Musical Acoustics Lecture 7 Waves - 2

Musical Acoustics, C. Bertulani

Interference in one dimension

Interference in one dimension: standing waves

constructive interference waves in phase

(c)

destructive interference waves $\frac{1}{2}\lambda$ out of phase

(e)

4

Interference in spherical waves maximum of wave r_1 minimum of wave ,r₂ positive constructive interference negative constructive interference

destructive interference

Standing waves in air columns

Just like standing waves in transverse oscillations, one can make standing waves in longitudinal oscillations as well.

 diffraction of a wave is the bending of the wave front as to moves around obstacles and edges

- Huygen's principle offers an explanation for why and how diffraction occurs
 - every point on a wave front acts as a source of tiny spherical *wavelets* that travel forward with the same speed as the wave
 - the wave front at a later time is then the linear superposition of all the wavelets
 - diffraction occurs because of interference between the wavelets

Listener hears sound around the corner

- The extent to which a wave bends when passing around the edge of an opening is related to the ratio λ/a :

Waves also diffract if pass around an object whose size is comparable to its wavelength

• Diffraction, a "bending around" obstacles because every point on a wave is a source; waves cannot terminate abruptly.

• Huygens Principle: every point on the wave is the source of a new (spherical) "wavelet."

Beats

Superposition of 2 waves with slightly different frequency

The amplitude changes as a function of time, so the intensity of sound changes as a function of time. The beat frequency (number of intensity maxima/minima

per second): $f_{beat} = |f_a - f_b|$

Beat Frequency Derivation

After time T_{beat} , two sounds will differ by one complete cycle.

$$n_{1} - n_{2} = 1$$

$$f_{1}T_{beat} - f_{2}T_{beat} = 1$$

$$T_{beat} = \frac{1}{f_{1} - f_{2}}$$

$$f_{beat} = \frac{1}{T_{beat}}$$

$$f_{beat} = \frac{1}{T_{beat}}$$

Tuning a Guitar by Beats

Two tones of frequency f_1 and f_2 sound like one tone of mean frequency $f_{mean} = (f_1 + f_2)/2$

that beats at a beat frequency of

 $f_{beat} = f_1 - f_2$.

Sound waves and boundaries

 Like other waves, sound waves can be reflected by surfaces and refracted as they pass from one material to another.

• Soft materials can absorb sound waves.

Reflection

Wave rebounding off boundary surface

Reverberation - sound enhancement from mixing of original and reflected sound waves

Echo

- Can be distinguished by human ear if time delay between original and reflected sound is greater than 0.1 s
- Used in sonar and ultrasonic imaging

Sound waves and boundaries: refraction

<u>Refraction</u> occurs when a wave "enters" a medium that has a different velocity.

Refraction - Bending!

- Bending of wave fronts upon encountering a boundary
 - Between two different media
 - Between different physical circumstances in the same medium
 - Wave bends into the slow medium (like car pulled into the mud)
- Example temperature gradient in air
 - From my house I can sometimes hear a band practice

