism which is quite mathematically intensive and

will not be discussed here. From this formalism, only cases that have equal

charge to mass ratios lead to non-runaway solutions, and more specifically,

the damping force vanishes entirely. With this assumption, we are able to

exclude radiative emissions altogether, and therefore not include a L (3)

term which is the third order term of
(
v
c

)
.

By using a standard Hamiltonian, we are able to write a term for the

velocity (dr/dt) and the force (dp/dt) to the order of c−2, as:

dr

dt
=

p

µ
− p2

2c2

[
1

m3
1

+
1

m3
2

]
p +

Z1Z2e
2

m1m2c2r

[
p +

pr
r
r
]

(56)

dp

dt
− Z1Z2e

2

r3
r +

Z1Z2e
2

2m1m2c2r2

[
(p2 + 3p2

r)
r

r
− 2prp

]
(57)

where p is the canonical momentum and can be expressed as:

p = µv +
µ4v2

2c2

[
1

m3
1

+
1

m3
2

]
v− µ2Z1Z2e

2

m1m2c2r

[
v +

vr
r
r
]

(58)

Next, we would like to consider the symmetric system where the

charges and the masses of the projectile and target are equal proportions.

This simplification allows for a fourth-order correction to the Lagrangian to
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be tacked onto (53) which is given by:

L (4) =
mv6

512c4
+
Z2e2

16c4r

[
1

8
(v4 − 3v4

r + 2v2
rv

2) +
Z2e2

mr
(3v2

r − v2) +
4Z4e4

m2r2

]
where: L =L (0) + L (2) + L (4)

(59)

In addition, the equations of motion for the canonical momentum, the

velocity, and the force can be derived in the same manner as above, where:

dr

dt
=

[
2− p2

m2c2
− 9p4

4m4c4

]
p

m

+
Z2e2

m2c2r

[(
1− p2

2m2c2

)
p +

(
1 +

3p2
r

2m2c2

)
pr
r
r

]
+

Z4e4

m3c4r2
p

(60)

and,

dp

dt
=
Z2e2

r3
r +

Z2e2

2m2c2r2

[
p2 + 3p2

r −
p4

4m2c2
+

15p4
r

4m2c2

]
r

r

−Z
2e2pr

m2c2r2

[
1 +

3p2
r

2m2c2

]
p +

Z4e4p2

m3c4r4
r− 3Z6e6

4m2c4r5
r

(61)

where the canonical momentum is written as:

p =
1

2

[
1 +

v2

8c2
+

3v4

128c4

]
mv

− Z2e2

4c2r

[(
1− v2

8c2
− v2

r

8c2
+

Z2e2

2mc2r

)
v +

(
1− v2

8c2
+

3v2
r

8c2
− 3Z2e2

2mc2r

)
vr
r
r

]
(62)

From here, Aguiar performs the numerical analysis of equations of
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motion not assuming equal charge to mass ratios, equations (56) and (57).

We preform our own analysis of this result in Chapter 6.

We would then like to consider the more simple case of a light

particle scattering off a much heavier particle. In this case, because recoil

can be neglected (in addition to keeping with the assumption from above:

not allowing radiation emission), the retardation effects vanish. This is due

to the immobile larger particle, considered to have infinite mass as

compared to the other. This causes the field of the heavy particle to also be

static. Relativity cannot be entirely ignored however, because of the

increase in the mass of the lighter particle due to relativity. We begin our

consideration of this case by stating the scattering angle θ is given by:

θ = π − 2η√
η2 − β2

arctan
√
η2 − β2 (63)

where η is merely the abbreviation:

η =
vL

Z1Z2e2
(64)

where L, as before, is the angular momentum. As discussed in Chapter 2,

in elastic collisions, angular momentum is conserved. Thus the angular

momentum must be equal to the linear momentum multiplied by the

impact parameter, L = pb. From this logic, η is a function of L and

therefore a function of b. Because we ultimately would like to solve the

differential cross section, which relates b and θ, this leads us to expand η, as
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a function of θ, to the second order of β explicitly in addition to a term

representing the consolidated higher order terms, O(β4). This expansion is

then plugged into (37) where η, as a function of the impact parameter,

replaces b in the following way:

dσ

dΩ
=

[
Z1Z2e

2

2mv2 sin2(θ/2)

]2

[1− h(θ)β2 + O(β4)] (65)

where h(θ) = 1 + 1
2
[1 + (π − θ) cot θ] tan2 θ

2
and in this case, m is the

relativistic mass. The last step performed, was to express (65) in terms of

the kinetic energy, K.

dσ

dΩ
=

[
Z1Z2e

2

4K sin2(θ/2)

]2

·
[
1 + g(θ)

K

mc2
+ O

(
K2

(mc2)2

)]
(66)

where g(θ) = 3− 2h(θ). It is evident that the first term in the brackets is

the classical Rutherford scattering formula. The term that follows is

Aguiar’s proposed relativistic correction to the differential cross section.

This final method proposed by Aguiar, although bulky, can be solved

analytically without the need for numeric computational methods.

Should the analytic solutions presented in either method above prove

to be sufficiently close to the according numeric solution, then the time

costly numeric solution would not be necessary. This is discussed for both

methods in Chapter 6, Results. Before we discuss the results of our

investigation, we need to review the numerical method we employed to

solve the numeric solutions presented.
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Chapter 5

RUNGE KUTTA NUMERICAL METHOD

5.1 Basic Runge Kutta Method

The last bit of background necessary to discuss is an extremely useful

numerical method, called the Runge Kutta method. This method is used to

solve ordinary first order differential equations of the form:

dy

dx
= f(x, y) (67)

If we attempt to solve this differential equation over some small

interval of i→ i+ 1 (what is considered small depends entirely on the

function) we would proceed by:

dy =f(x, y)dx∫ yi+1

yi

dy =

∫ xi+1

xi

f(x, y)dx

yi+1 − y1 =

∫ xi+1

xi

f(x, y)dx

yi+1 =yi +

∫ xi+1

xi

f(x, y)dx

(68)

under the assumption of a non-precipitous function, or at least relatively

smooth over the required interval, the integral in the last term can be

reduced to the slope of the function, φ multiplied by the horizontal
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displacement or the step interval, h, reducing the equation to:

yi+1 = yi + φh (69)

This is the form of the simplest Runge Kutta scheme, and is of the

first order. The second order is solved using something that is very similar

to (69), but the slope is modified to be φ = (a1k1 + a2k2) where a1 and a2

are constants, and k1 = f(xi, yi) and k2 = f(xi + p1h, yi + q11k1h) where p1

and q11 are also just constants. We would like to find out what all of these

constants are, and to do this we use a Taylor expansion of (69) about the

point yi including the new φ, where yi+1 = yi + f(xi, yi)h+ f ′(xi,yi)
2!

h2 + . . .

and what this does, is it allows us to apply some constraints to the mess of

constants we have in the following way:

a1 + a2 = 1

a2 · p1 =
1

2

a2 · q11 =
1

2

(70)

From here, we employ a classic solution to solve the remaining

portions of (70) called the Midpoint method where we artificially set

a2 = 1
2
. This then solves the remainder of the constants where a1 = 1

2
,

p1 = 1, and q11 = 1. There are three broadly adopted methods, Heun’s

Method where you set a2 = 1
2
, the Midpoint Method mentioned above, and

the Ralston’s Method where you set a2 = 2
3
. These are all valid methods,
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but the Midpoint method specifically involves using the derivative at the

starting point, and using that to approximate the derivative at the

midpoint. This slope at the midpoint is then used in a straight line

approximation from the original location to find the new position location

after a step h. As an example, the midpoint method we will use from here

on. It then follows that (69) becomes:

yi+1 = yi + k2 (71)

where k1 = hf(xi, yi) and k2 = hf(xi + 1
2
h, yi + 1

2
k1)

5.2 Adaptive Step Size Runge Kutta Method

We would now like to consider an adaptive solution that tries to take

into account the inherent error associated with approximating the solutions

of differential equations. In these methods, it seems obvious that as the

step size decreases, accuracy increases. The natural response is then to

have h→ 0. This has a problem however, in that as h gets smaller, the

computation time increases, so it is not realistic to have h = 0, because that

would then require infinite computation time. In most cases however, we do

not need the exact answer; we merely need an answer that is sufficiently

close to the exact answer, within some acceptable margin of error.

Additionally, error can be reduced by using higher order methods. The last

problem we seek to address is that of uneven error that occurs as a curve
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transitions from relatively smooth to steep (or vise versa). If the local error,

or the instantaneous error associated with each point, was uniform, that

would greatly improve any approximation. To achieve this, we introduce

what is known as an adaptive step size Runge Kutta method.

One of the major tenets of this method is error reduction, so we

require a way to estimate the error at each step. The way this is done, is by

using two different methods at the same time. The solution that better

matches the exact, or known value is assumed to be very close to the exact

value, so the method that produced the less accurate values has a local

error equal to the absolute difference between the two values. For an

example, using different methods, say:

Method 1: y1(x+ h)

Method 2: y2(x+ h)

Local Error: |y1(x+ h)− y2(x+ h)|

(72)

At this point, if the local error is far below some preset tolerance

(usually set by the computation power available to you), then the

approximation for this point is more accurate than necessary, meaning it is

wasting valuable computation time, and we can double the step size. If the

error is far above that tolerance, then we can half the step size to improve

the accuracy in this region. Lastly, if the error approximates the tolerance,

then the step size is acceptable for this point, and we move on to the next
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step.

An example of different methods would simply be to use two methods

of different orders, where the higher order method can be assumed to be

the more accurate method, and the lower order method to be assumed to

be less accurate. Two such methods could be Runge Kutta second order

approximation (71) and the Runge Kutta third order approximation (not

discussed here). In this example, the third order Runge Kutta is considered

to be essentially exact, and the error is calculated by finding the difference

between the value of the third order approximation and the second order.
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Chapter 6

RESULTS

6.1 Numerical Results

We seek to investigate Matzdorf’s [5] solutions to the motion of

relativistic, heavy, charged particles interacting, equations (47) and (43),

and compare those to Aguiar’s [6] solutions, equation (59). We solved these

equations numerically using the adaptive step size control Runge Kutta

method discussed in Section 5.2. We began by using the same initial

conditions as [5], where the target particle is taken to be motionless at the

origin at time, t = −∞. The impact parameter, y(t = −∞) = b where the

projectile moves towards the target in the x̂ direction; the total trajectory

distance is confined to 80, 000 fm for our calculations. At time t = +∞ the

projectile scatters to an angle θ, with a velocity v∞ (which is equal to v−∞

from conservation of momentum). These parameters are all nearly identical

to the classical scattering parameters discussed in Chapter 2 for reference.

The impact parameter is varied in increments of ∆b = 0.1 fm from

60 fm to the sum of the atomic radii of the target and projectile, Rt +Rp.

To begin with, the scattering angles obtained using Methods [5] and

[6] are checked against well known classical, non-relativistic Rutherford

scattering angle θ(c), [8]:

θ(c) = 2 arctan

(
qpqt
µv2b

)
(73)
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In Figure 4 and Figure 5, a 208Pb +208 Pb collision is shown with the

relative percent difference between each method, with the classical

deflection angle presented as a percent difference:

% =

∣∣∣∣θ[5]or[6] − θ(c)

θ(c)

∣∣∣∣× 100 (74)

plotted against the impact parameter in Figure 4 at 100 MeV per nucleon,

and in Figure 5, plotted against the bombarding energy, Elab in MeV per

nucleon at a grazing impact parameter equal to the sum of the atomic radii

of the target and projectile.
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Figure 4: 208Pb +208 Pb collision at 100MeV
n

. Scattering angle percent differ-
ence vs. impact parameter.
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Figure 5: 208Pb +208 Pb collision at b = Rp + Rt. Scattering angle percent
difference vs. bombarding energy.

The dashed line represents the Aguiar method to order
(
v
c

)4
, allowed

to this order because of the equal charge to mass ratio as shown in [5], and

the solid line represents the Matzdorf method. From Figure 4, it is evident

that the Matzdorf method compares more closely to the non-relativistic

scattering angle than the method of Lagrangian expansion by Aguiar.

Because of the known, small contribution from the magnetic field, the

smaller deviation from the non-relativistic angle in Matzdorf’s method can

be attributed to their non-inclusion of the magnetic terms, while the
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Darwin Lagrangian relies heavily on the magnetic field. Figure 4 also shows

that the scattering angle % difference increases as b increases, but the

percent caps at about ∼ 7% for Aguiar’s method; and caps at about ∼ 5%

for Matzdorf’s method. This cap in the percentage is an intuitive result

because at larger impact parameters, the defection angle decreases for both

methods as well as the Rutherford classical scattering at approximately the

same rate after small impact parameters. Therefore the percent difference

should cap asymptotically as b→∞.

In Figure 5 it is clear that both methods increasingly deviate from

the Rutherford classical scattering angle as the bombarding energy

increases. This is perfectly reasonable to expect, as retardation and

relativistic corrections cause substantial deviations from the classical

solutions as we approach the relativistic domain. Once again, this figure

shows that the Aguiar method exceeds the percent difference in the

scattering angle as compared to that of the Matzdorf method. This is most

likely due to Aguiar’s consideration of relativistic mass but reduced

consideration of retardation associated with this method.

Next, a comparison is made to the classical differential cross section,(
dσ
dΩ

)(c)
displayed in the same method as above in the form of a percent

difference between the two methods and the classical cross section. These

are displayed in Figure 6 and Figure 7 where the former shows a

208Pb +208 Pb collision at 100 MeV per nucleon plotted against the

scattering angle, while the latter shows the same Lead collisions plotted
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against the laboratory energy at a grazing impact parameter.
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Figure 6: 208Pb +208 Pb collision at 100MeV
n

. Differential scattering cross
section percent difference vs. scattering angle.
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Figure 7: 208Pb +208 Pb collision at b = Rp +Rt. Differential scattering cross
section percent difference vs. bombarding energy.

It is clear from Figure 6 that the two methods’ solutions for the

differential scattering cross section are quite far apart from one another

when they are plotted against the scattering angle (∼ 4.5%). Once again,

the dashed line represents Aguiar’s method, and the solid line represents

Matzdorf’s method. It should be noted that each method becomes more

like the classical scattering as the scattering angle is increased. This is can

be accounted for by a close look at the classical differential scattering cross

section. The differential scattering cross section, being proportional to the
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probability that the particle is scattered to a differential solid angle from a

differential cross sectional area, should decrease very rapidly as the

scattering angle increases. More succinctly, you would expect fewer

deflections to high angles, and more deflections at low angles. However, at

higher energies, you would expect smaller deflection angles for the

aggregate, regardless of the impact parameter, but it would still drop off

rapidly. We would therefore expect the higher classical differential

scattering cross sections for higher scattering angles than that of the

relativist methods, but both should approach zero as the deflection angle

increases. This should manifest itself as a negative slope on the percent

difference vs. angle plot. As is evident by the data from Figure 6, the curve

does indeed drop off as the scattering angle increases, which is exactly what

we should expect.

Similar to Figure 5, Figure 7 shows that both methods increasingly

depart from the classical differential cross section as the laboratory energy

is raised. As before, Matzdorf’s method does not deviate from the classical

differential as much as Aguiar’s method for both Figure 6 and 7.

For all the numeric solutions presented for symmetric collisions, both

methods are in close proximity to one another, and agree well with the

classical regime at low energies. Matzdorf’s solution is far more close to the

classical Rutherford solution in all of the figures presented.
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6.2 Analytic Results

As both methods are presented with two possible solutions: a more

involved solution that requires a numerical method approach (the previous

section), and a less involved analytic solution, it seems prudent to also

compare these more time efficient methods to see if they hold muster. First

we examine the differential scattering cross section produced by each

method for the same symmetric collision of 208Pb +208 Pb at a grazing angle

b = Rp +Rt. This is a pure solution graphic, not a comparison to the

classical differential scattering cross section in the form of a percent as

before.
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Figure 8: 208Pb +208 Pb collision at b = Rp +Rt. Differential scattering cross
section vs. bombarding energy.

Figure 8 shows that both methods agree very closely at low energies

and separate only slightly at higher energies. It should be noted that the

vertical axis, which displays the differential scattering cross section, is

logarithmic. This can make large differences seem smaller, but the two

methods are in relatively good agreement.

The analytic formulas proposed by both papers are valid for light

particles scattering off a heavy target. In Figure 9 the differential scattering

cross section percent difference is plotted against the scattering angle for
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the asymmetric collision of 17O +208 Pb. Due to the asymmetry, Aguiar’s

method is only valid up to order of
(
v
c

)2
.
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Figure 9: 17O+208Pb collision at 100MeV
n

. Differential scattering cross section
percent difference vs. scattering angle.

Figure 9 shows three different lines. The dashed line represents

Aguiar’s analytic solution (65), while the solid line represents Aguiar’s

exact, numeric solution up to the order of
(
v
c

)2
. These are both in excellent

agreement with one another. The dotted line represents Matzdorf’s analytic

equations (51). Not shown in this graphic is the Matzdorf numeric exact

result, which would lie on-top of the dotted line, and would be
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indistinguishable from Matzdorf’s solutions at this resolution; it agrees

within 0.1% of that of the exact result.

It is clear from Figure 9 that the two methods are in much better

agreement with one another for light on heavy particle collisions. Not only

do the analytic methods presented by Aguiar and Matzdorf agree well with

one another, they also agree quite well with the exact result of the numeric

solutions, the consequences of which are discussed in Chapter 7.

6.3 Analysis of the Distance of Closest Approach

We first start by defining half the distance of closest approach in a

head on non-relativistic collision, a0 , which is a useful scattering parameter

characterized by:

a0 =
qpqt
µv2

(75)

To begin a study of the distance of closest approach, it is convenient

to first employ the use of a helpful parameterization common to orbital

motion problems:

x =a0(coshω + ε)

y =a0

√
ε2 − 1 sinhω

z =0

(76)

where ω is the angular frequency and ε is the eccentricity which is related

to the scattering angle by ε = sin−1( θ
2
). Then if we wish to express this
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parameterization in terms of the radial distance r =
√
x2 + y2 + z2, then

we arrive at r = a0(ε coshω + 1). Then by solving v = dr
dt

= dr
dω
· dω
dt

and

rearranging for t, we attain the useful time parameterization:

t =
a0

v
(ε sinhω + ω) (77)

Next we move this parameterization into the relativistic domain by

replacing all instances of a0 with a where a = a0
γ

. We can finally introduce

the relativistic distance of closest approach bc associated with the impact

parameter by:

bc = a+
√
a2 + b2 (78)

With this, we calculate the impact parameter by solving Matzdorf’s

equations (51) and the definition of k(b) for the distance of closest

approach, labeled bAnalyt and compare that to the relativistic distance of

closest approach in a similar manner as the prior figures, in the form of a

percent difference. These are displayed in Figure 10.
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Figure 10: Multiple different collisions at b = Rp + Rt. Distance of closest
approach percent difference vs. bombarding energy.

The solid line represents a p +208 Pb collision (p is a single proton),

the dashed line represents a 17O +208 Pb collision, the dotted line represents

a 40Ca +208 Pb collision, and the dashed-dotted line represents the

symmetric 208Pb +208 Pb collision; all of which were evaluated at a grazing

impact parameter. The accuracy of these collisions is excellent even for the

severely asymmetric case. Equation (78) therefore, produces a result very

close to the “exact” result, all at or below the accuracy of 1% or less,

further showing the validity of Matzdorf’s methods.
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Chapter 7

CONCLUSIONS

In this paper, we have reviewed methods for solving for the

relativistic motion of heavy-on-heavy and light-on-heavy ion collisions.

These collisions were evaluated over a spread of impact parameters,

bombardment energies, and scattering angles; and from these the

differential scattering cross section and the relativistic distance of closest

approach were calculated and plotted.

Through a thorough investigation of the relativistic effects manifested

in the form of the magnetic interactions included in the Coulomb

scattering, the retardation of the Coulomb electric potential, and the

change in mass due to relativistic speeds, we have reached a a few

important interpretations from our results. The solutions to the scattering

angle and differential scattering cross section presented by Matzdorf [5] as a

solution to the covariant equations of motion are shown to be markedly

better than the method of Lagrangian expansion by orders of v
c

outlined by

Aguiar et al. [6]. The covariant equation solution accounts for retardation

very well, while the Lagrangian expansion does not. The effects of

retardation being quite large in relativistic motion, this is something that

needs to be considered in high energy elastic scattering. In addition to this,

the inclusion of magnetic interaction terms proves to be unnecessary, as its

contributions are negligible to the motion of relativistic ions. This could be
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further reason for the superiority of the Matzdorf method, as the

Lagrangian expansion includes the Darwin Lagrangian, which is heavily

influenced by magnetic terms.

Further, the Matzdorf’s analytic solutions were found to be in good

enough agreement with the corresponding numeric solutions of equations

(43) and (47). The differential scattering cross section has been shown to

be best described using equation (52). The scattering angle is solved most

efficiently using equation (51). Lastly, the relativistic distance of closest

approach, which is described in equation (78), in addition to the time

dependence parameterization of the trajectory, given by equations (76), are

shown to agree very well with one another.

In summation, the solution of the covariant equation of a charged

particle moving in the external electromagnetic field of another charged

particle method for accounting for the elastic scattering of heavy ions is

more effective than the method of Lagrangian expansion. In addition, the

analytic formulation following the covariant equation solution method is

sufficient for all circumstances tested. Therefore, the more computationally

involved numerical method is not necessary even for the severely

asymmetric cases.
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