Musical Acoustics

Lecture 9 Harmonics in strings, pipes and drums - 1

Strings

Reflection of waves

FREE END: no inversion
FIXED END: pulse inversion

How to create standing waves: a rope

Standing Waves on a Stretched String

snapshot of standing wave at one instant of time, \dagger

- For string of length L with fixed ends, the lowest mode of vibration has frequency $f_{1}=v / 2 L\left(v=f_{1} \lambda_{1}\right)$ (f in cycles per second, or Hertz (Hz))
- Frequency of vibration, $f=1 / T$, where $T=$ period = time to complete 1 cycle
- Wavelength, λ_{1} of lowest mode of vibration has $\lambda_{1}=2 L$ (in meters)
- Amplitude of wave (maximum displacement from equilibrium) is A

String can also vibrate with higher modes:

- Second mode of vibration of standing wave has $f_{2}=2 v / 2 L=v / L$ with $\lambda_{2}=2 L / 2=L$

- Third mode of vibration of standing wave has $f_{3}=3 \mathrm{v} / 2 \mathrm{~L}$ with $\lambda_{3}=2 \mathrm{~L} / 3$

- The $\mathrm{n}^{\text {th }}$ mode of vibration of standing wave on a string, where $n=$ integer $=$ $1,2,3,4,5, \ldots$. has frequency $f_{n}=n(v / 2 L)=n f_{1}$, since $v=f_{n} \lambda_{n}$ and thus the $n^{\text {th }}$ mode of vibration has a wavelength of $\lambda_{n}=(2 L) / n=\lambda_{1} / n$

Standing waves

Example: the guitar

$\mathrm{n}^{\text {th }}$ harmonics: depends where and how the string is struck note that several harmonics can be present and that non-harmonics are washed out

$$
\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{n}}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{\mu} \xrightarrow{\text { tension can be varied by stretching }} \text { the wire }} \begin{aligned}
& \text { changes from string to string: } \\
& \text { bass string is very heavy }
\end{aligned}
$$

Pipes

Standing waves in air columns

Just like standing waves in transverse oscillations, one can make standing waves in longitudinal oscillations as well.

An air column (pipe)

A pipe can be open or closed on either or both sides.

For now, let's consider the air-displacements (anti-)nodes

Both ends open

$$
\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv}_{\text {sound }}}{2 \mathrm{~L}}=\mathrm{nf}_{1} \quad \mathrm{n}=1,2,3 \ldots
$$

One end open, one end closed

$$
\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nv} \mathrm{v}_{\text {sound }}}{4 \mathrm{~L}}=\mathrm{nf}_{1} \quad \mathrm{n}=1,3,5 \ldots
$$

even harmonics are missing!!!

$$
\begin{aligned}
& \lambda_{1}=4 L \\
& f_{1}=\frac{v}{\lambda_{1}}=\frac{v}{4 L} \\
& \lambda_{3}=\frac{4}{3} L \\
& f_{3}=\frac{3 v}{4 L}=3 f_{1} \\
& \lambda_{5}=\frac{4}{5} L \\
& f_{5}=\frac{5 v}{4 L}=5 f_{1}
\end{aligned}
$$

First harmonic

Third harmonic

Fifth harmonic

Produces odd harmonics only!

$$
5 f_{1} n=5
$$

