Musical Acoustics Lecture 13 Timbre / Tone quality

Waves: review

- As the tuning fork vibrates, a succession of compressions and rarefactions spread out from the fork
- A <u>harmonic</u> (sinusoidal) curve can be used to represent the longitudinal wave
 - Crests correspond to compressions and troughs to rarefactions
 - only <u>one single harmonic</u> (pure tone) is needed to describe the wave

$$y = A\sin\left(2\pi\frac{x}{\lambda}\right)$$

$$y = A\sin\left(2\pi\frac{x}{\lambda} + \delta\right)$$

Adding waves: Beats

Superposition of 2 waves with slightly different frequency

The amplitude changes as a function of time, so the intensity of sound changes as a function of time. The beat frequency (number of intensity maxima/minima per second): $f_{beat} = |f_a - f_b|$

Factors Affecting Timbre

- 1. Amplitudes of harmonics
- 2. Transients (A sudden and brief fluctuation in a sound. The sound of a crack on a record, for example.)
- 3. Inharmonicities
- 4. Formants
- 5. Vibrato
- 6. Chorus Effect

Two or more sounds are said to be in unison when they are at the same pitch, although often an OCTAVE may exist between them.

Complex Periodic Waves

- Both the triangle and square wave cross zero at the beginning and end of the interval.
- We can repeat the signal: It is "Periodic"
- Periodic waves can be decomposed into a sum of harmonics or sine waves with frequencies that are multiples of the biggest one that fits in the interval.

Synthesis of complex waves

Harmonics higher than the fundamental are often called overtones.

same amplitudes same phases

same amplitudes different phases

Synthesis of complex waves

Synthesis of complex waves

building a triangle wave (Fourier decomposition)

Mode of vibration	Frequency name (for any type of overtone)	Frequency name (for harmonic overtones)
First	Fundamental	First harmonic
Second	First overtone	Second harmonic
Third	Second overtone	Third harmonic
Fourth	Third overtone	Fourth harmonic

N=1, A=1 N=2, A=1/2

Component

N=3, A=1/3

N=4, A=1/4

Adding in higher frequencies makes the triangle tips sharper and sharper

→ Harmonic series N=5, A=1/5 a sum of sine and cosine waves which have frequencies f, 2f, 3f, 4f, 5f, Any periodic wave can be decomposed in a Fourier series

Musical Acoustics, C. Bertulani

Sum Wave

Fourier's theorem

• Fourier's theorem says any complex wave can be made from a sum of single frequency waves.

The lowest frequency component of a wave is equal to $1/P_{repeat}$, the reciprocal of the repeat period P_{repeat}

Musical Acoustics, C. Bertulani

Synthesis of complex waves

building a square wave

- Sharp bends imply high frequencies
- Leaving out the high frequency components smoothes the curves
- Low pass filters remove high frequencies and makes the sound less shrill or bright

Sum Wave N=9, A=1/9

Musical Acoustics, C. Bertulani

Synthesis of complex waves

building a tringle wave with phase shifts

To get a triangle or square wave we only add sine waves that $3f_1$ fit exactly in one period. They cross zero at the beginning $5f_1$ and end of the interval.

These are harmonics.

Synthesis with missing fundamental

2nd and 3rd harmonics

(b)

What happens if we vary the phase of the components we used to make the triangle wave?

Shape of wave is changed even though frequency spectrum is the same

Do we hear phase?

• Helmholtz and Ohm argued that our ear and brain are only sensitive to the frequencies of sounds. Timbre is a result of frequency mix.

- •There are exceptions to this (e.g., low frequencies)
- •There are two major psycho-acoustic models
- Place theory each spot in basal membrane is sensitive to a different frequency
- Timing rate of firing of neurons is important and gives us phase information
- What is the role of each in how our ear and brains process information? *Open questions remain on this.*

Sound spectrum

- A complex wave is really a sum of component frequencies.
- A frequency spectrum is a graph that shows the amplitude of each component frequency in a complex wave.

Example: What is the lowest frequency component of the following waveform?

Repeat period P =10 ms =0.010 sec

$$f = 1/P = 100. Hz$$

Sound spectrum

Partial is a frequency component in a spectrum which is not an integer multiple of the fundamental, that is, it is an **inharmonic** overtone. However, in some texts, partial refers to both harmonic and inharmonic overtones. Bells, and other percussion instruments, have rich partials in their spectra. **Examples:** First and Second Harmonics

Musical Acoustics, C. Bertulani

First and Third Harmonics

First and Second Harmonics

Musical Acoustics, C. Bertulani

First and Third Harmonics

Triangle Wave

A_N = 1, 0, 1/9, 0, 1/25, 0, 1/49, odd N only

Square Wave

A_N = 1, 0, 1/3, 0, 1/5, 0, 1/7, odd N only

Sawtooth Wave

 $A_N = 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, all N$

Pulse Train (Series of Pulses)

 $A_{N} = 1, 1, 1, 1, 1, 1, ... all N$