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ABSTRACT
The development of complex adaptive behavior in bi-
ological organisms represents vast improvement over
current methods of learning for artificial autonomous
systems. Dynamical and embodied models of cogni-
tion [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] are beginning to
provide new insights into how the chaotic, non-linear
dynamics of heterogeneous neural structures may self-
organize in order to develop effective patterns of be-
havior. We are interested in creating models of on-
togenetic development that capture some of the flex-
ibility and power of biological systems. In this paper
we present a simple task environment that is complex
enough for people to exhibit examples of the type of
development we are interested in. We describe some
results of standard neural networks in performing this
task. And we discuss future plans for models that dis-
play the development of effective behavior in the task
environment.
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1. Introduction

The development of behavior in biological organisms
is primarily a self-organizing phenomenon. Organisms
are born with a basic repertoire of motor skills and
instinctive drives and needs. These are often tied to
simple action-loops [1], which provide a basic reper-
toire of pattern completion and instinctive behavior
that can begin to satisfy the intrinsic drives of the or-
ganism. As the organism develops both physically and
behaviorally, however, these instinctive behavior pat-
terns begin to be associated with more general sen-
sory stimuli. The organism learns to recognize pat-
terns in the environment that are important and use-
ful affordances [12] for beneficial behaviors. Increas-
ingly complex patterns of behavior are hierarchically
organized around the solutions that are discovered at
earlier stages of development.

Thelen and Smith [11] view development as a

shifting ontogenetic landscape of attractor basins. As
physical and behavioral patterns develop the land-
scape is continually reformed and reshaped. Each de-
veloped behavior opens up many possibilities for new,
more complex patterns of behavior, while closing off
possibilities for others. Even relatively simple tasks
can provide opportunities for the hierarchical devel-
opment of increasingly complex strategies in order to
improve performance. For example, in the simple task
we present in the next section, humans develop higher
level strategies for improving their performance.

Many theories of the development of behavior in
biological organisms are beginning to view it in terms
of a self-organizing dynamical system [7, 8, 11]. The
organization of patterns of behavior is viewed, in some
sense, as the formation and evolution of attractor land-
scapes. Some research [10, 4, 5, 6, 9] also indicates
that chaotic dynamics may play an essential role in
the formation of perception and behavior in biological
organisms.

2. Packing Task

Towards the end of studying and creating models of
development, we have begun work on identifying and
creating appropriate task domains. These tasks need
to be both simple and tractable for realistic compu-
tational models of development. However they must
also support examples of the development of behavior
from novice to expert in humans of the type we are
interested in. We describe a packing task here which
is one such environment, and some work on standard
machine learning tools in this environment.

2..1 Description

In the packing task, which is a simplified form of the
Tetris game [13, 14], the system can be presented with
one of 3 shapes. The goal of the task is to move and
rotate a shape before allowing it to drop onto a playing
field in such a way as to end up with as compact of a
packing as possible. An example of a packing trial in
progress can be found in figure 1. In our version of the



Figure 1. An example packing task trial

packing task, the system is given a random sequence
of 10 shapes. The performance of the system on the
packing task is evaluated by examining the density and
the height of the resulting packing of those 10 shapes.

2..2 Encoding

We now present an example of a standard neural net-
work that learns to perform the simple packing task.
The neural network needs to be given some sense of the
current state of the environment. For the experiments
performed here, two pieces of input were given to the
network: the type of shape that has appeared, and a
perception of the contours of the current playing field.
The system provided two outputs: where to position
the shape and how to rotate or orient the shape before
dropping it.

2..3 Training

We trained standard backpropogation neural networks
using the encoding described above. For training data
we had a human perform 50 packing trials, and we
captured and encoded the input and the output of the
behavior that the human produced when performing
the packing task. We trained and tested the networks
with many different configurations of number of hidden
nodes and training epochs. We then chose the best
configurations in order to evaluate the performance of
the networks on the packing task.

2..4 Experiments

We used our packing task testbed in order to evaluate
the performance of the networks on simulated packing
trials. We gave the networks 100 random trials and
measured their performance by calculating the packing
density and height that they achieved. Packing height
is simply a measure of the highest column of blocks
in the playing field. Packing density is measured by
looking at the ratio of the number of filled spaces in

Table 1. Comparison of average height and density
performance measures on 100 simulated packing tasks

Height Density

Human 7.62 0.8748
Neural Network 8.18 0.8261

the packing to the total area of the packing. In figure
1 the packing has a height of 4 and a density of 17 /
20 or 0.85. Lower heights and higher densities indicate
better performances on the task.

2..5 Results

A human learned the packing task and was asked to
perform 100 trials. Similarly the resulting neural net-
works were run for 100 trials. Table 1 shows a com-
parison of the average performance on 100 trials by a
typical neural network and the human. Figure 2 shows
a histogram of the performance of the human and the
neural network rated by height and density.

3. Development of Behavior in the
Packing Task

Basic neural networks perform adequately on the pack-
ing task, but obviously are not quite as good at pack-
ing as humans. Even for this simplified task humans
alter their strategies as the task progresses. Early on
in a packing trial, a human is willing to wait for op-
timal fits. People know intuitively that, even though
they see shape types at random, they are likely to see
the particular shape type needed for a perfect fit if it is
still early in the trial. However, as the trial progresses,
strategies shift to those that will simply minimize the
height of the packing.

The development of differing strategies given the
context of the problem, not to mention the recogni-
tion that evolving contexts afford for behavior, is a
prime example of the development of skills in biologi-
cal organisms. People are not given explicit examples
of appropriate shifts in strategies. They develop such
strategies by interacting with the task environment,
and guided by their previous experience with the con-
straints of the problem. They seem to quickly and
intuitively embody the opportunities that situations
afford for good behaviors, and how such opportunities
change with the changing situation. In other words,
they develop a set of skills and strategies for improv-
ing their performance on the problem simply through
interaction and experience in the task domain.

Even in our simple environment we see that peo-
ple develop differing strategies for behavior based on
the context of the progress of the trial. For example,
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Figure 2. Histograms of performance on 100 trials of the packing task. The top two figures (A and B) show the
performance of a human subject in the packing task, while the bottom two (C and D) display the performance of
a neural network. In the left column we are measuring performance by the height of the packing. On the right we
show performance by the density of the packing.

humans first learn a basic set of good contours and cor-
respondence with different shape types that provide
for efficient packings. From this basic set of behav-
ior, they begin to develop preferences for patterns that
keep open future opportunities. Some contours natu-
rally accommodate more than one shape type, and are
preferred over other patterns that limit good packing
to a single shape type. Furthermore, people begin to
develop higher level strategies at this point. For exam-
ple, if it is early in the trial they wait for more optimal
packings, but later on they simply try and minimize
the height. The challenge in creating models of devel-
opment is in capturing this ability to, not only softly
assemble solutions through a repertoire of learned and
innate skills, but to also develop new skills and effec-
tive higher level strategies for the problem domain.

4. Future Directions

The basic neural networks presented here are not quite
capable of human level performance in the packing
task. The primary reason for this deficiency is an in-
ability to perceive the changes in circumstances that
cause a shift in the behavior of the human trainers.
We have no doubt that adding on more contextual in-
put (such as the current height of the packing, or a
count of the number of shapes packed so far) would
improve the performance of the basic network, though
it remains to be seen if it could equal human perfor-

mance. Also, other methods such as recurrent, dynam-
ical neural networks, or genetic algorithm optimiza-
tions, should be capable of bringing standard methods
of machine learning up to human level performance on
this simple task.

The point is not to equal human performance in
this simplified domain, but to begin to create models
that can develop behavior on their own in a cogni-
tively plausible manner, and that display some of the
flexibility of biological development. Most standard
methods of machine learning should be able to com-
petently handle the packing task environment in its
simplified form but inevitably will break down as we
add complexity and real time constraints to the task.

KIII is a dynamical memory device, which has
been used successfully to solve difficult classification
problems in vague, and noisy environments [9]. The
KIII model incorporates several KII sets, which can be
interpreted as units generating limit cycle oscillations
in an autonomous regime. High-dimensional aperiodic
and chaotic behavior does not emerge until the com-
plete KIII system is formed. KIII has a multi-layer ar-
chitecture with excitatory and inhibitory lateral, feed-
forward, and feedback connections. KIII models can
grasp the essence of the observed dynamic behavior in
certain biological neural networks. It seems feasible
to build a simplified version of KIII for the action se-
lection task addressed in this work. We call it 3*KII
model, as it consists of 3 mutually interconnected KII



sets. Each KII set has a well-defined oscillation fre-
quency. The complete 3*KII model, however, may ex-
hibit high-dimensional, aperiodic oscillations as the re-
sult of competing, incommensurate frequencies of the
KII components.

The advantage of 3*KII is that it allows a self-
organized encoding of behavioral patterns into local-
ized wings of a high-dimensional attractor. Therefore,
we can obtain flexible and noise-resistant transitions
among the states of the system, self-organized into a
sequence of elementary actions of phase transitions. It
is expected that by defining a more challenging pack-
ing task with a larger number and more complicated
set of block patterns and also a larger playing field;
the application of a dynamical encoding and action
selection mechanism such as 3*KII would prove to be
beneficial. Also the emergence of self-organized action
patterns would be imminent and complex behavioral
patterns could be generated and studied.

5. Conclusion

The development of behavior, even in a simplified en-
vironment such as the packing task, can shed light on
the mechanisms of biological development and learn-
ing. Biological organisms are able to effectively de-
velop increasingly complex skills and strategies simply
by interacting with and solving problems in their envi-
ronment. The dynamic, self-organization of behavior
in biological organisms is a powerful model of learning
that, if better understood, would provide great oppor-
tunities for improved artificial behaving and learning
systems. Development of behavior in biological or-
ganisms can be viewed as a self-organizing dynamical
system. Some research also indicates the importance
of chaotic modes of organization in the development
of behavior.
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