PAGE
33
C++ Programming Note 5

Note 5: Pass by Address, Pass by Reference

References:

Three sides of a reference:

1. A reference is an alias for a variable.

2. A reference has special properties that determine how it is evaluated.

3. A reference has special uses.

Reference as Alias:

Reference is a compiler object that is set-aside storage space. This makes it a separate entity from the compiler. It is not a copy of the variable to which it refers. It is the same variable, just under a different name.

Properties of a Reference:

First, you cannot manipulate a reference as an independent entity. This makes sense based on our definition of a reference as an alias. A reference has no storage space in its own right; it is just a different name for a variable. What does this mean? It means that any operation you try to do on a reference would really be done to the compiler object it points to. Take the address of a reference and you get the address of the variable it refers to. Assign to a reference and you are assigning to the variable it refers to. Another good proof of this property is that you cannot create an array of references. A compiler could not let your do this because doing so violates the concept of an array. An array is a group of like objects.

Second, your must initialize a reference. As an alias to some other variable, an alias cannot exit on its own. It is nothing without something to “refer to”. You are allowed to declare a reference in function return values and function parameters because the references are automatically initialized to arguments from the calling function.

Third, a reference is a constant bye definition. After you initialize a reference, you cannot change its value. Since a reference is not even a compiler object, it cannot hold a value, and therefore it is ludicrous even to think about changing its value. References are nothing more than shorthand notations that are simpler and more readable than pointers.

Uses of a Reference:

References are used in three primary ways:

1. A reference can be used in passing arguments to a function by reference.

2. A reference can be returned by a function.

3. An independent reference can be created (It is available and often used to demonstrate references).

Argument Type Table:

	
	Pass by Value
	Pass by Reference
	Pass by Address

	Constant
	X
	
	

	Variable
	X
	X
	X

	Pointer
	X
	X
	X

	Array Name
	
	
	X

	Array Elements
	X
	X
	X

	Expression
	X
	
	

	Function Call
	X
	
	

	Function Name
	
	
	X

Program Example:

Pass by Value:

// Function does not change value of arguments – passby_value (a, b)

short passby_value (short x, short y)

{

short temp;

if(x < y)

{

temp = x;

x = y;

y = temp;

}

return x – y;

}

Pass by Reference:

// Function changes the value of the arguments – passby_reference (a, b)

short passby_reference (short &x, short &y)

{

short temp;

if(x < y)

{

temp = x;

x = y;

y = temp;

}

return x – y;

}

// Function changes the value of the arguments (pointers) – pass_ptr_by_reference(ptra,

// ptrb)

short pass_ptr_by_reference (short *& x, short *& y)

{

short *temp_ptr;

if(*x < *y)

{

temp_ptr = x;

x = y;

y = temp_ptr;

}

return *x – *y;

}

Pass by Address:

// Function changes the value of the arguments – passby_address1 (&a, &b)

// Function changes the value at the address stored in the pointers – pointers –

// passby_address1 (ptra, ptrb)

short passby_address1 (short * const x, short * const y)

{

short temp;

if(*x < *y)

{

temp = *x;

*x = *y;

*y = temp;

}

return *x – *y;

}

// The values of the local variables are changed, but there is no effect on the arguments –

// passby_address2 (&a, &b) or the value at the address stored in the pointers –

// passby_address2 (ptra, ptrb)

short passby_address2 (short *x, short *y)

{

short *temp_ptr;

if(*x < *y)

{

temp_ptr = x;

x = y;

y = temp_ptr;

}

return *x – *y;

}

// Function changes the value of the arguments (pointers) – pass_ptr_by_address1 (&ptra,

// &ptrb)

// Function changes the value at the address stored in the pointers – pass_ptr_by-address1 // (ptr_ptra, ptr_ptrb)

// values of ptra and ptrb are changed

// values of a and b are not changed

// values of ptr_ptra and ptr_ptrb are not changed

short pass_ptr_by_address1 (short **x, short **y)

{

short *temp_ptr;

if(**x < **y)

{

temp_ptr = *x;

*x = *y;

*y = temp_ptr;

}

return **x – **y;

}

// Function changes the value at the address stored in the pointer – pass_ptr_by_address2

// (&ptra, &ptrb)

// Function changes the value at the address stored in the pointers to pointers –

// pass_ptr_by-address2 (ptr_ptra, ptr_ptrb)

// values of a and b are changed

// values of ptra and ptrb are not changed

// values of ptr_ptra and ptr_ptrb are not changed

short pass_ptr_by_address2 (short **x, short **y)

{

short temp;

if(**x < **y)

{

temp = **x;

**x = **y;

**y = temp;

}

return **x – **y;

}

// The values of the local variables are changed, but there is no effect on the arguments or

// values at the address stored in the arguments

short pass_ptr_by_address3 (short **x, short **y)

{

short **temp_ptr_ptr;

if(**x < **y)

{

temp_ptr_ptr = x;

x = y;

y = temp_ptr_ptr;

}

return **x – **y;

}

Summary:

short np, *p, **pp, ***ppp; //np is non-pointer vairable

p = &np; //p is pointer variable which has address of np

pp = &p; //pp is pointer variable which has address of p

ppp = &pp; //ppp is pointer variable which has address of pp

 ↑ ↑ ↑ ↑

 ppp pp p np

Argument and Parameter Table:

	
	Pass by Reference
	Pass by Value #
	Pass by Address #

	Parameter
	NP
	P
	PP
	PPP
	NP
	P
	PP
	P
	PP

	Argument
	np
	p
	pp
	ppp
	np

*p

**pp

***ppp
	p

*pp

**ppp
	pp

*ppp
	&np

p

*pp

**ppp
	&p

pp

*ppp

	Variable which can be changed
	np
	np

p
	np

p

pp
	np

p

pp

ppp
	none
	np
	np

p
	np
	np

p

Passing the value of the argument to the parameter; the value of argument may be a non-pointer or pointer (address).
