PAGE
35
C++ Programming Note 6

Note 6: Structure in Data Manipulation for Application

The Concept of a Structure:

A structure is a composite type that can represent several different types of data in a single unit. For example, we can represent a single record for each student in the class bye the following individual variable:

char Last [30];

char First [30];

short Exam1;

short Exam2;

short Exam3;

float Average;

A single structure can group these variables using the following definition:

struct student

{

char Last [30];

char First [30];

short Exam1;

short Exam2;

short Exam3;

float Average;

};

The Keyword struct specifies a structure definition. The structure tag, or name of the structure, is student. After the structure tag, braces surround a description of the members or elements of the structure. A member of a structure is a single unit, so the structure here has six members. Some languages call such a member a field. Every member of a structure must have its own name and type and also could be the struct type. As with a class specification, the C++ syntax demands that we end the structure definition with a semicolon (;) after the closing brace.

Declare Structure Variable:

Because student is a new data type, we can declare variable to be that type.

Declare single structure variable: student record;

Declare structure array: student record [n];

Declare structure pointer:

1. student * record;

2. change data type from student to student * :

 typedef struct student * student_ptr;

student_ptr record;

Access Member Data in Structure:

Access Member Data Last Name in Structure Table

	Structure Type Variable
	Access Method

	Single Structure Variable
	record.Last

	Structure Array
	record [i].Last

	Structure Pointer
	record – > Last

	Structure Pinter to Array
	(record + i) – > Last

The period and the point to the right arrow are the period operator and structure member operator to access member data in structure.

Structure Copy and Compare:

In order to copy and compare two structures, both structures must have exactly number of members and type of members.

Structure Copy:

Two ways to do structure copy:

1. Using equal sign (=) to copy structure

record [1] = record [2];

2. Copy each field of member in the structure one by one

record [1].Last = record [2].Last;

record [1].First = record [2].First;

record [1].Exam1 = record [2].Exam1;

record [1].Exam2 = record [2].Exam2;

record [1].Exam3 = record [2].Exam3;

record [1].Average = record [2].Average;

Compare Structure:

To compare two structure, you can not use double equal sign (= =) for structure name; only way to do comparison is comparing each field of member in structure one by one.

if (record [1].Last = = record [2].Last &&

 record [1].First = record [2].First &&

 record [1].Exam1 = record [2].Exam1 &&

 record [1].Exam2 = record [2].Exam2 &&

 record [1].Exam3 = record [2].Exam3 &&

 record [1].Average = record [2].Average) ……..

Data Search Algorithms:

Sequential Search:

short i = 0, find = 0;

while (i < End)

{

if (value = = Data[i])

{

find = 1;

i = End;

}

else

i ++;

}

Binary Search:

while (Begin <= End)

{

mid = (Begin + End) / 2;

if (value > Data[mid])

Begin = mid + 1;

else if (value < Data[mid])

End = mid – 1;

else

break;

}

Data Sorting Algorithms:

Selection Sort:

i = 0;

while (i < N-1)

{

j = i + 1;

small = x[i];

loc = i;

while (j < N)

{

if (x[j] < small)

{

small = x[j];

loc = j;

}

j ++;

}

if (loc != i)

{

x[loc] = x[i];

x[i] = small;

}

i++;

}

Insertion Sort:

//Element 0 stored smallest value of the data for ascending order, or stored biggest value

//of the data for descending order.

i = 1;

N_element = 1;

while (more value)

{

N_value = x[i];

j = N_element – 1;

while (N_value < x[j])

{

x[j+1] = x[j];

j --;

}

x[j + 1] = N_value;

N_element ++;

i ++;

}

Insertion Sort without moving data by using tag:

//Element 0 stored smallest value of the data for ascending order, or stored biggest value

//of the data for descending order.

i = 1;

N_element = 1;

while (more value)

{

N_value = tag[i];

J = N_element – 1;

while (x[N_value] < x[tag[j]])

{

tag[j + 1] = tag[j];

j --;

}

tag[j + 1] = N_value;

N_element ++;

i ++;

}

