Musical Acoustics

Lecture 1 Basic Mathematics

Scientific Notation

An ordinary penny contains about $20,000,000,000,000,000,000,000$ atoms. The average size of an atom is about 0.00000003 centimeters across.

The length of these numbers in standard notation makes them awkward to work with.

Scientific notation is a shorthand way of writing such numbers.

Scientific Notation

Method to express really big or small numbers.
Format is Mantissa $\quad x \quad$ Base Power

$.02 \times 10^{23}$

We just move the decimal point around. 602000000000000000000000

Scientific Notation

In scientific notation the number of atoms in a penny is 2.0×10^{22}, and the size of each atom is 3.0×10^{-8} centimeters across.

The sign of the exponent tells which direction to move the decimal. A positive exponent means move the decimal to the right, and a negative exponent means move the decimal to the left.

Exponents (or powers)

$\square a^{1}=a$
$\square a^{2}=a \times a$
$\square a^{3}=a \times a \times a$
$\square a^{4}=a \times a \times a \times a$
ㅁ....
$\square a^{n}=a \times a \times a \times a \times \ldots \times a$ (n times) (base a, exponent n)

Positive Exponents

- $10^{1}=10$
- $10^{2}=10 \times 10=100$
- $10^{3}=10 \times 10 \times 10=1000$
- $10^{4}=10 \times 10 \times 10 \times 10=10,000$

Negative Exponents

- $10^{-1}=1 / 10=0.1$
- $10^{-2}=1 / 100=0.01$
- $10^{-3}=1 / 1000=0.001$
- $10^{-4}=1 / 10000=0.0001$

Scientific Notation

\square We use the idea of exponents to make it easier to work with large and small numbers.

ㅁ $10,000=1 \times 10^{4}$
\square Count places to the left until there is one number to the left of the decimal point.

ㅁ $250,000=2.5 \times 10^{5}$

ㅁ 230,000 =?
ㅁ $35,000=?$

Scientific Notation

$\square 0.00006=6 \times 10^{-5}$
$\square 0.00045=4.5 \times 10^{-4}$
\square Count places to the right until there is one number to the left of the decimal point
$\square 0.003=$?
$\square 0.0000025=?$

Multiplying with Scientific Notation

\square Add the Exponents
$\square 10^{2} \times 10^{3}=10^{5}$
$\square 100 \times 1000=100,000$

Multiplying with Scientific Notation
$\left(2.3 \times 10^{2}\right)\left(3.3 \times 10^{3}\right)$
$\square 230 \times 3300$
\square Multiply the Coefficients

$$
2.3 \times 3.3=7.59
$$

\square Add the Exponents

$$
10^{2} \times 10^{3}=10^{5}
$$

$\square 7.59 \times 10^{5}$
\square 759,000

Dividing with Scientific Notation

\square Subtract the Exponents
$\square 10^{4} / 10^{3}=10^{1}$
$\square 10000 / 1000=10$

Dividing with Scientific Notation

$\left(3.3 \times 10^{4}\right) /\left(2.3 \times 10^{2}\right)$
$\square 33000 / 230=143.4783$
\square Divide the Coefficients
$3.3 / 2.3=1.434783$
\square Subtract the Exponents
$10^{4} / 10^{2}=10^{2}$
ㅁ 1.434783×10^{2}
ㅁ 143.4783

Practice

1) Express 0.0000000902 in scientific notation.

Where would the decimal go to make the number be between 1 and 10?

9.02

The decimal was moved how many places?
8
When the original number is less than 1 , the exponent is negative.

$$
9.02 \times 10^{-8}
$$

2) Write 28750.9 in scientific notation.

1. 2.87509×10^{-5}
2. 2.87509×10^{-4}
3. 2.87509×10^{4}
4. 2.87509×10^{5}
3) Express 1.8×10^{-4} in decimal notation.
4) Express 4.58×10^{6} in decimal notation.
5) Write $\left(2.8 \times 10^{3}\right)\left(5.1 \times 10^{-7}\right)$ in scientific notation.
1. 14.28×10^{-4}
2. 1.428×10^{-3}
3. 14.28×10^{10}
4. 1.428×10^{11}
6) Write 531.42×10^{5} in scientific notation.
1. $.53142 \times 10^{2}$
2. 5.3142×10^{3}
3. 53.142×10^{4}
4. 531.42×10^{5}
5. 53.142×10^{6}
6. 5.3142×10^{7}
7. $.53142 \times 10^{8}$

7) Divide in Scientific Notation

$\square\left(4.6 \times 10^{4}\right) /\left(5.5 \times 10^{3}\right)=$?
$\square\left(3.1 \times 10^{3}\right) /\left(4.2 \times 10^{5}\right)=?$

Significant figures

- There are 2 kinds of numbers:
- Exact: the amount of money in your account. Known with certainty.
- Approximate: weight, height-anything MEASURED. No measurement is perfect.

When a measurement is recorded only those digits that are measured are written down.

When to use Significant figures

- If you measured the width of a paper with your ruler you might record 21.7 cm .

To a mathematician 21.70, or 21.700 is the same.
But, to a scientist 21.7 cm and 21.70 cm is NOT the same

If you used an ordinary ruler, the smallest marking is the mm , so your measurement has to be recorded as 21.7 cm .

How do I know how many Sig Figs?

- If you used an ordinary ruler, the smallest marking is the mm , so your measurement has to be recorded as 21.7 cm .
- Rule: All digits are significant starting with the first non-zero digit on the left.
- Exception to rule: In whole numbers that end in zero, the zeros at the end are not significant.

How many sig figs?

- 7
- 40
- 0.5
- 0.00003
- 7×10^{5}
- 7,000,000

How do I know how many Sig Figs?

- $2^{\text {nd }}$ Exception to rule: If zeros are sandwiched between non-zero digits, the zeros become significant.
- 3rd Exception to rule: If zeros are at the end of a number that has a decimal, the zeros are significant.

How many sig figs?

- 1.2
- 2100
- 56.76
- 4.00
- 0.0792
- 7,083,000,000

How many sig figs?

- 3401
- 2100
- 2100.0
- 5.00
- 0.00412
- 8,000,050,000

Calculations with sig figs

- Rule: When adding or subtracting measured numbers, the answer can have no more places after the decimal than the LEAST of the measured numbers.

Examples:

- $2.45 \mathrm{~cm}+1.2 \mathrm{~cm}=3.65 \mathrm{~cm}$,
- Round off to $=3.7 \mathrm{~cm}$
- $7.432 \mathrm{~cm}+2 \mathrm{~cm}=9.432$ round to $\rightarrow 9 \mathrm{~cm}$

Multiplication and Division

- Rule: When multiplying or dividing, the result can have no more significant figures than the least reliable measurement.

Examples

- $56.78 \mathrm{~cm} \times 2.45 \mathrm{~cm}=139.111 \mathrm{~cm}^{2}$
- Round to $\rightarrow 139 \mathrm{~cm}^{2}$
- $75.8 \mathrm{~cm} \times 9 . \mathrm{cm}=?$

