Some help with structures

CSCI 515
Purpose of a structure:

 To create a record holding various data types that is not

 necessarily the same (i.e... student-id, name, grade) all

 in one variable.

 Example:

 struct student_type {

 short id;

 char name[20];

 double gpa;

 };

 student_type jim_major; // single student variable

 student_type class_515[100]; // array holding up to 100 students.

 student_type class_520[80]; // array holding up to 80 students.

 Accessing:

 jim_major.id = 1;

 strcpy(jim_major.name,"Jim Major");

 jim.major.gpa = 1.4; // poor guy

 class_515[0].id = 0; // 1st student's id

 class_515[15].gpa = 3.8; // 16th student's gpa

 Enhancing student_type some:

 struct student_type {

 short id;

 char name[20];

 double gpa;

 short exam_grades[3];

 short lab_grades[15];

 short clab_grades[15];

 };

 Now, we can do :

 student_type jim_major;

 student_type class_515[100];

 student_type class_520[80];

 jim_major.exam_grades[0] = 34; // jim failed the 1st exam.

 class_520[3].lab_grades[4] = 5; // 5 assigned as grade for 5th

 student in 520 class

 Extending a bit more:

 struct address_type {

 char street[30];

 char city[40;

 char state[2];

 char zipcode[5];

 char country[10];

 }

 struct student_type {

 short id;

 char name[20];

 address_type home_address;

// nested structures

 address_type school_address;
// nested structures

 double gpa;

 short exam_grades[3];

 short lab_grades[15];

 short clab_grades[15];

 };

 Access (assuming same variables created) :

 // each dot below seperates a struct nesting

 strcpy(jim_major.home_address.street,"1818 Hunt Street # 1");

 strcpy(class_520[3].home_address.city,"Banglore");

 but we are still being sloppy...

 let's add one more structure...

 struct class_type {

 char department[20];

 char class_name[15];

 char class_id[6];

 char instructor_name[25]; // or a structure holding info on an

 instructor

 short number_students;

 student_type students[100]; // max of 100 students in the class

 };

 now we can create

 class_type csci515;

 class_type csci520;

 and add information about the instructor, # students, student names

 etc...

 for a class... or an array of classes

 class_type computer_science[20]; // 20 computer science departments

 One thing -> all these compile type (fixed size) arrays is

 inefficient...

 When we learn pointers - we can size these as we wish.

 When we learn data structures, we can be even more efficient, as we

 can

 hold pointers to other structures in a structure definition

 (used

 for linked lists and trees amongst other things. Well, that's

 520

 and we are getting ahead of ourselves... and 520 tips for

 structures are at the very bottom of this text file :)

 In reference to the above algorithms .. one could use the following

 structures:

 // hold the 2 sizes in one structure

 struct size_type {

 int size;

 int newsize;

 };

 size_type sizes;

 Access:

 sizes.size = 50;

 sizes.newsize = 30;

 // hold the raw data as an structure array or table

 struct raw_data_type {

 int orig_data; // store number

 int sales; // sales $ amount

 }

 raw_data_type data[500];

 Access:

 data[0].orig_data = 5;

 data[1].orig_data = 5;

 data[2].orig_data = 25;

 data[0].orig_sales = 50;

 data[1].orig_sales = 350;

 data[2].orig_sales = 150;

 etc..

 // hold the processed data results as an structure array or table

 struct processed_data_type {

 int nd; // store number

 int count; // count of store sales days

 int total_sales; // total sales for this store (all days)

 }

 processed_data_type new_data;

 new_data[0].nd = 5;

 new_data[0].count = 2;

 new_data[0].total_sales = 400;

 new_data[1].nd = 25;

 new_data[1].count = 1;

 new_data[1].total_sales = 150;

 etc..

Calling functions with a structure:

#include <iostream>

#include <iomanip>

int main() {

 ...

 function_name(sizes,data,new_data);

 ...

 ...

 return 0;

}

Defining a function (function_name) to receive structure parameters:

// --

// Created: June 13, 2007 - Mary Johnson

// Last Modified: June 21, 2007 - Joe Smith

/* this function does

 and

 this

 and

 that

*/

// --

void function_name(size_type &sizes, raw_data_type data[],

 processed_data_type new_data[])

{

 // code

 int i;

 for(i=0;i<sizes.size;i++) }

 // ...

 sizes.newsize = 15;

 // ...

 } // end of for(i=0;i<sizes.size;i++) }

}

// --

// end of function_name

// --

NOTES: sizes variable passed by reference so main will receive updates.

 Arrays can not be passed by reference. Main will receive

 updates automatically.

 One can have a structure return type for a function.

 One can not have an array return type for a function.

 A structure element can be assigned to another similiar

 structure element.

 All elements or components will be assigned or copied.

 i.e. new_data[15] = new_data[0]; is legal

 and is better than

 new_data[15].nd = new_data[0].nd;

 new_data[15].count = new_data[0].count;

 new_data[15].total_sales = new_data[0].total_sales;

 as it reads easier and if the structure change (additional

 elements), the assignment statement does not have to change to

 accomodate.

520 tips:

Ok... review this structure below...

struct node_type {

 short id;

 node_type* next; // pointer that holds address of this or

 // any other instantiated object of type

 // "node_type"

}

therefore, with this structure, i can create "nodes"...

node_type node; // create a node at compile time

or

node_type* node = new node; // create dynamically

and

if i have 5 of these nodes - i might have them

lined up as follows in a stack...

null <--- node1 <--- node2 <--- node3 <--- node4 <---- node5

or diagramically in a queue with 2 seperate pointers

called qf and qr used to store the memory addresses

of the front and rear of the queue respectively.

node_type* qf,qr; // create simple pointers

node1---> node2 ---> node3 ---> node4 ---> node5

node 1 pointer points to (holds address of) node2, etc..

how do i get access to node 1 or node5 ?

we store them separately (not as full objects with no data).

the separate node_type*s are qf and qr... with qf holding

address of node1, and qr holding address of node5

Ok - so much for a node_type with only one node_type*...

what if we have

struct class_type {

 short id;

 // pointer that holds address of this or

 // any other instantiated object of type

 // "class_type"

 class_type* class_next;

 // pointer that holds address of any

 // instantiated object of type

 // "student_type"

 student_type* student_next;

};

struct student_type {

 short id;

 char name[30];

 student_type* student_next;

};

Confused ?

Look at this structure....

classes (515,520,530)

students (1,2,3,4,5)

class515 ---> class520 ---> class530 ---> null (simple linked list)

 | | |

 | | |

 student1 student2 NULL

 | |

 | |

 NULL student3

 |

 |

 student1

 |

 |

 NULL

In this diagram, the classes 515,520,and 530 are lined up

based on the class_type* class_next.

Class515 also has a pointer that points to the students in

the 515 class (the structure for the students is not shown)

Class 520 has 3 students in them - students 1,2,and 3 which

are linked to each other as shown.

class 530 has no students yet - so the 530 student-next pointer

is holding a memory value of NULL.

Notice that the class type structure or objects can point both

to one other class and one student, whereas the students can only

point to students

Can it get more complicated ? Of course... :)

I could decide to hold an entire linked list in an array...

struct student_type {

 short id;

 char name[30];

 student_type* student_next;

};

student_type students[100]; // array of 100 students, with each

 // element (0-99) able to point at

 // another element via a pointer

This is called a linked list in an array in the class, and also

could have been written as follows...

struct student_type {

 short id;

 char name[30];

 short student_next; // simply a short to hold an offset

};

In this simplified version of a lla (linked list array), the

short offset holds an offset for which element a row of data

will be linked to next (i.e. .. the rows might be ordered 1,9,3,13,

32,null in that order

The lecture will clarify this very well...

*** Trees ***

Binary trees have 2 pointers (one to the left and one to the right).

 (Root__Node)

 | |

 | |

 node1 node3

 | | | |

 node5 node7 node8 NULL

This tree is 3 levels deep with only one slot not occupied,

the right "child" node of node3.

Structure declaration is as follows:

struct student_type {

 short id;

 char name[30];

 student_type* left; // a student_type* called left

 student_type* right; // a student_type* called right

};

Could we have tree nodes with more than a left and right

pointer ? - such as another pointer to a stack coming off

each node ??? (there is no limit to your design).

End of 520 tips

Any corrections or comments... please get back to me by

email.

End of Document

Jim Major

Graduate Assistant

June 13, 2007

