Musical Acoustics

Lecture 16 Interval, Scales, Tuning and Temperament - I

Notes and Tones

- Musical instruments cover useful range of 27 to 4200 Hz.
- Ear: pitch discrimination of 0.03 semitones → 30 distinguishable pitches in one semitone. (much more than needed!). (one semitone = 1/12 of an octave)
- Musicians select discrete frequencies in an array:
 SCALE
- One of the frequencies = NOTE
- · Note is also a symbol in a musical staff, or refers to a key on a piano, etc.
- Note is sometimes synonymous to TONE

Scale and Temperament

SCALE - A sucession of notes in ascending order (e.g., Pythagorean, just, meantone, equal temperament).

TUNING - Adjustment of pitch to correspond to an accepted norm.

TEMPERAMENT - A system of tuning in which intervals deviate from acoustically pure (Pythagorean).

INTONATION - Degree of accuracy with which pitches are produced.

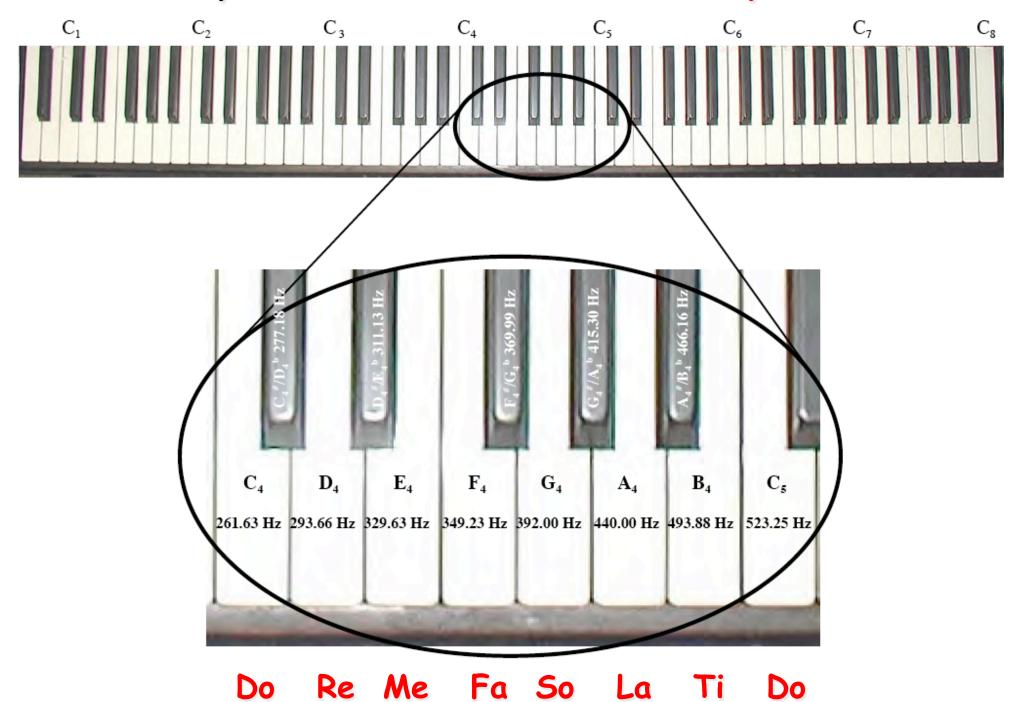


Ancient Greeks - Aristotle and his followers - discovered using a Monochord that certain combinations of sounds with rational number (n/m) frequency ratios were pleasing to the human ear.

$$f \propto \frac{1}{L}$$

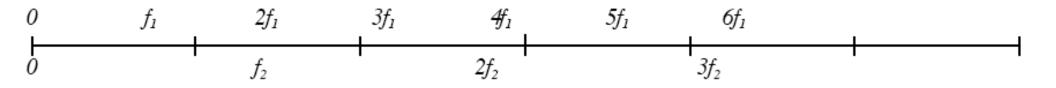
$$\frac{f_1}{f_2} \propto \frac{L_2}{L_1}$$

Jump few centuries: Piano keyboard



Consonance

- Frequencies in consonance are neither similar enough to cause beats nor within the same critical band.
- Many of the overtones of these two frequencies coincide and most of the ones that don't will neither cause beats nor be within the same critical band.



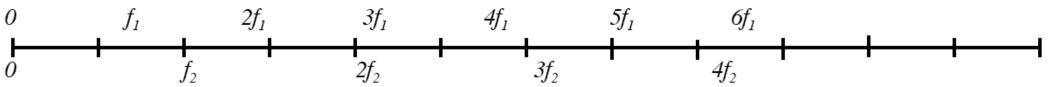
Ex 1:
$$f_2/f_1 = 2$$

Frequencies in consonance sound nearly the same.

Frequency 1 (Hz)	Frequency 2 (Hz)
$f_1 = 100$	$f_2 = 200$
$2f_1 = 200$	$2f_2 = 400$
$3f_1 = 300$	$3f_2 = 600$
$4f_1 = 400$	
$5f_1 = 500$	
$6f_1 = 600$	

Consonance

Ex 2: $f_2/f_1 = 3/2$



Match of harmonics not quite as good, but the harmonics of f_2 that don't match those of f_1 are still different enough from the harmonics of f_1 that no beats are heard and they don't fall within the same critical band.

Frequency 1 (Hz)	Frequency 2 (Hz)
$f_1 = 100$	$f_2 = 150$
$2f_1 = 200$	$2f_2 = 300$
$3f_1 = 300$	$3f_2 = 450$
$4f_I = 400$	$4f_2 = 600$
$5f_I = 500$	
$6f_I = 600$	

$$\frac{f_1}{f_2} \propto \frac{L_2}{L_1}$$

 $\frac{f_1}{f_2} \propto \frac{L_2}{L_1}$ Ancient Greeks - Monochord most pleasant sounds with $f_2/f_1 = 2$ and $f_2/f_1 = 3/2$ \rightarrow $L_1/L_2 = 2$ and $L_1/L_2 = 3/2$

Building a scale (Pythagoras) - To get more "pleasant" tones multiply, or divide, strings by 3/2.

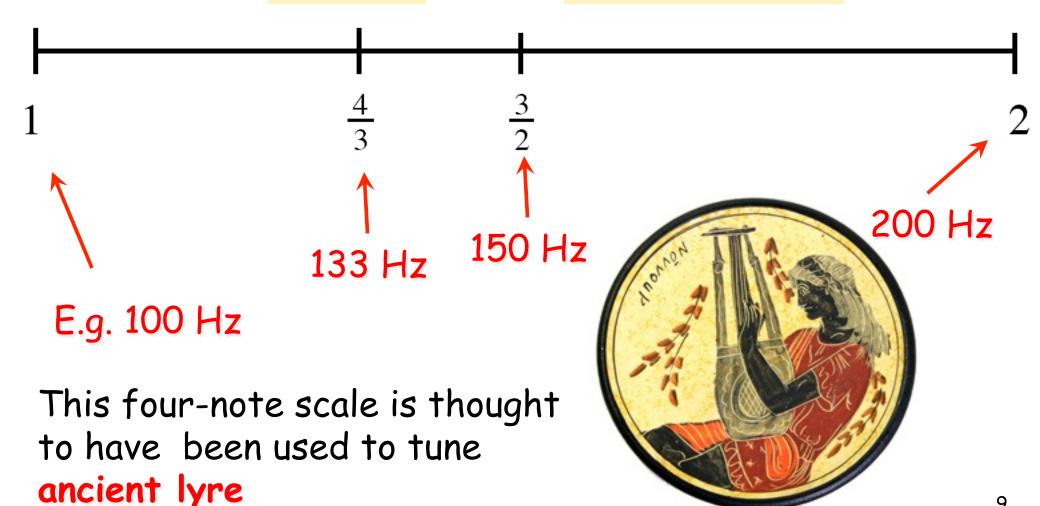
Problem: new string length might be shorter than the shortest string or longer than the longest string.

Solution: cut in half or double in length (even repeatedly) because strings that differ by a ratio of 2:1 sound virtually the same.

Building a Pythagorean scale

Assume shortest string length = 1 (whatever units).
 Longest one length = 2.

Let us start:
$$1 \times \frac{3}{2} = \frac{3}{2}$$
 and $\frac{2}{3/2} = 2 \times \frac{2}{3} = \frac{4}{3}$



Building a Pythagorean scale - continued

Let try more (using intermediate frequencies 4/3 and 3/2):

$$\frac{4/3}{3/2} = \frac{4}{3} \times \frac{2}{3} = \frac{8}{9}$$

and

$$\frac{3}{2} \times \frac{3}{2} = \frac{9}{4}$$

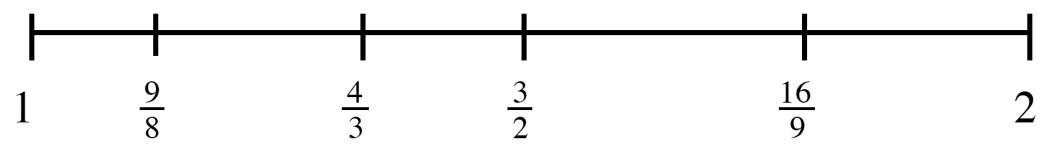
But 8/9 < 1 and 9/4 > 2. Solution: divide or multiply by 2, as they will sound nearly the same.

$$\rightarrow$$

$$\frac{8}{9} \times 2 = \frac{16}{9}$$

and

$$\frac{9}{4}/2 = \frac{9}{8}$$



Pentatonic scale: popular in many eastern cultures.

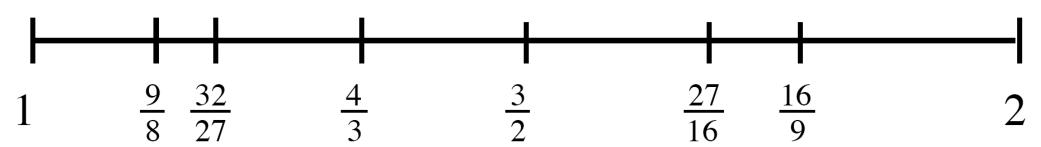
Building a Pythagorean scale - continued

Western Music has 7 notes \rightarrow Let us continue:

$$\frac{16/9}{3/2} = \frac{16}{9} \times \frac{2}{3} = \frac{32}{27}$$
 and

One version of the Pythagorean scale.

- Many frequency ratios of small integers → high levels of consonance.
- Mostly large intervals, but also two small intervals (between the second and third note and between the sixth and seventh note).



- Across a large interval, the frequency must be multiplied by 9/8 (e.g., $32/27 \times 9/8 = 4/3$ and $4/3 \times 9/8 = 3/2$).
- Across the smaller intervals, the frequency must be multiplied by 256/243. In fact, $9/8 \times 256/243 = 32/27$, $27/16 \times 256/243 = 16/9$.
- $9/8 = 1.125 = \text{change of } \sim 12\% \text{ (whole tone)} W \text{ ("full step")}$
- 256/243 = 1.053 = change of ~5% (semitone) s ("half step")
- Going up in frequency: Ws W W Ws W

• Instead of W s W W w s W let us start with previous W:

$$W$$
 W s W W W s C_1 D E F G A B C_2 C_3 C_4 C_5 C_5 C_6 C_6

- Nonmusicians do not notice the smaller increase in pitch when going from "Me" to "Fa" and from "Ti" to "Do."
- 7 different notes in the Pythagorean scale (8 including last note, which is one diapson higher than the first note, and thus essentially the same sound as the first).
- The eighth note has a ratio of 2:1 with the first note, the fifth note has a ratio of 3:2 with the first note, and the fourth note has ratio of 4:3 with the first note.
- Origin of the musical terms the octave, perfect fifth, and perfect fourth.

• "G" sounds good when played with either the upper or the lower "C." It is a fifth above the lower C and a fourth below the upper C.

particular "C" by one of the fractions in the table above gives the frequency of the note above that fraction.

- Table on right shows the full list of frequency intervals between adjacent tones.
- Exercise: Assuming C_5 is defined as 523 Hz, determine the other frequencies of the Pythagorean scale.

Note change	Frequency ratio
$C \rightarrow D$	9/8
$D \rightarrow E$	9/8
$E \rightarrow F$	256/243
$F \rightarrow G$	9/8
$G \rightarrow A$	9/8
$A \rightarrow B$	9/8
$B \rightarrow C$	256/243

Just Scale (origin: Ptolemy-Greece)

• Besides 2:1, 3:2 and 4:3, Ptolemy also observed consonance in frequency ratio 5:4. Ratios 4:5:6 sound particularly good \rightarrow C major scale.

 C_{i}

 \mathbf{G}

F

E

- Note in C scale are grouped in triads with frequency ratios 4:5:6
- Start with $C_i = 1 \rightarrow C_f = 2$. To get the C_i : E:G frequency ratios 4:5:6 represent C_1 as $4/4 \rightarrow E=5/4$ and G=6/4, or 3/2.

C_i	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	A	B	$\mathbf{C}_{\mathbf{f}}$
1		5		3			2
		$\frac{\overline{4}}{4}$		$\overline{2}$			

• Next triad (G,B,D). Start with G = 3/2, multiply by 4/4, 5/4, and $6/4 \rightarrow G = (3/2)x(4/4) = 12/8 = <math>3/2$, B = (3/2)x(5/4) = 15/8, D = (3/2)x(6/4) = 18/8 = 9/4.

G

Just Scale Intervals

•D=9/4 > $2xC_i$ \rightarrow divide it by 2 to get it back within the octave bound by C_i and C_f . C_i D E F G A B C_f

Then D = (9/4)/2 = 9/8

• Last triad (F,A,C_f): easier to start with C_f backwards. To the get the next set of 4:5:6 frequency ratios \rightarrow multiply C_f by 4/6, 5/6, and 6/6 \rightarrow F = 2x(4/6) = 8/6 = 4/3, A = 2x(5/6) = 10/6 = 5/3, $C_f = 2x(6/6) = 12/6 = 2$.

C_{i}	D	E	F	G	A	В	$\mathbf{C}_{\mathbf{f}}$
1	9	5	4	3	5	<u>15</u>	2
	8	$\frac{\overline{4}}{4}$	3	$\overline{2}$	3	8	

Just Scale Intervals for a C major scale. Multiplying the frequency of a particular "C" by one of the fractions in the table gives the frequency of the note above that fraction.

Just Scale Intervals

Just Scale interval ratios.

There are three possible intervals between notes:

9/8 (a major whole tone = 12.5% increase - same as Pythagorean whole tone) 10/9 (a minor whole tone = 11.1% increase) 16/15 (a semitone = 6.7% increase

- slightly different than smallest Pythagorean)

Just	Scale	Intervals	and	common
name	$s \rightarrow$			

• Exercise: C_4 is the frequency or note one octave below C_5 (523 Hz). Calculate the frequencies of the notes in the Just scale within this octave.

Note change	Frequency ratio
$C \rightarrow D$	9/8
$D \rightarrow E$	10/9
$E \rightarrow F$	16/15
$F \rightarrow G$	9/8
$G \rightarrow A$	10/9
$A \rightarrow B$	9/8
$B \rightarrow C$	16/15

Frequency Ratio	Interval	Interval name
2/1	$C \rightarrow C$	Octave
3/2	$C \rightarrow G$	Perfect fifth
4/3	$C \rightarrow F$	Perfect fourth
5/3	$C \rightarrow A$	Major sixth
5/4	$C \rightarrow E$	Major third
8/5	$E \rightarrow C$	Minor sixth
6/5	$A \rightarrow C$	Minor third