
Ontogenetic Development of Skills, Strategies and Goals for

Autonomously Behaving Systems

Derek Harter and Robert Kozma
Department of Mathematical Sciences, University of Memphis

Memphis, TN 38152, USA

ABSTRACT

Biological organisms display an amazing ability during
their ontogenetic development to adaptively develop so-
lutions to the various problems of survival that their en-
vironments present to them. Dynamical and embodied
models of cognition are beginning to offer new insights
into how the numerous, heterogeneous elements of neural
structures may self-organize during the development of
the organism in order to effectively form adaptive cate-
gories and increasingly sophisticated skills, strategies and
goals. The ontogenetic development of behavior in bio-
logical organisms represents a significant level of improve-
ment over current approaches to machine learning.

In this paper we discuss the possibility of building ac-
tion selection mechanisms for autonomous agents based
upon new insights into how exactly biological organisms
manage to self-organize patterns of behavior during their
ontogenetic development. We present a simple task envi-
ronment that, nevertheless, affords opportunities for the
hierarchical development of increasingly complex behav-
iors in humans. We present some results of standard ma-
chine learning mechanisms on performing this task. And
finally we discuss future plans for developing models of
the ontogenetic development of behavior for autonomous
agents in the task environment.
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INTRODUCTION

The ability of biological organisms to self-organize pat-
terns of behavior during development is an amazing feat,
one unsurpassed by current models of learning for con-
structed artifacts. How biological organisms manage
to self-organize hierarchical patterns of behavior sim-
ply through interaction with and experience in their
task domains is unknown. However new insights into
the processes of self-organization in dynamical systems
[1, 2, 3, 4, 5, 9, 10, 14, 15, 16, 18] is beginning to offer
possible clues as to how this may be accomplished.

The development of behavior in biological organisms is
primarily a self-organizing phenomenon. Organisms are
born with a basic repertoire of motor skills and instinc-
tive needs. These are often tied to simple action-loops
[1], which provide a basic repertoire of simple pattern

completion and instinctive behaviors that can begin to
satisfy the intrinsic drives of the organism. As the organ-
ism develops both physically and behaviorally, however,
these instinctive behavior patterns begin to be associated
with more general sensory stimuli. The organism learns
to recognize patterns in the environment that are impor-
tant and useful affordances for beneficial behaviors [8].
Increasingly complex patterns of behavior are organized
around the solutions that are discovered at earlier stages
of development.

Thelen and Smith [18, 17] view development as a shifting
ontogenetic landscape of attractor basins. As physical
and behavioral patterns develop the landscape is contin-
ually reformed and reshaped. Each developed behavior
opens up many possibilities for new more complex pat-
terns of behavior, while closing off possibilities for others.
Even relatively simple tasks can provide opportunities for
the development of increasingly complex strategies in or-
der to improve performance. For example in the sim-
ple task we present in the next section, humans develop
higher level strategies for improving their performance.

Many theories of the development of behavior in biologi-
cal organisms are beginning to view it in terms of a self-
organizing dynamical system [18, 10, 9]. The organization
of patterns of behavior is viewed, in some sense, as the
formation and evolution of attractor landscapes. Some
research [16, 5, 4, 6, 7, 12] also indicates that chaotic
dynamics may play an essential part in the formation of
perception and behavior in biological organisms. For ex-
ample, one role that chaos may play in the development
of behavior is as a type of variability upon which selection
may operate in the successive generation of increasingly
improved performances.

TASK ENVIRONMENT

The hierarchical self-organization of behavior in biolog-
ical organisms occurs naturally in almost any task that
the organisms wishes to perform. Humans are capable
of displaying this type of development when undertaking
any unfamiliar and new task. For example, in the task
domain described here, which is a simplified form of the
Tetris game environment [11], humans learn the necessary
skills to become proficient in the task simply by perform-
ing the task. Such learning displays a typical progression
in ability. Initial learning is rapid as the human develops
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Figure 1: The shapes used in the packing task.

basic perceptual and motor skills necessary for perform-
ing the task. Once such basic skills are in place, further
abilities develop based upon earlier competencies. The
progression follows the typical curve of diminishing re-
turns for learning, where initial progress is quite rapid,
followed by slower, more incremental improvements.

In the packing task, humans are given a series of 10 shapes
of differing configurations. The human player is allowed
to position and orient the shape over a playing field before
dropping it. The shape falls onto the playing field once
dropped. The goal of the player in this task is to max-
imize the density of the packing achieved. This is made
difficult because of various reasons. Shapes are presented
to the player at random and the player does not know in
advance which shapes he will be asked to pack. Therefore
optimal packings are not possible since the player has no
knowledge of how the future environment may affect or
change current behavior.

The packing task can also be made more difficult with the
addition of further constraints. For example logical con-
straints may be added on the total number of moves and
rotations that the player is allowed to make. In this case
the player is constantly forced to make constraint satisfac-
tion decisions on the tradeoff of immediate optimizations
versus long range conservation of resources. Another in-
teresting variation is the addition of real-time constraints
on the performance of the player. In such a scenario the
player given a limited amount of time in which to posi-
tion and orient a shape before it is automatically dropped
(typically 1 sec). Real-time constraints add interesting
dynamics to the development of behavior for a task do-
main. Biological organisms have evolved to develop be-
havior in real-time demanding task environments. The
natural mode of operation for such developmental mecha-
nisms is in real-time environments. Real-time constraints
may not simply be interesting constraints on tasks, but
may in some sense turn out to be necessary to the devel-
opmental mechanisms of biological organisms [9, 18].

EXPERIMENTS

In the packing task, the behaving system is presented
with a series of shapes, one shape at a time. In this
packing task, which is a simplified form of the Tetris game
[11], the system can be presented with one of 3 shapes as
shown in figure 1. The goal of the task is to move and
rotate a shape before allowing it to drop onto a playing
field in such a way as to end up with as compact of a
packing as possible. An example of a packing trial in
progress can be found in figure 2.

The behaving system does not know in advance what se-

Figure 2: An example packing task trial. Shapes enter
from the top and must be positioned and rotated before
they are dropped. Performance is evaluated by the height
and the density of the packing of the shapes.

quence of shapes it will be given. In our version of the
packing task, the system is given random sequences of 10
shapes. The performance of the system on the packing
task is evaluated by examining the density of their pack-
ing and by examining the total height of the resulting
packing.

The system can produce two types of behavior. It must
specify where to position (or move) the shape in the play-
ing field, and how to rotate the shape. Once the system
has specified the position and rotation of the shape, it is
allowed to fall down onto the playing field. The shape
settles into place and the next shape is presented to the
behaving system to be positioned and rotated.

Encoding

We now present an example of a standard neural network
that learns to perform the simple packing task. The neu-
ral network needs to be given some sense of the current
state of the environment. For the experiments performed
here, two pieces of input were given to the network: the
type of shape that has appeared, and a perception of the
contours of the current playing field.

The encoding of the type of shape is relatively simple. In
the packing task environment there are 3 different shape
types. We used 2 bits to encode the type of shape. The
shapes in figure 1 were given numbers (from left to right)
of 0, 1 and 2 and were encoded as 00, 01 and 10 respec-
tively.

The perception of the state of the playing field (the envi-
ronment) is necessary in order to produce good behavior
on where and how to position the shape before dropping
it. In our reduced packing task, the playing field consisted
of 5 columns. We sensed the height of each column cur-
rently in the environment, and encoded this for training
and testing the networks. The lowest point in the play-
ing field is used as a baseline and is encoded as having
a height of 0. All other heights are calculated from the
baseline depth. We used 2 bits to encode the height of
each column, and simply ignored perception of columns



that were greater than 3 units above the baseline.

For example in figure 2, the leftmost column has the low-
est depth in the playing field, and would be encoded with
height 0. The next column to the right has a height 2
units above the baseline. So from left to right, the height
of the columns in figure 2 would be encoded as 0, 2, 1,
2, 2. The type of shape shown in figure 2 about to be
dropped is shape number 1. As stated before we used
2 bits to encode the shape type, and 2 bits for each of
the column heights, for a total of 12 bits of input. The
situation shown in figure 2 would be encoded as:

Type Col1 Col2 Col3 Col4 Col5
0 1 0 0 1 0 0 1 1 0 1 0

For the output of the system we developed the following
encoding. We encoded the position to place the shape
from the left edge in 3 bits. We need to be able to specify
up to 5 units of displacement, thus we needed 3 bits to
encode the 5 possibilities. The shapes can be rotated in
increments of 90 degrees. Shape 2 (the L shape) can be
rotated into 4 different distinct orientations. Therefore
we also needed 2 bits to encode all possible specifications
of rotation.

Training
We trained standard backpropogation networks using the
encoding described above. For training data we had a
human perform 50 packing trials, and we captured and
encoded the input and the output of the behavior that
the human produced when performing the packing task.
We also captured a similar set of data for testing. We
trained and tested the networks with many different con-
figurations of number of hidden nodes and epochs trained.
We then chose the best configurations in order to evalu-
ate the performance of the networks on the packing task
as discussed in the next section. The neural network per-
formed best with 50 hidden nodes.

Evaluation
We then used our packing task testbed in order to evalu-
ate the performance of the networks on simulated pack-
ing trials. We gave the networks 100 random trials and
measured their performance by calculating the packing
density and height that they achieved. Packing height is
simply a measure of the highest column of blocks in the
playing field. Packing density is measured by looking at
the ratio of the number of filled spaces in the packing
to the total area of the packing. In figure 2 the packing
has a height of 4 and a density of 17 / 20 or 0.85. The
lower the height of the packing is the better the perfor-
mance and similarly the denser the packing is the better
the performance.

Results
A human learned the packing task and was asked to per-
form the task for 100 trials. Similarly the resulting neural
networks were run on 100 trials of the packing task. Ta-
ble 1 shows a comparison of the average performance on
the 100 trials of the neural network and the human.

Table 1: Comparison of average height and density per-
formance measures on 100 simulated packing tasks

Height Density

Human 7.62 0.8748
Neural Network 8.18 0.8261

Basic neural networks perform adequately on the packing
task, but obviously are not quite as good at packing as
humans, even for this simplified task domain. Humans,
when performing this task, alter their strategies as the
task progresses. Early on in a packing trial, a human is
willing to leave open opportunities for particular shapes.
People know intuitively that, even though they see shape
types at random, they are likely to see the particular
shape type needed if it is still early in the trial. However,
as the trial progresses, strategies shift to those that will
simply minimize the height of their packing.

This shift in strategies causes confusion for simple back-
propogation networks. They see this as conflicting output
patterns for the same input. Strategies that would possi-
bly correct this deficiency for basic neural networks and
other solutions will be discussed in the next section.

DISCUSSION

The basic neural networks presented here are not quite
capable of human level performance in the packing task.
The primary reason for this deficiency is an inability to
perceive the changes in circumstances that cause a shift
in the behavior of the human trainers. We have no doubt
that adding on more contextual input (such as the current
height of the packing, or a count of the number of shapes
packed so far) would improve the performance of the ba-
sic network, though it remains to be seen if it could equal
human performance. Also, other methods such as recur-
rent, dynamical neural networks, or genetic algorithm op-
timizations, should be capable of bringing standard meth-
ods of machine learning up to human level performance
on this simple task.

The point is not to equal human performance in this sim-
plified domain, but to begin to create models that can
develop behavior on their own in a cognitively plausible
manner, and that display some of the flexibility of bio-
logical development. Most standard methods of machine
learning should be able to competently handle the pack-
ing task environment in its simplified form but inevitably
will break down as we add complexity and real time con-
straints to the task.

KIII is a dynamical memory device, which has been used
successfully to solve difficult classification problems in
vague, and noisy environments [12]. The KIII model in-
corporates several KII sets, which can be interpreted as
units generating limit cycle oscillations in an autonomous
regime. High-dimensional aperiodic and chaotic behavior
does not emerge until the complete KIII system is formed.



KIII has a multi-layer architecture with excitatory and in-
hibitory lateral, feed-forward, and feedback connections.
KIII models can grasp the essence of the observed dy-
namic behavior in certain biological neural networks. It
seems feasible to build a simplified version of KIII for the
action selection task addressed in this work. We call it
3*KII model, as it consists of 3 mutually interconnected
KII sets. Each KII set has a well-defined oscillation fre-
quency. The complete 3*KII model, however, may exhibit
high-dimensional, aperiodic oscillations as the result of
competing, incommensurate frequencies of the KII com-
ponents.

The advantage of 3*KII is that it allows a self-organized
encoding of behavioral patterns into localized wings of
a high-dimensional attractor. Therefore, we can obtain
flexible and noise-resistant transitions among the states
of the system, self-organized into a sequence of elemen-
tary actions of phase transitions. It is expected that by
defining a more challenging packing task with a larger
number and more complicated set of block patterns and
also a larger playing field; the application of a dynamical
encoding and action selection mechanism such as 3*KII
would prove to be beneficial. Also the emergence of self-
organized action patterns would be imminent and com-
plex behavioral patterns could be generated and studied.

CONCLUSION

The development of behavior, even in a simplified envi-
ronment such as the packing task, can shed light on the
mechanisms of biological development and learning. Bi-
ological organisms are able to effectively develop increas-
ingly complex skills and strategies simply by interacting
with and solving problems in their environment. The dy-
namic, self-organization of behavior in biological organ-
isms is a powerful model of learning that, if better under-
stood, would provide great opportunities for improved
artificial behaving and learning systems. Development
of behavior in biological organisms can be viewed as a
self-organizing dynamical system. Some research also in-
dicates the importance of chaotic modes of organization
in the development of behavior.
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