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Abstract - Biological brains are capableof adaptive behavior
to sustainperformancein tasksin the face of increasingly diffi-
cult constraints. We presenta task with varying conditions of
resource and time constraints. We compare our heuristic and
neural network modelsto human data and speculateabout dy-
namic mechanismsof action selection.

I. INTRODUCTION

The fundamentalquestion for all biological organisms
comesdown to what shouldbe donenext [1]. In the study
of autonomousgentsthis hascometo be known asthe ac-
tion selectionproblem. Biological brainsnot only solve this
problemwell, but shav amazingabilities to adaptto chang-
ing constraintdn the taskandervironment. In otherwords,
biologicalorganismsareableto dynamicallyadjustto chang-
ing constraintandmaintaingoodperformancentasksin the
faceof increasingdifficulties.

Biological brainsare fundamentallypattern-forming self-
organizingsystemgyovernedby nonlineardynamicalaws[2,
pg. 26]. It hasbeenshowvn thatnonlinear chaoticdynamics
areusedn theformationof perceptuatatagoriesin biological
brains[3], [4]. We believe that suchdynamicsare not only
essentiain the formationof perceptuaimeaning,but alsoin
theformationof ashifting hierarchyof intentionalgoalstates,
thatwe obsene asthe actionselectionbehaior of biological
organismg5], [2], [6], [7]-

Il. PACKING TASK TESTBED

To study the performanceof action selectionunder con-
straintswe have developeda packingtaskasshown in figure
1, whichis avariantof the populartetris computergame[8],
[7], [9]. In our packingtask,the subjectis presentedvith a
seriesof 10 blocks,thatappearat thetop of the playingfield.
Thereare 3 basicblock shapes.In a sequencef 10 blocks
which constitutesa singletrial, the subjectwill receve differ-
entblock typeschosenat random. Blocks canbe positioned
by moving themleft or right, or by rotatingthem clockwise

Fig. 1. Thepackingtask.Blocksappeafrom thetop andthesubject
rotatesandmovesthe block beforedroppingit ontothe playing
field. Thegoalis to obtainasdenseof a packingaspossible.

or counterclockwise.Oncepositionedoy thesubjectthey are
droppedonto the playingfield. Whena block dropsontothe
playingfield, it descendsintil it reacheghe bottomor is ob-
structedn its downwardfall by anotherblock.

The goal of the taskfor the subjectis to packthe shapes
into the bottomof the playingfield astightly aspossible.The
densityof their packing,which is a measureof the subjects
succes®n thetask,canbe calculatedsimply by dividing the
areafilled in with blocks with the total area. For example,
in figure 1 the playing field currently has5 columnswith 4
rows in heightfor atotal areaof 20. Out of thatareaof 20,17
cellsarefilled with blocks. Thereforein thefigure,thecurrent
densityof the packingis 17/ 20 or 0.85.

Thetask,simpleasit mightseemjs still toodifficult to per
form optimally for a human(3 differentblockscanbe placed
in 28 orientationswith 10blockspertrial givesasearctspace
of 2810 or 3x10'* possiblesequences).Furtherthe task is
made more difficult by the introduction of constraintsthat
mustalsobe consideredvhenchoosingbehaior. In this pa-
perwe discusssimulationsof the packingtaskundertwo dif-



ferenttypesof constraintsresourceandtime.

Resourcesreconstrainedn the packingtaskby giving the
subjectonly acertainnumberof translation/rotatiomesources
atthebeginningof atrial. For example,if thesubjectis given
15 resourcesthey will only beableto make acombinationof
15 movesandrotationsover the whole 10 block trial. Each
move (left or right) and eachrotation (clockwiseor counter
clockwise)expendsone of the subjectsresourcesWhenthe
subjectrunsout of resourcedeforetheendof atrial, ary re-
mainingshapesimply fall atrandomon the playingfield.

Time constraintarethe secondype of constraintmodeled
in thesesimulations. Whena subjectis playing the packing
task undera time constraint,they will be presentedvith a
block at the top of the playing field andgiven only a certain
amountof time to positionthe block, for examplel second.
Whentime runsout, the block falls whetherthe subjecthas
finishedplacingit in theirintendedpositionandorientationor
not.

Time andresourceconstraintfurther complicatethe pack-
ing task and make optimal play impossible. Under such
constraints systemsare forcedto producebehaior in noisy
conditionsandunderuncertaininformation. But even under
suchunfavorableconditions,biological systemsare capable
of maintainingperformancdevelsin the faceof increasingly
difficult constraints.

In the next sectionwe presenta computersimulation of
a behaiior producingsystemperformingundertime andre-
sourceconstraintsin the packingtask. In section IV we
presentsomedata collectedon humansubjectsperforming
the packingtask and compareit with our computersimula-
tion. Finally we discussthe implicationsof our researctor
dynamicalmodelsof actionselectionn autonomousgents.

lll. COMPUTER SIMULATION
A. NeuralNetwork andHeuristicAlgorithms

The action selectionmechanisnpresentechereis meantto
modelsomeaspect®f biological organismsn producingbe-
havior onthepackingtaskunderconstraintsin particulay we
modelthe selectionof anintendedgoal positionfor a block
usinganeuralnetwork or asetof heuristics.

We have developedsereralalgorithmsandheuristicgo per
form the packingtask basedon variousprinciples. Among
theseareneuralnetworks basedon backpropogatiotearning
anda heuristicalgorithmusingheuristicsderivedfrom study-
ing the behavior of peopleon the task. The neuralnetwork
basedmodelis illustratedin detailsin [8], [7]. It involves
a multilayer perceptrontrainedon examplescreatedby hu-
manexperts. The neuralnetwork algorithmshaws reasonable
performancewith top scorescloseto the thoseachieved by
humanexperts. The resultsof the neuralnetwork andhuman
expertsaregivenin tablel.

TABLE |
NEURAL NETWORK PERFORMANCE

Density

Human 0.8748
NeuralNetwork 0.8261

Our computersimulationsusing heuristicsevaluatethere-
sulting situation of dropping a given block in a particular
orientationand position onto the currentplaying field. The
heuristicevaluationtakesinto accountfactorssuchasthere-
sulting contourshapeof the playingfield, andthe creationof
unfillable holes,aswell asotherfeatures. Thesefactorscan
becombinedo evaluatethedesirabilityof placingablockata
particularlocationandorientationgiventhe currentsituation.

The heuristicevaluationof intendedgoal positionsis used
asa startingpointin thedecisionmakingprocess Whenper
forming the packingtaskunderconstraintspehaior may be
modifiedwhenconstraintarefactorednto thedecisionmak-
ing processFor example which moveis consideredestmay
be very differentif thereare plenty of resourcedeft as op-
posedto whenthereareonly very few resourceseft.

B. Expectanyg andResourceConstraints

Resourceconstraintscan influence the behavior producing
mechanism#n biological organisms.Peopleseento be able
to intuitively adjusttheir behaior on the packingtaskto im-
prove performancexandminimize problemsfrom runningout
of resources. For example when peoplehave plenty of re-
sourceghey freely expendresource®n goodmovesthatmay
costalot of resourcesHowever, peopleseento switchstrate-
giesandwill selectlessdesirablemovesthat help consere
resourcesvhenthey percevethey arerunningout of them.
We have modeledthis intuitive conseration of resources
under conditions of constraintusing a factor we call Ex-
pectancy Expectanyg is a measureof the expectednumber
of resourcesieededon averagefor eachblock in atrial. In
this caseit is the numberof resourceshatareexpectedto be
neededfor eachblock in orderto obtaina reasonablygood
packing performance. For example, supposehat you intu-
itively feel that you need20 resourcesn orderto pack 10
blocksreasonablyvell. Anotherway of looking at this would
bethatyou expectto expend,on average 2 resource$or each
block in orderto obtaina good packing. Giventhis intuitive
expectang of 2 resourceperblock, you candynamicallyal-
ter your behavior during a trial in orderto expendyour re-
sourceswisely. If you have 5 blocksleft to packyou would
expect to needabout 10 resourceso obtain a good pack-
ing performance.If you actually have 15 resourcedeft you
would feel fairly safein choosingthe move you think best,



evenif you have to expend5 resourcesn orderto executeit.
However, if youonly had8 resourceinsteadyou mightthink
twice aboutexpendingb resource®n amove andinsteacdpick
aslightly worsemove thathelpsto consere resources.

Of coursewe don't believe that peopleconsciouslymake
suchcalculationswhile performingthe packingtask. How-
ever, they dointuitively developsomethindik e anexpectang
parametethroughexperiencen performingthe packingtask.
This intuitive feel of expectedresourceusageguidesthe sub-
jectin modifying behavior appropriatelyundervariouscondi-
tions of resourceconstraintghatthey encounter Expectanyg
is simply anintuitive strat@y that peopledevelopwith expe-
rienceon the packingtask. Experienceon the packingtask
helpspeopleto develop a naturalexpectationof the number
of resourceshey usually needper block (or over the whole
trial) in orderto obtaingoodperformance.

Our algorithmusesa comparisorof expectedresourceus-
ageto actualresourcegemainingasdescribedabove to help
choosemovesthatbalancebetweerconserationof resources
andoptimalmoves.

C. NoiseandTime Constraints

The secondtype of constraintmodeledin thesesimulations
is constraintson time. Time pressurecan be addedto the
packingtask by limiting the amountof time given the sub-
ject,from presentationf theblockto whentheblockfalls, for
the subjectto performmovesandrotationsin orderto place
the block in their intendedgoal position. Time constraints
manifestthemseles as pressurego act. As time pressures
are increasedpehaiors may changethat favor easymoves
thatarelessproneto errorandconfusionandthat canbe ac-
complishedmorequickly. For example,rotationsarea much
more difficult manipulationto performcomparedo transla-
tions,andmuchmoreproneto errors. As time pressuresire
increasedhumanplayersrely lessandlesson rotationsand
favor translationmanipulations.

Time constraintsmanifestthemseles in human perfor
mancein variousways, but the ultimate effect is to induce
anerror. By anerror, we meanthatthe subjectfails to move
and positionthe block to their intendedgoal location. This
mayhapperbecause¢hey runoutof timebeforethey complete
their sequencéo theintendedocation,or time pressuresnay
increasehelik elihoodof producinganunintendedehaior.

We modeltime constraintsn our simulationsby introduc-
ing noise,or randomerrors,into the simulations. One ex-
amplemodelof error productionis to saythatsomepercent-
ageof thetime the block doesnotendup in its intendedgoal
location, but insteadendsup in someotherlocation at ran-
dom. A morerealisticmodelis to simulatethe sequencef
movesneededo transitionfrom theinitial locationto thein-
tendedgoallocation. In the morerealisticmodel,eachmove
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Fig. 2. Thecomputeisimulationof thepackingtaskusingheuristics.
This figure shaws the averagedensityachiezed by the algorithm
at0,20,40and60%noiselevels.
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in the sequencenay be erroneouslyexecuted. Also the se-
guenceof movescanbe stoppedbeforecompletion,with in-
creasingprobabilitydependingnthe numberof movesin the
sequence.

In the simulationsdescribednext, we useda simplistic
modelof noiseasthe moreinvolved modelgivessimilar re-
sults.

D. Overview of the ExperimentalConditions

We carriedout simulationsof the actionselectionmechanism
for the packingtaskunderconstraints We variedeachof the
following parameters:

+ Expectanyg wasvariedfrom a valueof 0 to 5.0in 0.1
incrementsThe choserexpectany remainedixedfor a
10 blocktrial.

« Resourcesverevariedfrom 0 to 29. This representshe
numberof resourceghat can be expendedin total for
a 10 block trial. For example,15 resourcesneansthat
only atotal of 15 movesandrotationscanbe performed
for the 10 blocksin atrial.

« Noisewasvariedfrom 0% to 100%in 10% increments.
As previously statedtheresultspresentedherewereob-
tainedusinga simplemodelof noise. Noiseis intended
to modelthe performanceof subjectsunderincreasing
time constraints.

For eachof the 3 combinationf parametersl00trials were
run andthe averageperformancen the 100trials wascalcu-
lated. Performancevasratedby the densityof the packing
achieved.

E. Resultsof ComputerExperiments

Figure 2 shaws the resultsof the simulationfor 4 valuesof
noise:0, 20,40and60%. The4 contourplotsdisplaytheden-
sity achievedby thealgorithmfor all combination®f resource
constraintandexpectang ata givennoiselevel. As noisein-
creaseghe level of performancedecreasesver all valuesof
resources.Also, and not surprisingly betterperformanceds
achievedunderconditionsof moreresourceavailability.

The moststriking featureof the resultsarethe prominent
differencethatthe expectang parametecanmake in perfor
mance.In particularthereis a greatincreasen performance
aroundan expectany of 2.5, which is mostprominentat 0%
noisebut is still visible at 20 and40%. An expectang pa-
rameterof 2.5 representanoptimalintuitive heuristicfor de-
cision makingin the packingtask as we have setit up. At
2.5 expectang the algorithm achieses a good balancebe-
tween conservingresourcesunder conditions of tight con-
straintsandchoosinggoodmoveswhenpossible Expectang
valuesabove 3 still work, however they tendto be too con-
senative andperformancéeginsto degrade.Whenthealgo-
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Fig. 4. Humanperformanceon the packingtaskfor the first setof
trials. Time constraintonditionsrangedirom 2.0to 0.5seconds
in 0.5secondntervals.

rithm is too consenrative it endsup with unusedresourcest
theendof thetrial.

In figure 3 we shav a differentview of the resultsfor a
singlevalue of expectang. Figure 3 shows the performance
over all valuesof noiseandresourcegor anexpectang value
of 2.5. This figure revealsthatresourcdimitations above 20
have little effect on performance.But below 20, the achies-
ableperformancéeginsto fall. This indicateshatmorethan
20 resourcesmreneededn the usualcasein orderto achiee
goodpackingdensitieson thetask.

IV. HUMAN TRIALS
A. Overview of the ExperimentalConditions

To developour modelsof theparameterthatpeoplemayintu-
itively learnandadaptwhenperformingthe packingtask,we
performeda seriesof packingtrials on humansubjects.Sub-
jectswereasledto performmary packingtasks,with differ-
ing time andresourceconstraints Subjectsverefirst allowed
to practiceon the taskuntil they were comfortablethat they
hadobtaineda certainlevel of competence.

In thefirst setof experimentsve ran14 subjects Eachsub-
ject performed30 packingtrials with a 2.0 secondime con-
straint,then 30 morewith a 1.5 secondtime constraint,and
similarly for 1.0 and 0.5 secondtime constraints. The time
constraintseta limit on how muchtime they hadto complete
moving ablockto its intendedpositionbeforeit wasdropped
for them. Eachof the 30trials for a particulartime level con-
sistedof performinga 10 block packingtask at a different
resourceconstraintievel, which variedfrom 0 resourceso 29
resourcesTheorderthatthey recevedtheresourceconstraint
trials wasvariedrandomly Sothey mightfirst performatrial



Human Experiment 2
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Fig.5. Humanperformanceén the secondsetof trials using3 expert
subjectsTime constraintsangedrom 1.5to 0.5secondén 0.25
secondntenals.

with 15resourcesthenwith 5 resourcesetc. O resourcerials
actedasatypeof controlthatallowedfor usto developamin-
imum baselinedensitythathappen®nthe packingtaskwhen
blockssimply fall atrandomontothe playingfield.

The secondsetof experimentshada similar setup asthe
first one. In the secondsetwe ran 16 experimentsusing 3
subjects.Thetime constraintsverevariedfrom 1.5t0 0.5sec-
ondsin 0.25secondntervals(1.5,1.25,1.0,0.75,0.5). Each
time level had30 trials with a differentresourceconstraintas
in the previousexperiment.The 3 subjectavho performedhe
16 experimentsvereplayerswho hadachievedahighlevel of
proficieng/ on the packingtask,obtainingbetterperformance
on averagethanotherplayers.Thesubjectgeachedhislevel
of performancehroughrepeategbracticeandexperienceawith
thetask.

B. Resultsof HumanTrials

Figure 4 displaysthe resultsof the humantrials for the first
experiment. This experimentwasperformedmainly to deter
mine the critical time constraintrangewherehumansare no
longer able to sustainperformancebecausehe taskis hap-
peningtoo fastfor themto process.As shawvn in the figure,
this point appearg¢o happensomevherebetweenl.0 and0.5
seconds Fromour obsenationsof thetrials, 1.0 secondstill
allowed peopleenoughtime to perform somerotationsand
executetheir intendedsequencef actions. However at 0.5
secondslocksfell sofastthatthe subjectscould only react
minimally, usuallyby trying to guidethe blocksto theleft or
right with no attemptsor possibility of performingrotations.
Figure5 shaws theresultsof the seconchumantrials. We
performedmoretrials in the critical region betweenl.0 and
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Fig. 6. Averageperformanceachiered by expert humansubjects
over resourceconstraintconditionsranging from 14 to 29 re-
sources.Notice the sharpdropin performancebetweenl.0 and
0.5seconds.

0.5 seconds.In the region betweenl.0 and 0.5 secondghe
humansubjectis sometimesableto completetheir intended
moves,but notalways. Also errorratesincreasalrasticallyin
this region. Notice thatthe 3 expertlevel subjectsperformed
betteron averageover the subjectsn thefirst experiment.In
fact, the subjectdn this experimenthave gainedenoughpro-
ficiengy to pushthe critical time constraintievel to a smaller
value.In experimentl thereappear$o beasmalldropin per
formancebetweenl.5 and 1.0 seconds.The expert subjects
performednoticeablybetterat the 1.0 secondiime constraint
level. They managedo pushthecritical time constraintdown
to somevhereator belowv the0.75secondconstraint.

Figure 6 displaysthe averagedensityachiesed by the ex-
pert humansubjectsin the secondexperimentfor resource
constraintlevels (from 14 to 29 resourceshat eachof the 5
time constraints. This figure illustratesthe transitionin per
formancethathappenssthetime constraintreaches critical
level beyond that of humanbrainsto copewith. The data
pointat 0 secondss the densitythatis achiesedwhenblocks
arerandomlydroppedonto the playing field (e.g. the player
hasno time whatso®erto try andpositionthe block).

V. DISCUSSION

Viewing actionselectionasthe self-oiganizationof a goal
attractorlandscapehasseveral implications. The timing of
thedynamicgo find andsettleinto anattractorbasinsetslim-
its onthereal-timeperformanceossibleby biologicalbrains.
However, learningand experiencecansene to deepersome
attractorswith the effect that good goalsandintentionsare
found and settledinto more quickly. Experienceon the task
allows for subjectgo recognizeandsettleinto goodbehavior
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Fig. 7. Humanperformancerom the secondhumantrials for 1.5
and0.5 secondsWe comparethis to the computersimulationof
actionselectionat 10%and70%noiselevels.

attractorsmore quickly, and thereforepushbackthe thresh-
old of time constraintsunderwhich they canproduceeffec-
tive behavior. Our expertsubjectsshav someevidenceof this
ability to extendgoodperformancento increasinglydifficult
time constraintdomains.

Thetimeto recognizeandfall into agoalattractoris acriti-
calfeatureof performingtasksunderrealtime constraintsin
the recognitionof perceptuakatayories,two typesof emer
gentamplitudemodulation(AM) patternshave beenidenti-
fied[10], [11], [12], [4]. Whenastimulusis givento asystem,
thereis a phasédransitionfrom a high dimensionathaoticat-
tractorto a lower dimensionalwing. The first type of AM
patternoccurswith ashortlateng immediatelyafterthestim-
ulusarrives.ThisearlyAM patterngepresenttheimpactof a
discriminatedstimuluson the activity of thereceving cortex.
Thesecondypeof AM patternis endogenouge.g.internally
generatedandoccurswith avariablelateng in thetimerange
of betweern750and1200ms.

The secondtype of emegentpatternrepresentshe act of
categorizationof the input stimulus. The type Il patternis
the resultof recognitionof stimuli meaningfulin the current
situationto the organism.

We believe thatthesametype of patternformationworksin
the emegenceof intentionalactionsfrom the entorhinalcor
tex. In this case,the dynamicsprovide the action selection
mechanismfor recognizingand choosingamongstrateies
andgoalsfor theorganism.Thetime periodof around750ms.
representghe minimum time that the selectionand perfor
manceof intentionalgoal actionscanbe achierzed. Through
learningin realtime tasks peoplecanpushtheir performance
up to this limit, but the fundamentaldynamicsof the brain
dictateghatintentionalgoalscannotbeformedin timeframes

lessthanthis period neededor the formationof type Il AM
patterns.

Finally we speculateon the possibleconnectionbetween
ourcomputationamodelsandhumanperformanceindertime
constraintsFigure7 indicateghatthereis areasonablenatch
betweencomputersimulationswith 10% noise and human
performancevith smalltime pressureél.5secavailable).On
the otherhand,70% noiseproducegerformancesloseto hu-
manswith very significanttime pressure$0.5 sec).
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