Musical Acoustics Lecture 8 Waves - 3

Musical Acoustics, C. Bertulani

Intensity

I = P/A (J/m²s = W/m²)

Example: If you buy a speaker, it gives power output in Watts. However, even if you put a powerful speaker in a large room, the intensity of the sound can be small.

Intensity

- Faintest sound we can hear: $I \sim 1 \times 10^{-12} \text{ W/m}^2$ (at 1000 Hz)
- Loudest sound we can stand: I ~ 1 W/m² (at 1000 Hz)
 Factor of 10¹²? Loudness works logarithmic...

 $Log_{10}100 = 2$

Decibel level β $\beta = 10 \log(I/I_0) \quad I_0 = 10^{-12} \text{ W/m}^2$

decibels

$\beta = 10 \log(I/I_0) I_0 = 10^{-12} W/m^2$

Source of Sound	β (dB)
Nearby jet airplane	150
Jackhammer, machine gun	130
Siren, rock concert	120
Subway, power mower	100
Busy traffic	80
Vacuum cleaner	70
Normal conversation	50
Mosquito buzzing	40
Whisper	30
Rustling leaves	10
Threshold of hearing	0

An increase of 10 dB: intensity of the sound is multiplied by a factor of 10.

Example

A machine produces sound with a level of 80dB. How many machines can you add before exceeding 100dB?

Each time sound increases by 10dB, intensity is multiplied by $10 \rightarrow$ from 80dB to 100dB intensity is multiplied by $10 \times 10 = 100$.

Thus one needs 99 more machines (99 + 1 = 100) to increase sound from 80dB to 100dB.

Relation between amplitude and intensity

For sound, the intensity I goes linear with the amplitude of the longitudinal wave squared

 $I \sim A^2$

Energy and Intensity

- Intensity
 - Energy flowing (power) through a given area
 - Proportional to amplitude of sound wave, squared
 - Units = W/m^2

Intensity and distance from the source

Sound from a point source produces a spherical wave.

Why does the sound get fainter further away from the source?

Intensity and distance

The amount of energy passing through a spherical surface at distance r from the source is constant, but the surface becomes larger.

I=Power/Surface=P/A=P/($4\pi r^2$)

- r=1 I=P/($4\pi r^2$)=P/(4π)
- r=2 I=P/(4πr²)=P/(16π) 4
- r=3 I=P/(4πr²)=P/(36π) 9

Sound absorption

When sound reflects, part of its initial intensity I is absorbed:

 $I_R = I - I_A$

Absorption coefficient $a = I_A/I$

a = 0 (total reflection) (generally lower frequencies)

a = 1 (total absorption) (generally higher frequencies)

Doppler effect: a <u>source moving towards</u> you

the distance between the wave front is shortened

The frequency becomes larger: higher tone

Doppler effect: a <u>source moving away</u> from you

the distance between the wave front becomes longer

The frequency becomes lower: lower tone

Doppler effect: you moving towards the source

additional wavefronts detected per second:

The frequency becomes larger: higher tone

Doppler effect: <u>you moving away</u> from the source

less wavefronts detected per second:

The frequency becomes lower: lower tone

Applications of the doppler effect: speed radar

Applications of doppler effect: weather radar

Both humidity (reflected intensity) and speed of clouds (doppler effect) are measured.

Shock waves

what happens if $v_{\text{source}} \ge v_{\text{sound}}$?

Shock waves

$$sin\theta = v_{sound}/v_{source}$$

Mach 1: speed of sound.

Mach 2: 2 times speed of sound, etc

high-pressure wave a lot of energy is stored in the wave (loud bang, vibrations, broken windows)