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Abstract

Intelligent behavior in biological organisms is
achieved through the coupled interaction of exoge-
nously imposed environmental constraints and en-
dogenously generated drives and goals. This view
of cognition as a structured coupling of external en-
vironment and internal mechanism is certainly not
new and is espoused by, for example, the ecological
approach to psychology of Gibson [8] among others.
However, what is new since the time of the first work
in cybernetics and systems theory is a deeper un-
derstanding of the mathematics of complex nonlinear
dynamical systems, including chaotic dynamics. The
insights of complex nonlinear systems theory have be-
gun to be applied to neurology [3, 14, 5, 2| and cog-
nition [1, 9, 10, 15]. Biological organisms manifest
intentional behaviors through the self-organization
of goals, strategies and behaviors in pursuit of en-
dogenous drives mediated by external constraints [6].
Chaotic neurodynamics may provide a crucial piece
in the internal self-organizational mechanisms of be-
havior. Chaos provides a mechanism that balances
flexibility with stability and allows for the creative
generation of behavior to satisfy drives. In this paper
we discuss these issues and present a neurobiologi-
cally inspired simulation of chaotic neurodynamics in
our attempt to model truly intentional systems.

Keywords: Chaos, chaotic neurodynamics, com-
plex adaptive systems.

Introduction

Biologically inspired control architectures for adap-
tive agents have begun to make use of complex spa-
tial and temporal dynamics to try and explain cogni-
tion. Clark [1] categorizes such biologically inspired
architectures as third generation connectionist mod-
els. Third generation connectionist models are char-
acterized by more complex temporal and spatial dy-
namics. More complex temporal dynamics are due,
in part, to the use of feedback and recurrent connec-
tions in the models. Complex spatial dynamics are
seen in the variety of connectionist architectures pro-
duced, usually meant to capture some aspect of the
architecture of biological brains. Such simulations are
no longer strictly 3 layered, with input, hidden and
output layers, but have many layers connected with
specialized and complex relations. Examples of third
generation connectionist models include the DARWIN
series produces by Edelman’s research associates [2]
and the Distributed Adaptive Control (DAC) models
of Verschure and Pfeifer [13].

Some researchers in dynamical cognition and neu-
rodynamics have speculated on the possibilities that
more complex, chaotic like dynamics may play in the
role of adaptive behavior [14, 5, 7, 11, 12]. Chaotic
dynamics have been observed in the formation of per-
ceptual states of the olfactory sense in rabbits [14].
Skarda and Freeman have speculated that chaos may
play a fundamental role in the formation of perceptual
meanings. Chaos provides the right blend of stabil-
ity and flexibility needed by the system. Essentially,
Skarda and Freeman believe that the normal back-
ground activity of neural systems is a chaotic state.
In the perceptual systems, input from the sensors per-
turbs the neuronal ensembles from the chaotic back-
ground, and the result is that the system transitions
into a new attractor that represents the meaning of
the sensory input, given the context of the state of
the organism and its environment. But the normal
chaotic background state is not like noise. Noise can-
not be easily stopped and started, whereas chaos can
essentially switch immediately from one attractor to
another. This type of dynamics may be a key prop-
erty in the flexible production of behavior in biological
organisms.

Freeman [3, 14, 4] has developed a model of the
chaotic dynamics observed in the olfactory system.
Freeman’s model is based on the description and solu-
tion of sets of 2nd order ordinary differential equations
and are called K-sets. We next describe a version of
the K-set model that we have developed for use in the
creation of adaptive agent control architectures, re-
ferred to as KA-sets (K-sets for adaptive agents). We
then present simulations using the KA-sets to model
some of the important principles of chaotic neurody-
namics.

KA Model

The purpose of the model presented here is to provide
elementary units capable of the complex dynamics ob-
served in biological organisms. These units model the
dynamics of populations of neurons, rather than a sin-
gle neuron. The modeled units presented here are also
designed to be computationally efficient, so that they
may be used to build real-time control architectures
for autonomous agents.

At its heart the KA model uses a discrete time dif-
ference equation to replicate the dynamics of the orig-
inal 2nd order ordinary differential equations of the K-
sets. A unit in the KA model simulates the dynamics
of a neuronal population. Each KA unit simulates a
current, which represents an average population cur-
rent density. The basic form of the difference equation



can be stated simply as shown in equation 1, which
simply states that the current at time step ¢ + 1 de-
pends on the current at time ¢ plus some change that
is applied to the current.

ciy1 =ct + Ay (1)

The difference equation of the KA unit can be de-
scribed as 3 differences that are combined to compute
the simulated current at time ¢ + 1 from the current
and the rate of change of the current at time ¢. These
3 influences on the simulated current are 1) a tendency
to decay back to the baseline steady state; 2) a ten-
dency to maintain the momentum of the current in a
particular direction; and 3) the influences of external
excitation or inhibition as input to the unit. In addi-
tion a saturation effect is simulated such that as the
unit moves towards its theoretical maximum or mini-
muin, it becomes increasingly difficult to continue to
push the current towards those extremes.

In the KA model the simulated current has a ten-
dency to return back to its baseline steady state. In
our model, the current is constrained to range from
-1.0 to 1.0, with a current of 0 being the resting cur-
rent. The effect of decay is described by equation 2.

Al = —¢; xa (2)

Where « is a parameter that indicates the rate of
the decay. Since the difference is proportional to the
current, the effect is to cause the decay to be rapid
for large values of the current, while the decay slows
down as the current approaches 0.

Neural populations exhibit a certain amount of mo-
mentum in the dynamics of their current’s change over
time. In essence, once a population’s current begins
to move in a certain direction (positive or negative) it
tends to keep moving in that direction even for some
time after any influence pushing it has been removed.

We first define the rate of change of the current at
time ¢ (7). This is simply defined as the difference of
the current at time ¢ from the current at the previous
time step ¢t — 1. The rate at time ¢ is given in equation
3.

Tt = Ct — C¢—1 (3)

With the rate at time ¢ defined, we can describe the
momentum as shown in equation 4.

Af:rtxﬁ (4)

Where 3 is a parameter that controls how much of
an influence the momentum has on the dynamics of
the model. (3 can be thought of again as a percentage
which indicates what portion of the momentum at the
current time step should continue into the next time
step.

In the KA model, units may be connected together
with other units to form networks. A KA unit is
strictly either excitatory or inhibitory. Excitatory
units cause the current level to be increased in units
they are connected to while inhibitory units have the
opposite effect. The effect of excitation or inhibition
is scaled by a weight on the link between the units.
Weights can range from 0.0 to 2.0 in value.

The effect of the input at time ¢ is calculated by
equation 5. In this equation, the unit under consid-
eration receives input from N external units. f is a

transfer function of the current, w; is the weight of
the connection between the two units and ~ is a scal-
ing factor.

N
A7 =) flewy (5)

Another feature supported by the KA model is the
specification of delays between the connected units.
When a delay is present on a connection between
units, the link is no longer simply specified by the
weight w; but it also has a delay parameter d; as-
sociated with it. The delay indicates how far back
in time to examine the output of the connected unit
(f(ci_g,))- The default delay is 0.

The output of a KA unit is calculated as a function
of its current. We use an asymmetric sigmoid func-
tion, shown in equation 6, to calculate the output.

ﬁ]} (6)

0; is used as the output if the unit is excitatory,
otherwise —o; is used.

oy = e{1 — exp|

0t if unit is excitatory
0 = (7)
—o¢ if unit is inhibitory

The e parameter is a scaling factor that indicates
the level of arousal of the KA unit. In the KA model,
we take the result of equation 6 and scale them so that
the values range between 0 and 1.

The sum of the differences in equations 2, 4 and 5
represent the total difference that we are proposing to
apply to the current:

Al =A; + A2+ A3 (8)

However, before this difference is applied, we first
check for the saturation of the unit. Saturation begins
to occur when a unit goes above (or below) a satura-
tion threshold. 7 is the saturation threshold parame-
ter and )\ is a parameter that determines the rate of
saturation. Equation 9 shows how the saturation is
applied.

A if |ep + A <1
. ‘{ I N P

In other words, if we are still below the threshold
then we simply use A} as the difference. If we are
above the threshold, the A} gets scaled by the value
(5

1—n

Given the definitions of the previous equations 2-9,
the final form of the difference equation used by the
KA units can then be stated simply, as shown in equa-
tion 1. In other words, the current in the next time
step is simply obtained by adding the current at the
present time to the difference, where the difference is
a result of the 3 influences (decay to baseline, momen-
tum and input) modified by a saturation effect. Table
1 gives a summary of all of the variables and param-
eters used in the KA model along with default values
for the parameters that will be used in the simulations
in the next section.
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Table 1: KA Model Variables and Parameters

Variable  Description
Ct Simulated current at time ¢
T Rate of change of current at time ¢.
Ay Difference to be applied to current at time ¢
A} Difference at time ¢ due to decay to baseline
A? Difference at time ¢ due to momentum
A3 Difference at time ¢ due to external input
Parameter Description Default
« Rate of decay to baseline 0.03
I6] Rate of momentum 0.81
y Input scaling parameter 0.018
€ Transfer function arousal level 5
n Saturation threshold 0.75
A Saturation scaling ratio 0.5

KA Simulations of Neurodynamic
Principles

The units in the KA model are discrete time difference
equations that capture some of the properties of the
time-varying dynamics of neural populations. These
properties are essential in generating important be-
havioral principles that may lie at the heart of the
flexible generation of behavior by biological brains.

KA-I Single Unit Dynamics

Figure 1 shows a simulation of a single KA unit in
response to a period of excitation. In this simulation,
the unit received external stimulation for the first 5
time steps. The unit shows a typical population re-
sponse in the slope of the curve as it returns back to
its baseline state, as well as a slight overshoot of the
current before coming back to rest, due to the inher-
ent momentum of the changing current. In all of our
simulations, time is calculated in discrete steps, where
each step represents 1 millisecond.

KA Model Single Unit Dynamics

time

Figure 1: KA simulation of single isolated population
dynamics.
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Feedback Dynamics

Freeman [5, pg. 37] postulates 10 building blocks of
neurodynamics that help to explain how neural pop-
ulations create the chaotic dynamics of intentionality.
These principles are given in the appendix.

Figure 2: (a) Excitatory-Excitatory feedback (b)
Excitatory-Inhibitory feedback.

We can demonstrate the first three principles, which
deal with the formation of point and limit cycle at-
tractors, using the KA-I units by connecting them to-
gether with mutual feedback. Figure 2a illustrates a
simulation of two excitatory units connected with mu-
tual feedback to demonstrate principle 1. Figure 2b
illustrates the same but with an excitatory-inhibitory
pair to demonstrate principles 2 and 3.

In Figure 3 we demonstrate principle 1 where
excitatory-excitatory feedback transitions to a non-
zero steady state. The two excitatory units stimulate
one another but their activation is constrained from
running away because of the saturation effects of the
individual units and the less than unity gain between
them. These units eventually obtain a non-zero steady
state (point attractor). In the figure we show three dif-
ferent steady state levels that are achieved by varying
the weights between the excitatory units.

In Figure 4 we demonstrate principle 2. In this
simulation, an excitatory unit is connected with an
inhibitory unit. When the weight of the links between
the units is below a certain threshold, the units will
respond to a stimulation by oscillating up and down
but gradually damping back and returning to their
steady state.
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Figure 3: KA simulation excitatory-excitatory.
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Figure 4: KA simulation excitatory-inhibitory,

weight=0.75.

Figure 5 demonstrates principle 3. We again are us-
ing an excitatory and an inhibitory unit connected to-
gether with mutual feedback. In this simulation, how-
ever, the weight between the units is greater than the
critical threshold value. When the connection weight
between units exceeds this threshold, the excitatory-
inhibitory pair’s oscillation no longer simply dies out
but continues to oscillate in response to a stimulation.

KA-II Mixed Excitatory-Inhibitory
Populations

Figure 6 illustrates the configuration of the original
K-IT sets, and also our KA-IT sets. In this config-
uration two excitatory and two inhibitory units are
connected with mutual feedback connections. KA-II
sets are capable of the oscillation and limit cycle dy-
namics of the first three principles shown previously.
A KA-II set will tend to oscillate at a characteris-
tic frequency. Figure 7 displays a typical time series
of the 4 units in a KA-II simulation. An analysis of
the power spectrum distribution of the first excitatory
unit is displayed in figure 8. Notice that the power
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Figure 6: KA-II mixed population simulation.

spectrum shows a peak frequency occurring at about
27 Hz, which is the characteristic frequency for a KA-
II with its particular weight settings. A KA-II set will
tend to oscillate at a characteristic frequency in the
so called Gamma band range, which is typical of EEG
measurements from biological brains.
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Figure 7: A typical simulated run of a KA-II.

KA-III Sets and Chaotic Dynamics

Freeman’s fourth principle building block of neurody-
namics, as shown in the appendix, concerns the for-
mation of chaotic background activity.

Connecting 3 KA-II populations together as shown
in Figure 9 creates a KA-III set which is capable of sat-
isfying principle 4. In this configuration, each of the
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Figure 8: KA-II power spectrum distribution of Exci-
tatory 1.

Figure 9: KA-III, 3 populations generate chaotic dy-
namics.

KA-II populations has different internal connection
weights and therefore oscillates at a different char-
acteristic frequency. The connections between KA-
IT populations are from the first excitatory unit in
each population. The groups are fully connected to
each other and weights and delays between the groups
have been found through experimentation that pro-
duce chaotic behavior.

Figure 10 shows a portion of the time series of the
first excitatory unit from each of the three groups and
Figure 11 is a state space representation of the ac-
tivity of group 2 versus group 3. The state space plot
shows a typical tangle of the activity of the two groups,
with no noticeable periodicity. However the behavior
between the groups is definitely not random, the ac-
tivity is confined to a subspace of the total possible
state space. Figure 12 is a power spectrum analysis of
the time series of the first excitatory unit from group
2. Notice now there are many frequency peaks de-
tected in the signal, not a simple single characteristic
frequency. This is due to the interaction of the three
incommensurate frequencies of the KA-II groups.

A calculation of the Lyapunov exponent of the three
time series using Wolf’s method [16] shows a strictly
positive exponent above 0.04 for all of them. This is
an indication that the trajectories are in the chaotic
region. KA-III sets, like the original K-III sets, are ca-
pable of producing and modeling chaotic background
activity.

g3 current
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Figure 10: KA-IIT Time Series of Group 1, 2 and 3.

Conclusion

KA units are based upon Freeman’s original K-sets
and are capable of reproducing the first four princi-
ples of chaotic neurodynamics. KA sets are built us-
ing difference equations (rather than solving sets of
ordinary differential equations) and are fast enough
to build modest architectures capable of controlling
an autonomous agent in real-time.

We have begun work on using the KA model to im-
plement the remaining principles of chaotic neurody-
namics. Our goal is to demonstrate the importance
of chaotic neurodynamics by building autonomous
agents based on these principles. We are developing
complete agent architectures for perception, memory
and action selection, using insights from this work and
previous results on the importance of chaos in percep-
tion and memory [5, 14, 10]. We believe that archi-
tectures based on these principles may show some of
the flexibility and complexity displayed by biological
organisms performing cognitive tasks.
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Appendix 1 - Principles

Freeman’s ten principles of chaotic neurodynamics [5,
pg. 37]:

1. The state transition of an excitatory population from
a point attractor with zero activity to a non-zero point
attractor with steady-state activity by positive feed-
back.

2. The emergence of oscillation through negative feed-
back between excitatory and inhibitory neural popula-
tions.

3. The state transition from a point attractor to a limit
cycle attractor that regulates steady-state oscillation
of a mixed excitatory-inhibitory cortical population.

4. The genesis of chaos as background activity by com-
bined negative and positive feedback among three or
more mixed excitatory-inhibitory populations.
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5. The distributed wave of chaotic dendritic activity that

10.

carries a spatial pattern of amplitude modulation
made by the local heights of the wave.

The increase in nonlinear feedback gain that is
driven by input to a mixed population, which results
in construction of an amplitude-modulation pattern as
the first step in perception.

The embodiment of meaning in amplitude-
modulation patterns of neural activity, which are
shaped by synaptic interactions that have been modi-
fied through learning.

Attentuation of microscopic sensory-driven activ-
ity and enhancement of macroscopic amplitude-
modulation patterns by divergent-convergent corti-
cal projections underlying solipsism.

The divergence of corollary discharges in preafference
followed by multisensory convergence into the en-
torhinal cortex as the basis for Gestalt formation.

The formation of a sequence of global amplitude-
modulation patterns of chaotic activity that inte-
grates and directs the intentional state of an entire hemi-
sphere.
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