## Musical Acoustics

## Lecture 2 <br> Physical Quantities

## International System of Units

Length
Mass
Time
Electric current
Temperature
Amount of substance
Sound intensity
meter [m]
kilogram [kg]
second [s] ampere [A]
Kelvin [K]
mole [mol]
bel
[B]

## Metric Prefixes (Big)

| - $10^{24}$ | yotta | Y |
| :--- | :--- | :--- |
| - $10^{21}$ | zetta | Z |
| - $10^{18}$ | exa | E |
| - $10^{15}$ | peta | P |
| - $10^{12}$ | tera | T |
| - $10^{9}$ | giga | G |
| - $10^{6}$ | mega | M |
| - $10^{3}$ | kilo | K |
| - $10^{2}$ | hecto | h |
| - $10^{1}$ | deka | da |

## Metric Prefixes (Small)

- $10^{-1}$ deci
- $10^{-2}$ centi
- $10^{-3}$ milli
- $10^{-6}$ micro
- 10-9 nano
d
C
- $10^{-12}$ pico
- 10-15 femto
- 10-18 atto
m
- 10-21 zepto z
- 10-24 yocto y


## Meter is the Unit of Length

- The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792458 of a second.
- The meter was intended to equal $10^{-7}$ or one tenmillionth of the length of the meridian through Paris from pole to the equator.
- The first prototype was short by 0.2 millimeters because researchers miscalculated the flattening of the earth due to its rotation.
- Platinum-iridium bar was replaced as a unit to this length.


## Kilogram is the Unit of Mass

- A kilogram is equal to the mass of the international prototype of the kilogram.
- At the end of the 18th century, a kilogram was the mass of a cubic decimeter of water. In 1889, scientists made the international prototype of the kilogram out of platinumiridium.


## Liter is a Volume Unit

- A liter (abbreviated either 1 or $L$ ) is equal to $1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$

- Minute
$\min$
$1 \mathrm{~min}=60 \mathrm{~s}$
- Hour
h
$1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$
- Day
d
$1 d=24 h=86,400 s$
- Second can be abbreviated " (a double tick).
- Minute can be abbreviated ' (a single tick).


## Temperature

- The Kelvin, unit of thermodynamic temperature, is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water (i.e. when water, ice and vapor coexist).
- Temperature $T$, is commonly defined in terms of its difference from the reference temperature $T_{0}=273.15 \mathrm{~K}$, the ice point.
- This temperature difference is called a Celsius temperature, symbol $t$, and is defined by the quantity equation

$$
t=T-T_{0}
$$

## Mole is the Unit of Amount of Substance

- A mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 12 gram of carbon 12. Moles of other substances are obtained by comparing to this amount of carbon.
- "Avogadro's Number" is an honorary name attached to the calculated value of the number of atoms, molecules, etc. in a gram molecule of any chemical substance.
- 12 grams of pure carbon, whose molecular weight is 12 , will contain $6.023 \times 10^{23}$ molecules.


## Conversion Table

| METRIC TO ENGLISH |  | ENGLISH TO METRIC |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| From Metric | To English | Multiply by | From English | To Metric | Multiply by |
|  |  |  |  |  |  |
| meters | yards | 1.09 | yards | meters | 0.91 |
| meters | feet | 3.28 | feet | meters | 0.30 |
| centimeters | inches | 0.39 | inches | centimeters | 2.54 |
| kilometers | miles | 0.62 | miles | kilometers | 1.61 |
| grams | ounces | 0.035 | ounces | grams | 28.35 |
| kilograms | pounds | 2.20 | pounds | kilograms | 0.45 |
| liters | quarts | 1.06 | quarts | liters | 0.95 |
| liters | gallons | 0.26 | gallons | liters | 3.78 |

Example: Use of the Prefixes for Mass

- Kilogram
- Gram
- Milligram
- Microgram
- Nanogram
- Picogram
- Femtogram



## Density

$$
\rho=\frac{M}{V} \quad\left(\mathrm{~kg} / \mathrm{m}^{3}\right)
$$

| Substance | $\boldsymbol{\rho}\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$ | Substance | $\boldsymbol{\rho}\left(\mathbf{k g} / \mathbf{m}^{3}\right)$ |
| :--- | :---: | :--- | :---: |
| Ice | $0.917 \times 10^{3}$ | Water | $1.00 \times 10^{3}$ |
| Aluminum | $2.70 \times 10^{3}$ | Glycerin | $1.26 \times 10^{3}$ |
| Iron | $7.86 \times 10^{3}$ | Ethyl alcohol | $0.806 \times 10^{3}$ |
| Copper | $8.92 \times 10^{3}$ | Benzene | $0.879 \times 10^{3}$ |
| Silver | $10.5 \times 10^{3}$ | Mercury | $13.6 \times 10^{3}$ |
| Lead | $11.3 \times 10^{3}$ | Air | 1.29 |
| Gold | $19.3 \times 10^{3}$ | Oxygen | 1.43 |
| Platinum | $21.4 \times 10^{3}$ | Hydrogen | $8.99 \times 10^{-2}$ |
| Uranium | $18.7 \times 10^{3}$ | Helium | $1.79 \times 10^{-1}$ |

## Galileo Galilei



Constancy of period of pendulum
Showed that objects fall at the same rate independent of mass Suggests that physical laws of the heavens are the same as those on Earth
Primitive thermometer
Study of sound and vibrating strings
distance for falling object increases as square of time builds a telescope
Observes the phases of Venus
Observes moons of Jupiter
Observes craters on the moon
Observes stars in the Milky Way
Observes structures around Saturn
Hydrostatics
Principle of inertia
Theory of tides Galilean relativity Support for Copernicus' heliocentric theory Motion and friction

Then he died in house arrest due to religious intolerance of his time (he dared to claim that the Earth was not the center of the Universe).

## Galileo's father

- Vincenzo Galilei was born in Florence. He made his living as a lutenist, composer, theorist, singer, and teacher.
- Published a number of books of musical scores for the lute and several books on musical theory.
- He combined the practice and theory of music. Since antiquity, the theory of music had consisted of a mathematical discussion of harmony, in other words what are the mathematical ratios of the lengths of strings producing consonances, and how does one divide the octave?
- It had always been thought that not only was the ratio of lengths of two strings sounding an octave 2:1, but that so also was the ratio of the tensions of strings of equal lengths tuned an octave apart.
- Galilei showed that this is not the case: the ratio of tensions is 4:1. He found that ratio by hanging weights from strings.
- Galileo probably helped with these experiments.


## APPENDIX - Trigonometry Pythagoras ( 570 BC-495 BC)

 Mathematician, Philosopher, Inventor, etc.According to legend, the way Pythagoras discovered that musical notes could be translated into mathematical equations was when one day he passed blacksmiths at work, and thought that the sounds emanating from their anvils being hit were beautiful and harmonious and decided that whatever scientific law caused this to happen must be mathematical and could be applied to music. He went to the blacksmiths to learn how this had happened by looking at their tools, he discovered that it was because the hammers were "simple ratios of each other, one was half the size of the first, another was 2/3 the size, $3 / 4$ of the size, and so on."

## FROM WIKIPEDIA

# APPENDIX - Trigonometry Sines, Cosines, Tangents 

A trigonometric function is a ratio of certain parts of a right triangle. The names of these ratios are: The sine, cosine, tangent, cosecant, secant, cotangent.

The Cosecant is the inversion of the sine, the secant is the inversion of the cosine, the
B cotangent is the inversion of the tangent.


$$
\begin{aligned}
& \operatorname{Sin} \theta=\frac{\text { Side Opposite }}{\text { Hypothenuse }}=\frac{\mathrm{a}}{\mathrm{c}} \\
& \operatorname{Cos} \theta=\frac{\text { Side Adjacent }}{\text { Hypothenuse }}=\frac{\mathrm{b}}{\mathrm{c}} \\
& \operatorname{Tan} \theta=\frac{\text { Side Opposite }}{\text { Side Adjacent }}=\frac{\mathrm{a}}{\mathrm{~b}}
\end{aligned}
$$

## Trigonometry and Circles

- The point $P_{1}=\left(x_{1}, y_{1}\right)$ lies on a circle of radius $r$.
- The line from the origin to $P_{1}$ makes an angle $\theta_{1}$ w.r.t. the $x$ axis.
- The trigonometric functions sine and cosine are defined by the $x$ - and $y$ components of $P_{1}$ :


In this discussion, we always
$-x_{1}=r \cos \left(\theta_{1}\right): \quad \cos \left(\theta_{1}\right)=x_{1} / r$
$-y_{1}=r \sin \left(\theta_{1}\right): \quad \sin \left(\theta_{1}\right)=y_{1} / r$

- Tangent of $\left(\theta_{1}\right)=y_{1} / x_{1}$
$-\tan \left(\theta_{1}\right)=\left[\sin \left(\theta_{1}\right)\right] /\left[\cos \left(\theta_{1}\right)\right]$ define the direction of a vector in terms of an angle counter-clockwise from the + $x$-axis.
Negative angles are measured clockwise.


## Examples

- $\cos \left(0^{\circ}\right)=1, \quad \sin \left(0^{\circ}\right)=0$
- $\cos \left(90^{\circ}\right)=0, \quad \sin \left(90^{\circ}\right)=1$
- $\cos \left(180^{\circ}\right)=-1, \quad \sin \left(180^{\circ}\right)=0$
- $\cos \left(270^{\circ}\right)=0, \quad \sin \left(270^{\circ}\right)=-1$
- Sine and Cosine are periodic functions:
$-\cos \left(\theta+360^{\circ}\right)=\cos (\theta)$
$-\sin \left(\theta+360^{\circ}\right)=\sin (\theta)$



## More examples

- By symmetry,

$$
x_{1}=y_{1}
$$

- Pythagoras:

$$
\begin{aligned}
& x_{1}^{2}+y_{1}^{2}=r^{2} \\
& 2 \cdot x_{1}^{2}=r^{2} \\
& x_{1}=r / \sqrt{ } 2
\end{aligned}
$$



The first trigonometric table was apparently compiled by Hipparchus, (190 BC-120 BC) who is now consequently known as "the father of trigonometry".

## Degrees and radians

Degrees and pi radians are two methods of showing trigonometric info. To convert between them, use the following equation.

$$
\begin{aligned}
& 2 \pi \text { radians }=360 \text { degrees } \\
& 1 \pi \text { radians }=180 \text { degrees }
\end{aligned}
$$

Convert 500 degrees into radians.
$2 \pi$ radians $=360$ degrees, 1 degree $=1 \pi$ radians $/ 180$, 500 degrees $=\pi$ radians $/ 180 * 500$
500 degrees $=25 \pi$ radians $/ 9$

## Graph of the Sine Function

To sketch the graph of $y=\sin x$ first locate the key points. These are the maximum points, the minimum points, and the intercepts.

| $x$ | 0 | $\frac{\pi}{2}$ | $\pi$ | $\frac{3 \pi}{2}$ | $2 \pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin x$ | 0 | 1 | 0 | -1 | 0 |

Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period.


## Graph of the Cosine Function

To sketch the graph of $y=\cos x$ first locate the key points. These are the maximum points, the minimum points, and the intercepts.

| $x$ | 0 | $\frac{\pi}{2}$ | $\pi$ | $\frac{3 \pi}{2}$ | $2 \pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\cos x$ | 1 | 0 | -1 | 0 | 1 |

Then, connect the points on the graph with a smooth curve that extends in both directions beyond the five points. A single cycle is called a period.


