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Abstract - Biological brains are capableof adaptive behavior
to sustainperformance in tasks in the face of increasinglydiffi-
cult constraints. We presenta task with varying conditions of
resource and time constraints. We compare our heuristic and
neural network modelsto human data and speculateabout dy-
namic mechanismsof action selection.

I. INTRODUCTION

The fundamentalquestion for all biological organisms
comesdown to what shouldbe donenext [1]. In the study
of autonomousagentsthis hascometo be known asthe ac-
tion selectionproblem.Biological brainsnot only solve this
problemwell, but show amazingabilities to adaptto chang-
ing constraintsin the taskandenvironment. In otherwords,
biologicalorganismsareableto dynamicallyadjustto chang-
ing constraintsandmaintaingoodperformanceontasksin the
faceof increasingdifficulties.

Biological brainsarefundamentallypattern-forming,self-
organizingsystemsgovernedby nonlineardynamicallaws[2,
pg. 26]. It hasbeenshown thatnonlinear, chaoticdynamics
areusedin theformationof perceptualcategoriesin biological
brains[3], [4]. We believe that suchdynamicsarenot only
essentialin the formationof perceptualmeaning,but alsoin
theformationof ashiftinghierarchyof intentionalgoalstates,
thatwe observe astheactionselectionbehavior of biological
organisms[5], [2], [6], [7].

II. PACKING TASK TESTBED

To study the performanceof action selectionundercon-
straintswe have developeda packingtaskasshown in figure
1, which is a variantof thepopulartetriscomputergame[8],
[7], [9]. In our packingtask,the subjectis presentedwith a
seriesof 10 blocks,thatappearat thetop of theplayingfield.
Thereare3 basicblock shapes.In a sequenceof 10 blocks
whichconstitutesasingletrial, thesubjectwill receivediffer-
ent block typeschosenat random.Blocks canbe positioned
by moving themleft or right, or by rotatingthemclockwise

Fig. 1. Thepackingtask.Blocksappearfrom thetopandthesubject
rotatesandmovestheblock beforedroppingit onto theplaying
field. Thegoalis to obtainasdenseof a packingaspossible.

or counter-clockwise.Oncepositionedby thesubjectthey are
droppedonto theplayingfield. Whena block dropsonto the
playingfield, it descendsuntil it reachesthebottomor is ob-
structedin its downwardfall by anotherblock.

The goal of the task for the subjectis to packthe shapes
into thebottomof theplayingfield astightly aspossible.The
densityof their packing,which is a measureof the subjects
successon thetask,canbecalculatedsimply by dividing the
areafilled in with blocks with the total area. For example,
in figure 1 the playing field currentlyhas5 columnswith 4
rows in heightfor a totalareaof 20. Outof thatareaof 20,17
cellsarefilled with blocks.Thereforein thefigure,thecurrent
densityof thepackingis 17 / 20 or 0.85.

Thetask,simpleasit mightseem,is still toodifficult to per-
form optimally for a human(3 differentblockscanbeplaced
in 28orientationswith 10blockspertrial givesasearchspace
of ������� or 3x 	�
���� possiblesequences).Further the task is
mademore difficult by the introduction of constraintsthat
mustalsobeconsideredwhenchoosingbehavior. In this pa-
perwe discusssimulationsof thepackingtaskundertwo dif-



ferenttypesof constraints:resourceandtime.
Resourcesareconstrainedin thepackingtaskby giving the

subjectonly acertainnumberof translation/rotationresources
at thebeginningof a trial. For example,if thesubjectis given
15 resources,they will only beableto makea combinationof
15 movesandrotationsover the whole 10 block trial. Each
move (left or right) andeachrotation(clockwiseor counter-
clockwise)expendsoneof the subjectsresources.Whenthe
subjectrunsout of resourcesbeforetheendof a trial, any re-
mainingshapessimply fall at randomon theplayingfield.

Time constraintsarethesecondtypeof constraintmodeled
in thesesimulations.Whena subjectis playing the packing
task undera time constraint,they will be presentedwith a
block at the top of the playing field andgivenonly a certain
amountof time to positionthe block, for example1 second.
Whentime runsout, the block falls whetherthe subjecthas
finishedplacingit in their intendedpositionandorientationor
not.

Time andresourceconstraintsfurthercomplicatethepack-
ing task and make optimal play impossible. Under such
constraints,systemsareforcedto producebehavior in noisy
conditionsandunderuncertaininformation. But even under
suchunfavorableconditions,biological systemsarecapable
of maintainingperformancelevelsin thefaceof increasingly
difficult constraints.

In the next sectionwe presenta computersimulationof
a behavior producingsystemperformingundertime andre-
sourceconstraintsin the packing task. In section IV we
presentsomedatacollectedon humansubjectsperforming
the packingtaskandcompareit with our computersimula-
tion. Finally we discussthe implicationsof our researchfor
dynamicalmodelsof actionselectionin autonomousagents.

III. COMPUTER SIMULA TION

A. NeuralNetwork andHeuristicAlgorithms

The action selectionmechanismpresentedhereis meantto
modelsomeaspectsof biologicalorganismsin producingbe-
havior onthepackingtaskunderconstraints.In particular, we
model the selectionof an intendedgoal positionfor a block
usinga neuralnetwork or asetof heuristics.

Wehavedevelopedseveralalgorithmsandheuristicsto per-
form the packingtask basedon variousprinciples. Among
theseareneuralnetworksbasedon backpropogationlearning
anda heuristicalgorithmusingheuristicsderivedfrom study-
ing the behavior of peopleon the task. The neuralnetwork
basedmodel is illustratedin details in [8], [7]. It involves
a multilayer perceptrontrainedon examplescreatedby hu-
manexperts.Theneuralnetwork algorithmshowsreasonable
performancewith top scorescloseto the thoseachieved by
humanexperts.Theresultsof theneuralnetwork andhuman
expertsaregivenin tableI.

TABLE I
NEURAL NETWORK PERFORMANCE

Density

Human 0.8748
NeuralNetwork 0.8261

Our computersimulationsusingheuristicsevaluatethere-
sulting situation of dropping a given block in a particular
orientationandpositiononto the currentplaying field. The
heuristicevaluationtakesinto accountfactorssuchasthere-
sultingcontourshapeof theplayingfield, andthecreationof
unfillable holes,aswell asotherfeatures.Thesefactorscan
becombinedto evaluatethedesirabilityof placingablockata
particularlocationandorientationgiventhecurrentsituation.

Theheuristicevaluationof intendedgoalpositionsis used
asa startingpoint in thedecisionmakingprocess.Whenper-
forming thepackingtaskunderconstraints,behavior maybe
modifiedwhenconstraintsarefactoredinto thedecisionmak-
ing process.For example,whichmoveis consideredbestmay
be very different if thereare plenty of resourcesleft as op-
posedto whenthereareonly very few resourcesleft.

B. Expectancy andResourceConstraints

Resourceconstraintscan influencethe behavior producing
mechanismsin biologicalorganisms.Peopleseemto beable
to intuitively adjusttheir behavior on thepackingtaskto im-
prove performanceandminimizeproblemsfrom runningout
of resources.For examplewhen peoplehave plenty of re-
sourcesthey freelyexpendresourcesongoodmovesthatmay
costalot of resources.However, peopleseemto switchstrate-
gies andwill selectlessdesirablemovesthat help conserve
resourceswhenthey perceivethey arerunningout of them.

We have modeledthis intuitive conservation of resources
under conditions of constraintusing a factor we call Ex-
pectancy. Expectancy is a measureof the expectednumber
of resourcesneededon averagefor eachblock in a trial. In
this caseit is thenumberof resourcesthatareexpectedto be
neededfor eachblock in order to obtaina reasonablygood
packingperformance.For example,supposethat you intu-
itively feel that you need20 resourcesin order to pack 10
blocksreasonablywell. Anotherwayof lookingat thiswould
bethatyouexpectto expend,onaverage,2 resourcesfor each
block in orderto obtaina goodpacking. Given this intuitive
expectancy of 2 resourcesperblock,you candynamicallyal-
ter your behavior during a trial in order to expendyour re-
sourceswisely. If you have 5 blocksleft to packyou would
expect to needabout 10 resourcesto obtain a good pack-
ing performance.If you actuallyhave 15 resourcesleft you
would feel fairly safein choosingthe move you think best,



evenif you have to expend5 resourcesin orderto executeit.
However, if youonly had8 resourcesinstead,youmight think
twiceaboutexpending5 resourcesonamoveandinsteadpick
a slightly worsemovethathelpsto conserveresources.

Of coursewe don’t believe that peopleconsciouslymake
suchcalculationswhile performingthe packingtask. How-
ever, they dointuitively developsomethinglikeanexpectancy
parameterthroughexperiencein performingthepackingtask.
This intuitive feel of expectedresourceusageguidesthesub-
ject in modifyingbehavior appropriatelyundervariouscondi-
tionsof resourceconstraintsthat they encounter. Expectancy
is simply an intuitive strategy thatpeopledevelopwith expe-
rienceon the packingtask. Experienceon the packingtask
helpspeopleto develop a naturalexpectationof the number
of resourcesthey usuallyneedper block (or over the whole
trial) in orderto obtaingoodperformance.

Our algorithmusesa comparisonof expectedresourceus-
ageto actualresourcesremainingasdescribedabove to help
choosemovesthatbalancebetweenconservationof resources
andoptimalmoves.

C. NoiseandTimeConstraints

The secondtype of constraintmodeledin thesesimulations
is constraintson time. Time pressurecan be addedto the
packingtask by limiting the amountof time given the sub-
ject,from presentationof theblockto whentheblockfalls,for
the subjectto performmovesandrotationsin orderto place
the block in their intendedgoal position. Time constraints
manifestthemselvesas pressuresto act. As time pressures
are increased,behaviors may changethat favor easymoves
thatarelessproneto errorandconfusionandthatcanbeac-
complishedmorequickly. For example,rotationsarea much
moredifficult manipulationto performcomparedto transla-
tions,andmuchmoreproneto errors. As time pressuresare
increased,humanplayersrely lessandlesson rotationsand
favor translationmanipulations.

Time constraintsmanifest themselves in human perfor-
mancein variousways, but the ultimate effect is to induce
anerror. By anerror, we meanthat thesubjectfails to move
andposition the block to their intendedgoal location. This
mayhappenbecausethey runoutof timebeforethey complete
theirsequenceto theintendedlocation,or timepressuresmay
increasethelikelihoodof producinganunintendedbehavior.

We modeltime constraintsin our simulationsby introduc-
ing noise,or randomerrors, into the simulations. One ex-
amplemodelof errorproductionis to saythatsomepercent-
ageof thetime theblock doesnot endup in its intendedgoal
location, but insteadendsup in someother location at ran-
dom. A morerealisticmodel is to simulatethe sequenceof
movesneededto transitionfrom theinitial locationto the in-
tendedgoal location. In themorerealisticmodel,eachmove
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Fig.2. Thecomputersimulationof thepackingtaskusingheuristics.
This figureshows theaveragedensityachievedby thealgorithm
at0,20,40and60%noiselevels.
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in the sequencemay be erroneouslyexecuted. Also the se-
quenceof movescanbestoppedbeforecompletion,with in-
creasingprobabilitydependingonthenumberof movesin the
sequence.

In the simulationsdescribednext, we useda simplistic
modelof noiseasthe moreinvolvedmodelgivessimilar re-
sults.

D. Overview of theExperimentalConditions

We carriedout simulationsof theactionselectionmechanism
for thepackingtaskunderconstraints.We variedeachof the
following parameters:

 Expectancy was varied from a value of 0 to 5.0 in 0.1
increments.Thechosenexpectancy remainedfixedfor a
10 block trial.

 Resourceswerevariedfrom 0 to 29. This representsthe
numberof resourcesthat can be expendedin total for
a 10 block trial. For example,15 resourcesmeansthat
only a total of 15 movesandrotationscanbeperformed
for the10 blocksin a trial.

 Noisewasvariedfrom 0% to 100%in 10%increments.
As previouslystated,theresultspresentedherewereob-
tainedusinga simplemodelof noise.Noiseis intended
to model the performanceof subjectsunderincreasing
time constraints.

For eachof the3 combinationsof parameters,100trials were
run andtheaverageperformanceon the100trials wascalcu-
lated. Performancewasratedby the densityof the packing
achieved.

E. Resultsof ComputerExperiments

Figure2 shows the resultsof the simulationfor 4 valuesof
noise:0,20,40and60%.The4 contourplotsdisplaytheden-
sityachievedby thealgorithmfor all combinationsof resource
constraintsandexpectancy atagivennoiselevel. As noisein-
creasesthe level of performancedecreasesover all valuesof
resources.Also, andnot surprisingly, betterperformanceis
achievedunderconditionsof moreresourceavailability.

The moststriking featureof the resultsarethe prominent
differencethat theexpectancy parametercanmake in perfor-
mance.In particularthereis a greatincreasein performance
aroundanexpectancy of 2.5,which is mostprominentat 0%
noisebut is still visible at 20 and40%. An expectancy pa-
rameterof 2.5representsanoptimalintuitiveheuristicfor de-
cision making in the packingtask as we have set it up. At
2.5 expectancy the algorithm achieves a good balancebe-
tween conservingresourcesunder conditionsof tight con-
straintsandchoosinggoodmoveswhenpossible.Expectancy
valuesabove 3 still work, however they tend to be too con-
servativeandperformancebeginsto degrade.Whenthealgo-
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Fig. 4. Humanperformanceon thepackingtaskfor thefirst setof
trials. Timeconstraintconditionsrangedfrom 2.0to 0.5seconds
in 0.5secondintervals.

rithm is too conservative it endsup with unusedresourcesat
theendof thetrial.

In figure 3 we show a different view of the resultsfor a
singlevalueof expectancy. Figure3 shows the performance
overall valuesof noiseandresourcesfor anexpectancy value
of 2.5. This figure revealsthat resourcelimitationsabove 20
have little effect on performance.But below 20, the achiev-
ableperformancebeginsto fall. This indicatesthatmorethan
20 resourcesareneededin theusualcasein orderto achieve
goodpackingdensitieson thetask.

IV. HUMAN TRIALS

A. Overview of theExperimentalConditions

To developourmodelsof theparametersthatpeoplemayintu-
itively learnandadaptwhenperformingthepackingtask,we
performeda seriesof packingtrials on humansubjects.Sub-
jectswereasked to performmany packingtasks,with differ-
ing time andresourceconstraints.Subjectswerefirst allowed
to practiceon the taskuntil they werecomfortablethat they
hadobtainedacertainlevel of competence.

In thefirst setof experimentsweran14subjects.Eachsub-
ject performed30 packingtrials with a 2.0 secondtime con-
straint, then30 morewith a 1.5 secondtime constraint,and
similarly for 1.0 and0.5 secondtime constraints.The time
constraintseta limit on how muchtime they hadto complete
moving a block to its intendedpositionbeforeit wasdropped
for them.Eachof the30 trials for a particulartime level con-
sistedof performinga 10 block packing task at a different
resourceconstraintlevel, whichvariedfrom 0 resourcesto 29
resources.Theorderthatthey receivedtheresourceconstraint
trials wasvariedrandomly. Sothey might first performa trial
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Fig. 5. Humanperformancein thesecondsetof trialsusing3 expert
subjects.Timeconstraintsrangedfrom 1.5to 0.5secondsin 0.25
secondintervals.

with 15resources,thenwith 5 resources,etc.0 resourcetrials
actedasatypeof controlthatallowedfor usto developamin-
imumbaselinedensitythathappenson thepackingtaskwhen
blockssimply fall at randomontotheplayingfield.

The secondsetof experimentshada similar setup asthe
first one. In the secondset we ran 16 experimentsusing 3
subjects.Thetimeconstraintswerevariedfrom 1.5to 0.5sec-
ondsin 0.25secondintervals(1.5,1.25,1.0,0.75,0.5). Each
time level had30 trials with a differentresourceconstraintas
in thepreviousexperiment.The3 subjectswhoperformedthe
16experimentswereplayerswhohadachievedahighlevel of
proficiency on thepackingtask,obtainingbetterperformance
on averagethanotherplayers.Thesubjectsreachedthis level
of performancethroughrepeatedpracticeandexperiencewith
thetask.

B. Resultsof HumanTrials

Figure4 displaysthe resultsof the humantrials for the first
experiment.This experimentwasperformedmainly to deter-
mine the critical time constraintrangewherehumansareno
longer able to sustainperformancebecausethe task is hap-
peningtoo fastfor themto process.As shown in the figure,
this point appearsto happensomewherebetween1.0 and0.5
seconds.Fromour observationsof the trials, 1.0 secondstill
allowed peopleenoughtime to perform somerotationsand
executetheir intendedsequenceof actions. However at 0.5
secondsblocksfell so fast that the subjectscould only react
minimally, usuallyby trying to guidetheblocksto theleft or
right with no attemptsor possibilityof performingrotations.

Figure5 shows theresultsof thesecondhumantrials. We
performedmoretrials in the critical region between1.0 and
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Fig. 6. Averageperformanceachieved by expert humansubjects
over resourceconstraintconditionsranging from 14 to 29 re-
sources.Notice thesharpdrop in performancebetween1.0 and
0.5seconds.

0.5 seconds.In the region between1.0 and0.5 secondsthe
humansubjectis sometimesableto completetheir intended
moves,but notalways.Also errorratesincreasedrasticallyin
this region. Notice that the3 expert level subjectsperformed
betteron averageover thesubjectsin thefirst experiment.In
fact, thesubjectsin this experimenthave gainedenoughpro-
ficiency to pushthe critical time constraintlevel to a smaller
value.In experiment1 thereappearsto beasmalldropin per-
formancebetween1.5 and1.0 seconds.The expert subjects
performednoticeablybetterat the1.0 secondtime constraint
level. They managedto pushthecritical timeconstraintdown
to somewhereat or below the0.75secondconstraint.

Figure6 displaysthe averagedensityachieved by the ex-
pert humansubjectsin the secondexperimentfor resource
constraintlevels (from 14 to 29 resources)at eachof the 5
time constraints.This figure illustratesthe transitionin per-
formancethathappensasthetimeconstraintreachesacritical
level beyond that of humanbrains to copewith. The data
point at 0 secondsis thedensitythat is achievedwhenblocks
arerandomlydroppedonto the playing field (e.g. the player
hasno timewhatsoever to try andpositiontheblock).

V. DISCUSSION

Viewing actionselectionastheself-organizationof a goal
attractorlandscapehasseveral implications. The timing of
thedynamicsto find andsettleinto anattractorbasinsetslim-
its onthereal-timeperformancepossibleby biologicalbrains.
However, learningandexperiencecanserve to deepensome
attractors,with the effect that goodgoalsand intentionsare
found andsettledinto morequickly. Experienceon the task
allows for subjectsto recognizeandsettleinto goodbehavior
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attractorsmorequickly, and thereforepushbackthe thresh-
old of time constraintsunderwhich they canproduceeffec-
tivebehavior. Ourexpertsubjectsshow someevidenceof this
ability to extendgoodperformanceinto increasinglydifficult
time constraintdomains.

Thetimeto recognizeandfall into agoalattractoris acriti-
cal featureof performingtasksunderrealtimeconstraints.In
the recognitionof perceptualcategories,two typesof emer-
gentamplitudemodulation(AM) patternshave beenidenti-
fied[10], [11], [12], [4]. Whenastimulusis givento asystem,
thereis aphasetransitionfrom ahighdimensionalchaoticat-
tractor to a lower dimensionalwing. The first type of AM
patternoccurswith ashortlatency immediatelyafterthestim-
ulusarrives.ThisearlyAM patternsrepresentstheimpactof a
discriminatedstimuluson theactivity of thereceiving cortex.
Thesecondtypeof AM patternis endogenous(e.g.internally
generated)andoccurswith avariablelatency in thetimerange
of between750and1200ms.

The secondtype of emergentpatternrepresentsthe act of
categorizationof the input stimulus. The type II patternis
the resultof recognitionof stimuli meaningfulin the current
situationto theorganism.

Webelievethatthesametypeof patternformationworksin
theemergenceof intentionalactionsfrom theentorhinalcor-
tex. In this case,the dynamicsprovide the actionselection
mechanismfor recognizingand choosingamongstrategies
andgoalsfor theorganism.Thetimeperiodof around750ms.
representsthe minimum time that the selectionand perfor-
manceof intentionalgoal actionscanbe achieved. Through
learningin realtime tasks,peoplecanpushtheirperformance
up to this limit, but the fundamentaldynamicsof the brain
dictatesthatintentionalgoalscannotbeformedin timeframes

lessthanthis periodneededfor the formationof type II AM
patterns.

Finally we speculateon the possibleconnectionbetween
ourcomputationalmodelsandhumanperformanceundertime
constraints.Figure7 indicatesthatthereis areasonablematch
betweencomputersimulationswith 10% noiseand human
performancewith smalltimepressures(1.5secavailable).On
theotherhand,70%noiseproducesperformancecloseto hu-
manswith verysignificanttime pressures(0.5sec).
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