Musical Acoustics Lecture 6 Waves - 1

Musical Acoustics, C. Bertulani

Waves

The wave carries the disturbance, but not the water

Each point makes a simple harmonic vertical oscillation

Mechanical waves

- Require medium for propagation
- Waves move through medium
- Medium remains in place

Electromagnetic waves (light) do not require medium

Transversal: movement is perpendicular to the wave motion

Longitudinal: movement is in the direction of the wave motion

Longitudinal (Compression) Waves

Longitudinal wave

Sound waves are longitudinal waves Elements move parallel to wave motion

Transverse Waves

Elements move perpendicular to wave motion

Transverse wave

Snapshot of a Transverse Wave

wavelength

y could refer to pressure or density

Describing a traveling wave

λ: wavelength distance between two maxima.f: frequency of oscillations

While the wave has traveled **one wavelength**, each **point** on the rope has made **one period** of oscillation.

$$v_{wave} = \frac{\lambda}{T} = \lambda f$$

For different kinds of waves: (e.g. sound)

- Always a square root
- Numerator related to restoring force
- Denominator is some sort of mass density

Higher tension $T \rightarrow$ higher frequency, because (for the same wavelength and same string)

• Reverse is true (smaller T, lower f)

Higher density $\mu \rightarrow$ lower frequency

change T

or

Sound wave speed

$$v = \sqrt{\gamma \frac{p}{\rho}}$$

 γ = adiabatic index p = pressure ρ = density

 \rightarrow v_{air} ~ 331 m/s

Speed of sound in several materials

Medium	m/s	ft/s
Carbon dioxide (0°C)	259	850
Dry air (0°C)	331	1,087
Helium (0°C)	965	3,166
Hydrogen (0°C)	1,284	4,213
Water (25°C)	1,497	4,911
Seawater (25°C)	1,530	5,023
Lead	1,960	6,430
Glass	5,100	16,732
Steel	5,940	19,488

The lone Ranger put his ear to the ground

The frequency of sound

- We hear frequencies of sound as having different pitch.
- A low frequency sound has a low pitch, like the rumble of a big truck.
- A high-frequency sound has a high pitch, like a whistle or siren.
- In speech, women have higher fundamental frequencies than men.

The wavelength of sound

Frequency (Hz)	Wavelength	Typical Source
20	17 meters	rumble of thunder
100	3.4 meters	bass guitar
500	70 cm (27")	average male voice
1,000	34 cm (13")	female soprano singer
2,000	17 cm (6.7")	fire truck siren
5,000	7 cm (2.7")	highest note on a piano
10,000	3.4 cm (1.3")	whine of a jet turbine
20,000	1.7 cm (2/3")	highest pitched sound you can hear