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Abstract

Biological organismsdisplayan amazingability during their
ontogeneticdevelopmentto adaptively developsolutionsto the
variousproblemsof survival thattheirenvironmentspresentto
them. Dynamicalandembodiedmodelsof cognition(Clark,
1997; Edelman& Tononi, 2000; Franklin, 1995; Freeman,
1999a,1999b; Freeman& Kozma,2000; Freeman,Kozma,
& Werbos,2000;Hendriks-Jansen,1996;Kelso,1995;Kozma
& Freeman,2001;Port & van Gelder,1995;Skarda& Free-
man,1987;Thelen& Smith,1994)arebeginningto offer new
insights into how the numerous,heterogeneouselementsof
neuralstructuresmayself-organizeduringthedevelopmentof
the organismin order to effectively form adaptive categories
andincreasinglysophisticatedskills, strategiesandgoals. In
thispaperwepresentmodelsof ontogeneticdevelopmentbuilt
onneurologicallyinspired,bottom-up,dynamicapproachesto
embodiedcategory formationsuchasthosedoneby Freeman
(1975,1999b),FreemanandKozma(2000),KozmaandFree-
man(2001),Verschure(1998)andEdelman(1987,1989).We
believe that building on suchmechanismsfrom an embodied
dynamicalperspective will produceautonomousagentsthat
display greatly increasedflexibility in their behavior. Such
modelswill representa betterunderstandingof how thebrains
of biologicalorganismsnotonly form perceptualcategoriesof
theirenvironmentsduringdevelopment,butalsodevelopeffec-
tivepatternsof behavior throughthedynamicself-organization
of neurologicalpatternsof activity.

Introduction
Biological organismsdevelop effective behaviors simply by
perceiving and acting upon their environment in real time.
Their learningis alwaysguidedby theirbasicneeds.Through
theirexperiencewith theenvironment,they begin to embody,
anticipateandexploit theregularitiesof theirecologicalniche
in theserviceof their intrinsic needs.Somemodelsof learn-
ing anddevelopmentfor autonomoussystemsarebeginning
to display someof theseproperties(Almássy, Edelman,&
Sporns,1998; Edelmanet al., 1992; Freeman& Kozma,
2000;Kozma& Freeman,2001;Verschure,Krőse,& Pfeifer,
1992;Verschure,Wray, Sporns,Tononi,& Edelman,1995).
Theseabilities includethe formationof embodied,organism
significantcategoriesthroughexperience;thedevelopmentof
active searchingandanticipationof relevantstimuli; the de-
velopmentof a repertoireof skills, or action loops, for the
effective transformationof environmentalproblemsand the
exploitationof environmentalregularitiesin theserviceof in-
trinsicneeds.

In this paperwe will presentsomeof the most impor-
tant propertiesof dynamicaland embodiedcognition. We
will alsodiscussthepropertiesof ontogeneticdevelopmentof

skills, strategiesandgoalsin biologicalorganismsthatmake
it a particularly powerful mechanismof learning. We will
look at examplesof existing systemsthat displayproperties
of dynamicalandembodiedcognition. And finally we dis-
cussour own plansfor creatingmodelsof the ontogenetic
developmentof behavior in autonomousadaptivesystems.

Embodied Cognition
Embodiedcognition is an emerging viewpoint in cognitive
sciencethatemphasizesmany differingaspectsfrom thestan-
dard cognitive hypothesis(Clark, 1997; Hendriks-Jansen,
1996;Pfeifer& Scheier, 1998;Varela,Thompson,& Rosch,
1993). In the standardview of cognition, the mind is the
productof the manipulationof symbolic representationsof
the problemin order to producesolutionsand generatein-
telligent behavior (Johnson-Laird,1988; Newell & Simon,
1972,1976; Newell, 1990). The environmentis perceived
andtransducedinto symbolicrepresentations.Thesesymbols
encodethecurrentstateof theenvironmentandtheproblem
to be solved. They canbe manipulated,independentof the
environment,to discover solutionsto the problemandpro-
duceintelligentbehavior for theorganism.

In anembodiedview of cognition,intelligencein biologi-
cal organismsdoesnot arisethroughthestaticmanipulation
of amodalsymbolsandrepresentations.Instead,organisms
areseentobeembeddedin theirenvironmentsin fundamental
ways. Throughtheir real time experienceswith their bodies
andenvironments,they begin to embodythesalientaspectsof
situationsin waysthatguidefuture perceptionandbehavior
towardsimproved performance.Experiencewith their eco-
logicalnichedevelopsexpectationsof theenvironmentalreg-
ularitiesthat areof benefitto the intrinsic needsanddesires
of theorganism.Theorganismactively learnsto seekoutex-
pectedstimuli thatarerelevantto thedesiresandneedsof the
organismat aparticularmoment.

Therearemany conceptsassociatedwith anembodiedper-
spective of cognition. We will briefly presentsomeof the
moreimportantconceptsin thenext sections.

Embodied Organisms are Complete Organisms
Biological organismsarecurrently the only examplescapa-
bleof producingafull rangeof intelligent,adaptivebehavior.
Standardviewsof cognitionplacenospecialemphasison the
factthatthesenaturalexamplesof cognitionarecomplete or-
ganisms.In thestandardview of cognition,it seemsplausible
thatby connectingtogethermany specializedsubsystemsthat
solve problemsin limited, specializeddomains,eventuallya



completeintelligencewill beproduced.
From an embodiedperspective, we are not likely to un-

derstandnaturalcognition from sucha piecemealapproach
to studyingandbuilding systems.Instead,we mustexamine
andbuild completecognitive systems.In this context, com-
pleterefersto systemsthatareautonomousandadaptive. Au-
tonomoussystemsarethosethathavecertainintrinsic needs,
andthat areableto producebehavior that is capableof sat-
isfying thoseneedsconsistentlyover time. Pfeifer (Pfeifer,
1996;Pfeifer& Scheier, 1998)characterizesautonomyasthe
ability of the organismto maintainits critical, intrinsic val-
ueswithin a zoneof viability. This is often referredto as
“homeostasis”. Adaptivity refersto organismsthat are ca-
pableof modifying their behavior so that they canmoreef-
ficiently maintaintheir critical parametersin their zonesof
viability.

Studyingcompletecognitive systemsis importantfor sev-
eral reasons.Classicalapproachesto modelingcognitionof-
tentackletoy problemsin limited domains.Thehopeis that
the techniquesdevelopedcan then be scaledup to the full
problemsof cognition. This approachto studyingcognition
hasfailed to produceclear insightsinto how suchmethods
couldeventuallybescaledup. Embodiedcognition,with its
emphasison completesystems,maintainsthat the answeris
not to startwith toy environments.Insteadwe shouldbegin
by studyingsimple,but complete,organisms,in more real-
istic environments(Brooks,1990;Pfeifer & Scheier, 1998).
Only completeorganismsarecapableof developingembod-
ied representationsanddisplayingintentionalbehavior.

Active, Action-Oriented Representations

Anotherimportantdifferenceof embodiedandclassicalper-
spectives concernsthe natureof the representationsdevel-
opedandusedby the organism. In a classicalperspective,
symbolsareseenaspassive structuresthat aresyntactically
manipulatedto producesolutions. In an embodiedperspec-
tive, representationsaremuchmoreintimatelytied to thein-
trinsic needsof theorganism.Clark (1997)callssuchstruc-
turesaction-orientedrepresentations. Action-orientedrepre-
sentationsarenot passive representationsof the stateof the
environmentas it exists at sometime. They are continu-
ously updatedfrom sensoryinformation, and they continu-
ously prescribepossibilitiesfor action. Gibson(1979) has
calledthis theconceptof affordances,wherethe representa-
tionsafford opportunitiesfor actionfor theorganism.

The World Represents Itself

Classicalmodelsof cognitionoften experiencean exponen-
tial explosionof computationalpowerastheenvironmentin-
creasesin complexity. An embodiedapproachto cognition
avoids this problembecauseit advocatesthe useof simple,
cheap,action-orientedrepresentations.From an embodied
perspective, it is better to usecheapand active sensingto
inform oneselfof the stateof the environment,rather than
building complex representationsof theenvironment.Brooks
(1995) statesthis principle as “the world is its own best
model”. Embodiedcognitionavoidstheuseof costlyandde-
tailedrepresentations.Cheap,quick,active,specializedsens-
ing of the environmentis preferred. Insteadof maintaining
a complex representationof thestateof theenvironment,we

simply direct specializedsensoryapparatusto directly per-
ceive the information requiredfor behavior. This approach
helpskeeptheneedfor computationfrom explodingin com-
plex environments.

Emergence of Solutions through Collective Activity

A key conceptof embodiedcognition is the emergenceof
solutionsfrom many parallel, distributed activities. In an
embodiedperspective, intelligenceis seenasemerging from
theparallelactivity of many cooperatingandcompetingpro-
cesses.As in connectionistmodels,parallelemergenceof so-
lutionsprovidesmany benefitsto thebehavior of thesystem.
Suchemergentsolutionsarerobustandresistantto damage;
tolerantof noisy, incompletedata;satisfygeneralgoalsand
yet arevariableandcontext dependent.They arealso fast,
ableto producesolutionseasily in real time demandingen-
vironments. Unlike most classicalconnectionistmodeling,
embodiedcognitionviews recurrent,non-linearinteractions
asa crucialpropertyin theemergenceof solutions.

Developing Within the Environment

Theemergenceof solutionsthroughmany parallelprocesses
is not simply a productof thenon-linearinteractionsof com-
ponentsin the organism’s brain. Intelligent behavior also
emergesastheproductof theinteractionof simplebehaviors
with a complex environment. Simple, instinctive behaviors
areseenasintelligentwhenthey arecoupledwith localenvi-
ronmentalcues(Braitenberg, 1984).Developmentof action-
orientedrepresentationsaidsin thisprocess.Organismslearn
simpleactionsthat, whencoupledwith appropriatelearned
stimuli, yield intelligent,purposefulbehavior.

Clark (1997)saysthat embodiedmindsuseextensive ex-
ternalscaffolding. Theecologicalnicheof theorganismpro-
vides many consistentcuesfor intelligent behavior. Most
intelligent behavior in natural organismsinvolves the fast
recognition and exploitation of such opportunities,not in
complex planningandreasoning.Also, mostorganismstend
to offloadcomplex planningandreasoningtasksontotheen-
vironment.They do this by allowing thestateof theenviron-
mentto representtheprogressionof theproblemsolvingtask.
Oneexample,givenby Rumelhart,McClelland,andThePDP
ResearchGroup (1986), is in the behavior of peoplewhen
multiplying largenumbers.Most peoplecaninstantlyrecog-
nizeandproducetheanswerto simple,singledigit multipli-
cationproblems,of thetype7 x 7 = 49. However, whengiven
the taskof multiplying large numberstogether, say4356X
1897,they invariablyresortto pencilandpaper, or evenacal-
culator. Peopledo not computelargechainsof complicated
reasoningandlogic. Insteadthey offloadtherepresentationof
theprogressof thetaskontotheenvironmentby maintaining
thestateof theproblemsolvingtaskwith environmentalcues.
In this case,peoplemake markson paper(theenvironment)
to keeptrackof their problemsolvingprogress,while reduc-
ing the problemsto thosesimpleonesthat they candirectly
recognizeandsolve. Embodiedcognitionseesthistypeof ex-
ternalscaffolding not assimply useful,but asaprevalentand
pervasive methodusedby cognitive systemsto reducecom-
putationalcomplexity andperformproblemsolving tasksin
realtime.



Better Imperfect than Late
Biological cognition is exemplified by fast patterncomple-
tion. It hasevolved to producebehavior in real time. The
behavior doesnot necessarilyhave to be perfect,so long as
it is goodenoughfor thecontinuedsurvival of theorganism
(at leastuntil thenext crisisoccurs).Organismsarecontinu-
ally presentedwith threatsanddangersthatmustbehandled
immediatelyin orderto ensuretheir survival. Suchrequire-
mentsdo not favor solutionsthat take largeamountsof time.
Naturalcognitionseemsto bebuilt upona foundationof fast
patternrecognitionandbehavior generationkeyedto threats
andopportunitiesfor action. The embodiedcognitive view-
point recognizesthis fundamentalfeatureof naturalcognitive
systems.Accordingto PortandvanGelder:

”The cognitive systemis not a discretesequentialma-
nipulatorof static representationalstructures;rather, it
is a structureof mutually andsimultaneouslyinfluenc-
ing change. Its processesdo not take placein the arbi-
trary, discretetimeof computersteps;rather, they unfold
in the real time of ongoingchangein the environment,
the body, andthe nervoussystem.(Port & vanGelder,
1995,pg. 3)”

The Dynamics of Development
Theontogeneticdevelopmentof behavior providesa power-
ful mechanismsby which organismslearnto organizeeffec-
tivepatternsof behavior for performingthenecessarytasksof
survival. Therearemany propertiesof this typeof develop-
ment.It is fundamentallya self-organizingprocess,in which
theconstraintsof bodyandenvironmentguidethesystemto-
wardsdiscoveringcertainpatternsof behavior. Development
of behavior in organismsis not somucha processof finding
complex chainsof effective behaviors, but in finding salient
perceptualcuesandeffectivemanipulationsthatsimplify and
transformthetaskenvironmentinto problemsthataredirectly
recognizableandsolvable. Problemsolving in naturalcog-
nitive systemsis more often the applicationof many trans-
formationsuntil the problemis sufficiently simplified to be
directly solved. Clark (1997) calls suchphenomenaaction
loops. Kirsh andMaglio (1994)call actionsthatareprimar-
ily performedto transformandsimplify thetaskenvironment
epistemicactions.

Problemsolvingbehavior in biologicalorganismsdoesnot
tendto beencodedasstatic,proceduralsteps.Instead,organ-
ismsdevelopa wide repertoireof actionloopsandepistemic
actions.Developmentof behavior takestheform of learning
more andbetteraction loops for the effective manipulation
andtransformationof problems.As anorganismsrepertoire
of actionloopsgrows, they becomebetterableto dealwith a
widevarietyof subtledifferencesin theproblemsthey needto
solve. Their solutionsbecomebothrobustandefficient with
experiencein problemsolvingin theenvironment.

Development of Embodied Cognition
ThelenandSmith (1994),Thelen(1995)envision thedevel-
opmentof behavior in cognitive systemsas an ontogenetic
landscapeof stableandunstableattractorsandrepellors.As
thebodyof theorganismchanges,new opportunitiesfor be-
havior are createdand destroyed. Developmentis seenas

a reductionof the degreesof freedomof the systemasuse-
ful patternsfor solving problemsarediscovered. As stable
solutionsto problemsdevelop, thesein turn changethe on-
togeneticlandscape,openingup new opportunitiesfor some
behaviors,andclosingoff opportunitiesfor others.Develop-
mentis thediscoveryof stablepatternsof behavior, giventhe
currentconstraintsof thebodyandtheenvironment.

Naturalcognitivesystemsdisplaybothphysicalandbehav-
ioral development.Physicalchangesin a maturingorganism
arecontinuallyreshapingtheontogeneticlandscape,destabi-
lizing previouslystablesolutions,andforcing thesysteminto
finding new patternsof behavior. Naturalcognitive systems
alsodisplaythisflexibility in thedevelopmentof behavior for
problemsolving. Sequencesof behaviors arenot learnedso
muchasbehaviors that changethe stateof the environment
andthuscuethenext behavior in thesequence.

Self-Organization of Behavior
Theoriesof the self-organizationof patternsin nonequilib-
rium systemsprovide new insights into the creativity and
flexibility displayedby biological organisms(Kelso,1995).
Many of thedesirablepropertiesof developmentin biological
organismsmake senseonly in view of non-lineardynamics.
Accordingto Kelso:

“The thesishereis that the humanbrain is fundamen-
tally a pattern-formingself-organizedsystemgoverned
by nonlineardynamical laws. Rather than compute,
our brain dwells (at leastfor shorttimes)in metastable
states:it is poisedonthebrink of instabilitywhereit can
switch flexibly andquickly. By living nearcriticality,
thebrainis ableto anticipatethefuture,notsimply react
to thepresent.(Kelso,1995,pg. 26)”

Thedevelopmentof problemsolvingbehavior in biological
organismsdisplaystheseimportantproperties.Solutionsare
developedthatareflexible, efficientandquick. Suchsystems
arenot simply reactive, they learnto anticipateandactively
seekout futurestimuli.

Bottom Up Neurological Models of
Categorization and Action

Somesystemshavebeendevelopedthatdisplaypropertiesof
dynamicandembodiedcognitionasdiscussedabove. In this
sectionwe presentfour interestingexamplesof researchthat
displaydynamic,self-organizingcategory formationandde-
velopmentof behavior. Theseare all examplesof systems
thathavebeenbuilt usingneurologicallyinspired,intermedi-
atelevel neuraldynamics.

Distributed Adaptive Control
DistributedAdaptive Control,or DAC (Pfeifer& Verschure,
1992; Pfeifer & Scheier, 1998; Verschureet al., 1992;
Verschure& Pfeifer, 1993; Verschure,1998; Verschure&
Voegtlin, 1999) is an exampleof a modelof learningbased
on largescaleneuraldynamics.At its heart,DAC is a model
of classicalconditioning,or the learnedassociationof a re-
sponseto a conditionedstimuli. In theDAC model,thereare
threelevelsof control: reactive, adaptive andreflective con-
trol.



Thereactive level is prewired in themodel,andrepresents
the intrinsic valuesof the autonomousagent. In the caseof
DAC, the robot instinctively turnsaway from thingswhenit
bumpsinto them.This representsthevalueof avoidingdam-
agefromcollisionswith theenvironment.In additionto acol-
lision sensor, aspecialsensorfor targetacquisitionis present.
DAC is hardwiredto move towardsthe targetwhenit is de-
tectedby thetargetsensor.

The next level is the adaptive control layer. In this layer
representationsof thestatesof long rangesensorsareslowly
associatedwith events that happenin the reactive control
layer. So, for example,the systemwill learn to avoid col-
lisions by associatingthe profilesof objectssensedwith the
long rangesensorto collisionsandthesubsequentactivation
of avoidancebehavior. DAC is alsocapableof learningand
exploiting the regularitiesof the ecologicalnicheit finds it-
self in. So, if targetsare always found behindopeningsin
walls,DAC is capableof learningthis associationandbegins
to searchout suchopeningssincethey tendto leadto finding
thetargetsin theenvironment.

The final layer of DAC is the Reflective control layer. At
this level sequencesof actionsare formedandremembered
through developing sequentialrepresentations.This level
representsthe addition of long term memory to the basic
mechanismsof adaptive learning.

DARWIN
DARWIN (Almássyetal.,1998;Edelman,1987,1989;Edel-
manetal.,1992;Edelman& Tononi,2000;Sporns,Almássy,
& Edelman,1999;Verschureet al., 1995)is anotherneuro-
logically inspiredmodelthatis capableof learninganddevel-
oping representationssimply by interactingwithin its envi-
ronment.At theheartof Edelman’sDARWIN systemsis the
classificationcouple. In a classificationcouple,two mapsof
neuronalgroupsreceiveinputfrom separatesensors.Thetwo
mapsare wired togetherwith many reentrantconnections.
As a result of reentrantcoupling and the changeof synap-
tic strengths,correspondingclassificationpatternsbegin to
beassociatedandmutuallyactivateoneanotherin themaps.
Thus, for example,the feel (tactile map) and shape(visual
map)of anobjectbecomefunctionallycorrelatedthroughre-
peatedexperiencewith the objectsin the environment. The
correlatedpatternsof activity in the mapsrepresentcoordi-
natedpropertiesof objectsencounteredwithin the environ-
ment.

DARWIN III is capableof self-organizingcategoriesof ob-
jectsthatit encountersin its environment,andof learningap-
propriatebehavior patterns.DARWIN is capableof learning
to trackmoving objectsin its environmentandalsoof direct-
ing its manipulatorin a targetedmannerin orderto manipu-
lateits environment.DARWIN III is alsocapableof adaptive
learningof behavior, like DAC. It learnsto associatevisual
propertiesof desirableandundesirableobjects,to thefeel of
the object. As it gainsexperiencein the environment,it no
longerneedsto toucha badobjectin orderto avoid it. It has
formedassociationsbetweenthevisualandtactilemaps,and
it beginsto avoid undesirableobjectsuponseeingthem.

KIII: Mesoscopic Dynamics
Thediscoverythatbraindynamicsoperatein chaoticdomains
hasprofoundimplicationsfor thestudyof higherbrainfunc-

tion (Skarda& Freeman,1987). A chaoticsystemhasthe
capacityto createnovel andunexpectedpatternsof activity.
It canjump instantlyfrom onemodeof behavior to another,
which manifeststhe fact that it has a collection of attrac-
tors, eachwith its basin,and that it canmove from one to
anotherin an itinerant trajectory. It retainsin its pathway
acrossits basinsahistory, which fadesinto its past,justasits
predictability into its future decreases.Transitionsbetween
chaoticstatesconstitutethedynamicsthatwe needto under-
standhow brainsperformsuchremarkablefeatsasabstrac-
tion of theessentialsof figuresfrom complex, unknown and
unpredictablebackgrounds,generalizationover examplesof
recurringobjectsnever twiceappearingthesame,reliableas-
signmentto classesthatleadto appropriateactions,andcon-
stantup-datingby learning.

TheKIII model(Freeman& Kozma,2000;Kozma& Free-
man, 2001) consistsof varioussub-units;i.e., the KO, KI,
andKII sets. The KO set is a basicprocessingunit, andits
dynamicsis describedby a 2nd order ordinary differential
equation.By couplinga numberof excitatoryandinhibitory
KO sets,KI(e) andKI(i) setsareformed.Interactionof inter-
connectedKI(e) andKI(i) setsformstheKII unit. Examples
of KII setsin theolfactorysystemaretheolfactorybulb,ante-
rior olfactorynucleusandprepyriform cortex. CouplingKII
setswith feed-forwardandfeedbackconnections,onearrives
at theKIII system.

KIII shows very goodperformancein learninginput data
andit cangeneralizeefficiently in variousclassificationprob-
lems. KIII hasa high dimensionalchaoticattractorin the
basalstate. It can be destabilizedby sensorystimuli and
switchedto alowerdimensionalattractorwing thatrepresents
a previously learnedmemorypattern.

Basic Intentional System: The Limbic System
Weconsiderbiologicalorganismsto bebehaving intelligently
whenthey act in waysthatwill enhancetheir currentandfu-
turesurvival. Thebehavior exhibitedby biologicalorganisms
isoftenverycreativeandflexible. Yetsuchbehavior isalways
directedtowardsthesatisfactionof thebasicneedsof theor-
ganism.Freeman(1999a,1999b)describessuchbehavior as
intentionalbehavior. Intentionality provides a key concept
that links the neurodynamicsof brainsto goal-directedbe-
havior.

One of the primary actsof intentionalbehavior is in di-
rectingsensoryobservation in expectationof informationto
guidefutureactions.Both theformationof expectationsand
the real time dynamic interactionof the organismwith the
environmentareimportantprinciplesof intentionalbehavior.
Freeman’s view of the mechanismsof intentionality is one
of nonlineardynamicinteractionof heterogeneousneuralel-
ementson many levels andtime scales.The neurodynamic
architectureof thebrainformsmany recurrentloopsbetween
brain andbrain, brain andbody, andorganismandenviron-
ment. But the basicarchitectureof intentionalbehavior can
befoundin thesimplestandphylogeneticallyoldestpartsof
biologicalbrains:thelimbic system.

Conclusion and Future Directions
In this paperwe have presentedan overview of thedynami-
cal andembodiedcognitive hypothesis.We have alsogiven



an overview of somesystemsthat display category forma-
tion and developmentallearning of the type we are inter-
estedin. We have begun work on our own modelsof the
ontogeneticdevelopmentof behavior in autonomoussystems
(Harter, Kozma, & Franklin, 2001a,2001b; Harter, 2001;
Kozma,Harter, & Franklin,2001). Our own modelsempha-
sizethe developmentof action-orientedrepresentationsthat
afford opportunitiesfor action-looplike interactionsbetween
theagentandtheenvironment.Suchmodelsarebasedupon
theformationof embodiedcategoriesfrom chaoticnon-linear
dynamics.

We begin with bottom-upneurologicalmodelsthatareca-
pableof chaoticnon-lineardynamics(Freeman& Kozma,
2000; Kozma& Freeman,2001). Theseneurologicallyin-
spiredmodelsareneitherlow nor high level simulationsof
neurologicalfunction, but insteadcapturebehavior of the
mesoscopicdynamicsof brain function(Freeman& Kozma,
2000). Thesemodelsof neurologicalfunction are capable
of thedynamicformationof categories.Thesedynamiccat-
egoriescan be thoughtof as modelsof embodiedcategory
formation. We areplanningto expandsuchmechanismsto
not only form perceptualcategories,but developanddisplay
action-looplike skills in thecontext of theproblemdomain.
Our goalsareto seehow far suchmechanismscango in de-
velopingproblemsolvingbehaviors,andto whatextentthese
behaviorsmimic thoseseenin naturalcognitivesystems.

Eventually we plan to build simplified modelsof com-
plete limbic systems. We hope that thesemodelswill be
capableof displayingforms of true intentionalbehavior in
autonomousadaptive systems.Suchmodelsshoulddisplay
someof the characteristicflexibility of the problemsolving
behavior that developsin naturalcognitive agents. We are
developingagentsin cognitivelydemandingrealtimetasken-
vironments.Beginningwith somevirtual environments,like
thegameof Tetris(Kirsh & Maglio, 1992,1994),we arede-
velopingbottom-upneurologicalmodelsthat arecapableof
category formationandthedevelopmentof behavior in such
environments.We hopeto eventuallymoveto morecomplex
environments,andrealautonomousrobots.
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Sporns,O., Almássy, N., & Edelman,G. M. (1999). Plastic-
ity in valuesystemsandits role in adaptive behavior.
AdaptiveBehavior, 7(3-4).

Steels,L., & Brooks,R. (Eds.). (1995). Theartificial life
routeto artificial intelligence:Building embodied,sit-
uatedagents. Hillsdale,NJ: LawrenceErlbaumAsso-
ciates,Inc.

Thelen,E. (1995).Time-scaledynamicsandthedevelopment
of anembodiedcognition.In R.F. Port& T. vanGelder
(Eds.),(pp.69–100).Cambridge,MA: TheMIT Press.

Thelen, E., & Smith, L. B. (1994). A dynamicsystems
approach to the developmentof cognition and action.
Cambridge,MA: TheMIT Press.

Varela,F. J.,& Bourgine,P. (Eds.).(1992).Toward a practice
of autonomoussystems:Proceedingsof the first euro-
peanconferenceonartificial life. Cambridge,MA: The
MIT Press.

Varela,F. J., Thompson,E., & Rosch,E. (1993). Theem-
bodiedmind: Cognitivescienceandhumanexperience.
Cambridge,MA: TheMIT Press.

Verschure,P. F. M. J. (1998). Distributedadaptive control:
Explorationsin roboticsand the biology of learning.
Informatik/Informatique, 1, 25–29.
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