## Musical Acoustics

# Lecture 17 Interval, Scales, Tuning and Temperament - II 

## Problems with Pythagorean and Just Scales

- Songs are not transposable

1 - E.g., a song is written in the key of $C$ (meaning that it starts with the note, $C$ ).
2 - change it so that it is now written in the key of F.
$\rightarrow$ it wouldn' $\dagger$ sound right.
3 - it wouldn' $\dagger$ be as easy as transposing all the notes in the song up by three notes ( $C \rightarrow F, F \rightarrow B$, etc.) because of the difference in intervals between various notes. Example: take notes $C$ and $F$ and rewrite them in $F$ First note ( $C \rightarrow F$ ): 9/8•9/8•256/243 = 1.33.
$\rightarrow$ If song is to remain the same, every note should be multiplied by 1.33
But $(F \rightarrow B): 9 / 8 \cdot 9 / 8 \cdot 9 / 8=1.42$.
Just scale has same problem.
Note change Frequency ratio

| $\mathrm{C} \rightarrow \mathrm{D}$ | $9 / 8$ |
| :--- | :---: |
| $\mathrm{D} \rightarrow \mathrm{E}$ | $9 / 8$ |
| $\mathrm{E} \rightarrow \mathrm{F}$ | $256 / 243$ |
| $\mathrm{~F} \rightarrow \mathrm{G}$ | $9 / 8$ |
| $\mathrm{G} \rightarrow \mathrm{A}$ | $9 / 8$ |
| $\mathrm{~A} \rightarrow \mathrm{~B}$ | $9 / 8$ |
| $\mathrm{~B} \rightarrow \mathrm{C}$ | $256 / 243$ |

## Sharps and flats

Seven white keys from $C_{4}$ to $B_{4}$ represent the major diatonic scale
Black keys are intermediate tones. E.g., black key in between $D_{4}$ and $E_{4}$ is higher frequency (sharper) than $D_{4}$ and lower frequency (flatter) than E4: "D4 sharp" ( $D_{4}{ }^{\#}$ ) or "E4 flat" $\left(E_{4}{ }^{\text {b }}\right)$.

Five sharps or flats + seven notes = full chromatic scale.


## Sharps and flats in Pythagorean and Just Scales

- Attempt to rescue Pythagorean and Just Scales:
add extra notes (sharps and flats) between whole tones so that there were always choices for notes between the whole tones if needed for transposing.

Going from $C$ to $F$ or from $F$ to $B$ would be an increase of five semitones in both cases.

There is still the problem of the two different whole tone intervals in the Just scale.

In both scales, there is the problem | Note change | Frequency ratio |
| :---: | :---: |
| $\mathrm{C} \rightarrow \mathrm{D}$ | $9 / 8$ |
| $\mathrm{D} \rightarrow \mathrm{E}$ | $10 / 9$ |
| $\mathrm{E} \rightarrow \mathrm{F}$ | $16 / 15$ | that the semitone intervals are not exactly half the interval of the

$\mathrm{F} \rightarrow \mathrm{G}$
9/8
$\mathrm{G} \rightarrow \mathrm{A} \quad 10 / 9$ whole tones
$\mathrm{A} \rightarrow \mathrm{B} \quad 9 / 8$
$B \rightarrow C$
$16 / 15$

## Solution: Equal Temperament Scale

Include the seven notes of the previous scales, adding five sharps (for a total of 12 semitones), but placing them so that the ratio of the frequencies of any two adjacent notes is the same.

Multiplying the frequency of a note in the scale by a certain number $r$ gives the frequency of the next note. Multiplying the frequency of this second note by the same number gives the frequency of the note following the second, and so on.

Going from a $C$ to another $C$, means 12 multiplications:

$$
\text { r.r.r.r.r.r.r.r.r.r.r.r }=2
$$

## Equal Temperament Scale

$$
\begin{aligned}
& \text { r.r.r.r.r.r.f.r.r.f.r.r }=2 \\
& \mathrm{r}^{12}=2 \quad \mathrm{r}=\sqrt[12]{2}=1.05946
\end{aligned}
$$

Exercise: The note, $D$, is two semitones higher than $C$. If $C_{6}$ is 1046.5 Hz , what is $D_{7}$ on the Equal Temperament Scale?

## Equal Temperament Scale

$$
\begin{aligned}
& \text { r.r.r.r.r.r.r.r.r.f.r.r }=2 \\
& \mathrm{r}^{12}=2 \quad \mathrm{r}=\sqrt[12]{2}=1.05946
\end{aligned}
$$

Exercise: The note, $D$, is two semitones higher than $C$. If $C_{6}$ is 1046.5 Hz , what is $D_{7}$ on the Equal Temperament Scale?

Solution: $D_{7}$ is one octave above $D_{6}$, so if $D_{6}$ can be found then its frequency just needs to be doubled. Since $D_{6}$ is two semitones higher than $C_{6}$, its frequency must be multiplied twice by the Equal temperament multiplier.

$$
\begin{aligned}
D_{6} & =1046.5 \mathrm{~Hz} \times(1.05946)^{2}=1174.7 \mathrm{~Hz} \\
& \rightarrow D_{7}=2 D_{6}=2(1174.7) \mathrm{Hz}=2349.3 \mathrm{~Hz}
\end{aligned}
$$

Alternatively,
$D_{7}=1046.5 \mathrm{~Hz} \times(1.05946)^{14}=2349.3 \mathrm{~Hz}$

## Equal Temperament Scale

In Western music the Equal Temperament Scale is the most widely used. Its twelve semitones all differ in a ratio of $\sqrt[12]{2}$ from each adjacent semitone.

All notes of the major scale are separated by two semitones except for $E$ and $F$, and $B$ and $C$. These two pairs are separated by one semitone.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C}$ | $\mathbf{C}^{\#}$ | $\mathbf{D}$ | $\mathrm{D}^{\#}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathrm{~F}^{\#}$ | $\mathbf{G}$ | $\mathrm{G}^{\#}$ | $\mathbf{A}$ | $\mathrm{~A}^{\#}$ | $\mathbf{B}$ |

The \# indicates a "sharp."

## Equal Temperament Scale

$(\sqrt[12]{2})^{7}=1.498$ is $0.1 \%$ different from $3 / 2$ (the perfect fifth). Thus in the Equal Temperament scale, the seventh semitone note above any note will be close to a perfect fifth above it (sounds good).
$C$ sounds good with the $G$ above it, $D^{\#}$ also sounds just as good when played with the $A^{\#}$ above. The perfect fourth, occurs when two notes played together have a frequency ratio of $4 / 3$. Note that $(\sqrt[12]{2})^{5}=1.335$ ( $0.4 \%$ different from a perfect fourth).

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C}$ | $\mathbf{C}^{\#}$ | $\mathbf{D}$ | $\mathrm{D}^{\#}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathrm{~F}^{\#}$ | $\mathbf{G}$ | $\mathrm{G}^{\#}$ | $\mathbf{A}$ | $\mathrm{~A}^{\#}$ | $\mathbf{B}$ |

So the fifth semitone higher than any note will be higher by a virtual perfect fourth.


## Cents

- One cent is $1 / 100$ of an Equal Temperament semitone.
- 12 semitones per octave $\rightarrow$ one cent $=1 / 1200$ of an octave.
- Any two frequencies that differ by one cent will have the same frequency ratio $R_{1}$ cent.

$$
\mathrm{R}_{1 \text { cent }}^{1200}=2 \Rightarrow \mathrm{R}_{1 \mathrm{cent}}=2^{1 / 1200}=1.000578
$$

- Frequency ratio equivalent to two cents

$$
\mathrm{R}_{2 \mathrm{cent}}=\left(2^{1 / 1200}\right)\left(2^{1 / 1200}\right) \Rightarrow \mathrm{R}_{2 \mathrm{cent}}=2^{2 / 1200}
$$

- Frequency ratio of I cents

$$
\mathrm{R}_{\text {Icent }}=2^{\mathrm{I} / 1200}
$$

- Number of cents for a particular frequency ratio

$$
\log R_{I}=\log \left(2^{I / 1200}\right) \Rightarrow \log R_{I}=\frac{I}{1200} \log 2 \Rightarrow I=\frac{1200 \log R_{I}}{\log 2}
$$

## Cents

- A musician with a good ear can easily detect a mistuning of 5 cents and a 10 to 15 cent deviation from perfect intervals is enough to be unacceptable.

Just scale $\times$ Equal Temperament Scale

| Interval | Frequency <br> ratio | Frequency <br> ratio (cents) | Equal Temp. <br> scale (cents) |
| :---: | :---: | :---: | :---: |
| Octave | $2: 1$ | 1200 | 1200 |
| Fifth | $3: 2$ | 702 | 700 |
| Fourth | $4: 3$ | 498 | 500 |
| Major sixth | $5: 3$ | 884 | 900 |
| Major third | $5: 4$ | 386 | 400 |
| Minor sixth | $8: 5$ | 814 | 800 |
| Minor third | $6: 5$ | 316 | 300 |

Note the large deviations from ideal for the thirds and sixths.

## Example

- The perfect fifth is a frequency ratio of 1.5 . How many cents is this and how does it compare with the fifths of the Just, Pythagorean, and Equal Tempered scale?


## Example

- The perfect fifth is a frequency ratio of 1.5 . How many cents is this and how does it compare with the fifths of the Just, Pythagorean, and Equal Tempered scale?
- Solution:

$$
I=\frac{1200 \log R}{\log 2}=\frac{1200 \log (1.5)}{\log 2}=702 \mathrm{cents}
$$

Just scale:
Pythagorean scale: Equal Tempered scale:
identical
identical
2 cents less

## Comparison of scales

- Because of its equal intervals, the Equal Temperament scale makes transposing music very simple.
- Example: one can easily take a melody written in the key of $C$ and rewrite it in the key of $F$ by simply increasing every note's frequency by five semitones. This is a major advantage over the scales with unequal intervals.
- Although its octave is perfect and its fifth and fourth differ from the ideal by only 2 cents, the equal tempered sixths and thirds all differ from the ideal anywhere from 14 to 16 cents, clearly mistuned and noticeable by anyone with a good ear.


## Pythagorean scale vs. cents

| Note change | Frequency ratio | Notes | Frequency interval (cents) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C} \rightarrow \mathrm{D}$ | 9/8 | $\mathrm{C}_{\mathrm{i}}$ | 0 |
| $\mathrm{D} \rightarrow \mathrm{E}$ | 9/8 | D | 204 |
| $\mathrm{E} \rightarrow \mathrm{F}$ | 256/243 | E | 408 |
| $\mathrm{F} \rightarrow \mathrm{G}$ | 9/8 | F | 498 |
| $\mathrm{G} \rightarrow \mathrm{A}$ | 9/8 | G | 702 |
| $\mathrm{A} \rightarrow \mathrm{B}$ | 9/8 | A | 906 |
| $\mathrm{B} \rightarrow \mathrm{C}$ | 256/243 | B | 1110 |
| Pythagorean scale |  | $\mathrm{C}_{\mathrm{f}}$ | 1200 |
|  | $I=\frac{1200 \log R}{\log 2}$ | Pytha ratios | an scale int ressed in |

- Interval between $C_{i}$ and $G$ is 702 cents - a perfect fifth.
- Interval between D and A (906 cents - 204 cents $=702$ cents) is also a perfect fifth.
- Additive nature of the cents unit makes it easy to judge the quality of various intervals.


## Pythagorean scale vs. cents

An evaluation of the Pythagorean intervals. Note the abundance of perfect fifths and fourths, but also the very poorly tuned thirds.

Within the major scale, there are four perfect fifths and four perfect fourths (there are many more of both if the entire chromatic scale is used). However, the three major thirds differ by 22 cents ( 408 cents - 386 cents) from the perfect major

| Interval | Interval <br> name | Frequency <br> ratio (cents) |
| :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{C}_{\mathrm{f}}$ | Octave | 1200 |
| $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{G}$ | Fifth | 702 |
| $\mathrm{D} \rightarrow \mathrm{A}$ | Fifth | 702 |
| $\mathrm{E} \rightarrow \mathrm{B}$ | Fifth | 702 |
| $\mathrm{~F} \rightarrow \mathrm{C}$ | Fifth | 702 |
| $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{F}$ | Fourth | 498 |
| $\mathrm{D} \rightarrow \mathrm{G}$ | Fourth | 498 |
| $\mathrm{E} \rightarrow \mathrm{A}$ | Fourth | 498 |
| $\mathrm{G} \rightarrow \mathrm{C}_{\mathrm{f}}$ | Fourth | 498 |
| $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{E}$ | Major third | 408 |
| $\mathrm{~F} \rightarrow \mathrm{~A}$ | Major third | 408 |
| $\mathrm{G} \rightarrow \mathrm{B}$ | Major third | 408 |

This is the reason that Pythagoras felt the major third was dissonant.

## Pythagorean scale

Creates the greatest number of perfect fourths and fifths

Circle of fifths


All notes can be reached by going up (or down)
12 fifths or
12 fourths

$$
\begin{gathered}
(3 / 2)^{12}=129.7 \\
\text { but } \\
2^{7}=128, \\
\text { so }
\end{gathered}
$$

12 perfect fifths is
$7 \frac{1}{4}$ octaves

## syntonic comma, $\delta$

The minor third is a problem in the Pythagorean scale as well.

Going from $E$ to $G$ is an increase of 294 cents, but the perfect minor third,

| Notes | Frequency <br> interval (cents) |
| :---: | :---: |
| $\mathrm{C}_{\mathrm{i}}$ | 0 |
| D | 204 |
| E | 408 |
| F | 498 |
| G | 702 |
| A | 906 |
| B | 1110 |
| $\mathrm{C}_{\mathrm{f}}$ | 1200 |

So the Pythagorean major third is 22 cents sharp and the minor third is flat by the same amount.

This 22-cent interval is actually 21.5 cents (due to rounding errors) and is known as the syntonic comma, $\delta$.

| Interval | Frequency <br> ratio | Frequency <br> ratio (cents) | Equal Temp. <br> scale (cents) |
| :---: | :---: | :---: | :---: |
| Octave | $2: 1$ | 1200 | 1200 |
| Fifth | $3: 2$ | 702 | 700 |
| Fourth | $4: 3$ | 498 | 500 |
| Major sixth | $5: 3$ | 884 | 900 |
| Major third | $5: 4$ | 386 | 400 |
| Minor sixth | $8: 5$ | 814 | 800 |
| Minor third | $6: 5$ | 316 | 300 |

## Comparison of Pythagorean, Just, and Equal Temperament scales on a scale of Cents



## Musical intervals in various tunings

| Interval | Tempered |  | Just |  | Pythagorean |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ratio | Cents | Ratio | Cents | Ratio | Cents |
| Octave | 2.000 | 1200 | $2 / 1=2.000$ | 1200 | 2.000 | 1200 |
| Fifth | 1.498 | 700 | $3 / 2=1.500$ | 702 | 1.500 | 702 |
| Fourth | 1.335 | 500 | $4 / 3=1.333$ | 498 | 1.333 | 498 |
| Major third | 1.260 | 400 | $5 / 4=1.250$ | 386 | 1.265 | 408 |
| Minor third | 1.189 | 300 | $6 / 5=1.200$ | 316 | 1.184 | 294 |
| Major sixth | 1.682 | 900 | $5 / 3=1.667$ | 884 | 1.687 | 906 |
| Minor sixth | 1.587 | 800 | $8 / 5=1.600$ | 814 | 1.580 | 792 |

## Meantone

| Attempt: compromise the position of the $E$. |  | Notes | Frequency interval (cents) |  |
| :---: | :---: | :---: | :---: | :---: |
| Decreasing it a bit would help the consonanc of both the major third ( $C$ to $E$ ) and the minor third ( $E$ to $G$ ). |  | C $\mathrm{C}_{\mathrm{i}}$ | 0 |  |
|  |  | D | 204 |  |
|  |  | E | 408 |  |
|  |  | F | 498 |  |
| Similar adjustments made to other notes in the scale are known as meantone tuning. |  | GAB | 702 |  |
|  |  |  | 906 |
|  |  | B | 1110 |
|  |  | $\mathrm{C}_{\text {f }}$ | 1200 |
| There are different types of meantone |  |  |  |  |
| tuning, but the most popular appears to be quarter-comma | Interval |  | Frequency <br> ratio | Frequency ratio (cents) | Equal Temp. scale (cents) |
| meantone tuning. | Octave |  | 2:1 | 1200 | 1200 |
|  | Fifth | $3: 2$ | 702 | 700 |
|  | Fourth | 4:3 | 498 | 500 |
|  | Major sixth | 5:3 | 884 | 900 |
| except for $C$, is adjusted by | Major third | 5:4 | 386 | 400 |
| either 1/4, 2/4, 3/4, 4/4, or 5/4 | Minor sixth | 8:5 | 814 | 800 |
| of the syntonic comma. | Minor third | 6:5 | 316 | 300 |

Quarter-comma meantone tuning

Summary of meantone tunnings: Meantone tuning:
Decreasing $C$ a bit to help the consonance of both the major third ( $C$ to $E$ ) and the minor third ( $E$ to $G$ ).

Similar adjustments made to other notes in the scale.

Quarter-comma meantone tuning. In this version, every note, except for $C$, is adjusted by either $1 / 4,2 / 4,3 / 4,4 / 4$, or $5 / 4$ of the syntonic comma.

Quarter-comma Meantone adjustment

| C | none |
| :---: | :---: |
| D | $-\frac{2}{4} \delta$ |
| E | $-\delta$ |
| F | $+\frac{1}{4} \delta$ |
| G | $-\frac{1}{4} \delta$ |
| A | $-\frac{3}{4} \delta$ |
| B | $-\frac{5}{4} \delta$ |
| C | none |



