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Abstract

Aperiodic dynamics are known to be essential in the forma-
tion of perceptual mechanisms and representations in bio-
logical organisms. Advances in neuroscience and computa-
tional neurodynamics are helping us understand the proper-
ties of nonlinear systems that are fundamental in the self-
organization of stable, complex patterns in many types of sys-
tems, from biological ecosystems to human economies and in
biological brains. In this paper we introduce a neurological
population model that is capable of replicating the important
aperiodic dynamics observed in biological brains. We use the
mechanism to self-organize cognitive maps in an autonomous
agent.
Keywords: Self-Organization, Nonlinear Dynamics, Cog-
nitive Maps

Introduction
The study of nonlinear dynamics has blossomed in all areas
of science in the past decades for many reasons. Nonlin-
ear dynamics provide new conceptual and theoretical tools
that allow us to understand and examine complex phenom-
ena that we have never been able to tackle before. Nonlinear
dynamics seem to show up everywhere, in physical systems
like electrical circuits, lasers, optical and chemical systems.
But such dynamics are especially ubiquitous in the biologi-
cal world, from fractal growth patterns in biological devel-
opment and city formation to the self-organizing character-
istics of population models, and the importance in regulating
healthy biological rhythms such as the beating of the heart.

Nonlinear systems in critical states have many interest-
ing properties. Phenomenon such as stochastic and chaotic
resonance (Kozma & Freeman 2001) are known which en-
able such systems to actually detect the presence of signals
much better in noisy environments than nonlinear systems
are capable of doing. Their greatest interest lies however
in their fundamental relationship to self-organization and
emergence of complex patterns and behaviors in complex
environments. Complex, aperiodic dynamics are both an in-
dication of and a mechanism for the emergence of such self-
organizing properties.

Insights in nonlinear systems theory are beginning to
be applied to understanding the dynamics of the brains,
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and how such processes produce cognition (Freeman 1999;
Tsuda 2001; Freeman 2003). Aperiodic dynamics are know
to play a fundamental role in the mechanisms for the self-
organization of meaning in mammalian perceptual systems
(Skarda & Freeman 1987; Freeman 1991). Neurological ev-
idence has shown that perceptual meanings (of recognized
smells) are created through the formation and dissolution of
chaotic attractors in the olfactory bulb. We will discuss this
example of the self-organization of a perceptual pattern of
meaning. We use this type of organization in aperiodic sys-
tems to model the formation of cognitive maps in the hip-
pocampus of biological organisms.

K-Sets: A Neurodynamical Population Model
of Brain Dynamics

Aperiodic Dynamics in Olfactory Systems
In their influential paper, Skarda & Freeman argued that
chaos, as an emergent property of intrinsically unstable neu-
ral masses, is very important to brain dynamics. In experi-
ments carried out on the olfactory system of trained rabbits,
Freeman was able to demonstrate the presence of chaotic
dynamics in EEG recordings and mathematical models. In
these experiments, Freeman and his associates conditioned
rabbits to recognize smells, and to respond with particular
behaviors for particular smells (e.g. to lick or chew). They
performed EEG recordings of the activity in the olfactory
bulb, before and after training for the smells.

The EEG recordings revealed that in fact, chaotic dy-
namics (as shown by the observed strange attractors) rep-
resented the normal state when the animal was attentive, in
the absence of a stimulus. These patterns underwent a dra-
matic (nonlinear) transition when a familiar stimulus was
presented and the animal displayed recognition of a previ-
ously stored memory (through a behavioral response). The
pattern of activity changed, very rapidly, in response to the
stimulus in both space and time. The new dynamical pat-
tern was much more regular and ordered (very much like
a limit cycle, though still chaotic of a low dimensional or-
der). The spatial pattern of this activity represented a well
defined structure that was unique for each type of odor that
was perceptually significant to the animal (e.g. conditioned
to recognize). Figure 1 shows an example of such a recorded
pattern after recognition of a stimuli of the EEG signals and



Figure 1: EEG carrier wave patterns (left) and contour map
(right) of olfactory cortex activity in response to a recog-
nized smell stimulus (from Freeman, 1991, p. 80)

Figure 2: Change in contour maps of olfactory bulb activity
with the introduction of a new smell stimulus (from Free-
man, 1991, p. 81)

the associated contour map. In this figure after recognition,
all of the EEG waves are firing in phase, with a common
frequency (which Freeman called the carrier wave). The
pattern of recognition is encoded in the heights (amplitude
modulations) of the individual areas. The amplitude pat-
terns, though regular, are not exact limit cycles and exhibit
low dimensional chaos. In other words, different learned
stimuli were stored as a spatio-temporal pattern of neural
activity, and the strange attractor characteristic of the atten-
tion state (before recognition) was replace by a new, more
ordered attractor related to the recognition process. Each
(strange) attractor was thus shown to be linked to the behav-
ior the system settles into when it is under the influence of a
particular familiar input odorant.

Figure 2 shows the effects on the spatial attractor pattern
due to learning. Every time a new odor was learned by the
animal, all of the existing attractor patterns changed. In this
figure the contour pattern of activity for sawdust is shown
(before learning the banana odor), for the banana odor, and
then again for sawdust. Notice that the spatial pattern for
sawdust no longer resembles its previous pattern. Whenever
an odor becomes meaningful in some way, changes in the
synaptic connections between neurons in different parts of
the olfactory cortex take place. Just as in the Hopfield model
and other neural networks, these changes are able to create
another attractor, and all other attractors are modified as a
result of this learning. However, in real brains, the attractors
of perceptual meaning are not simple point attractors, but are
specific strange attractors.

Freeman suggests that “an act of perception consists of
an explosive leap of the dynamic system from the basin of
one (high dimensional, in the attentive state) chaotic attrac-
tor to another (low dimensional state of recognition) (Free-
man 1991). These results suggest that the brain maintains

many chaotic attractors, one for each odorant an animal or
human being can discriminate. Freeman and Skarda spec-
ulate on many reasons why these chaotic dynamics may be
advantageous for perceptual categorization. For one, chaotic
activity continually produces novel activity patterns which
can provide a source of flexibility in the individual. But
since chaos is a ordered state, such flexibility is under con-
trol. As Kelso (1995) remarks, such fluctuations continu-
ously probe the system, allowing it to feel its stability and
providing opportunities to discover new patterns. Another
advantage of chaos is that it allows for very rapid switching
between attractors, which random activity is not able to do.
Freeman also proposed that such patterns are crucial to the
development of nerve cell assemblies. For example high di-
mensional chaos may provide a neutral pattern of correlation
activity so that learning does not occur during the attentive
state. Only upon collapse of activity to more ordered regions
do regular phase synchronizations occur between neural ar-
eas, which allow for Hebbian synaptic changes to reliably
occur.

K-Set Model of Aperiodic Dynamics
The K-set hierarchy, developed by Freeman and associates
(Freeman 1975; 1999; Skarda & Freeman 1987; Freeman
1991), is both a model of neural population dynamics and
a description of the architectures used by biological brains
for various functional purposes. The original purpose of the
K-set was to model the dynamics observed in the olfactory
perceptual system. The lowest level of the hierarchy, the K0
set, provides a basic unit that models the dynamics of a local
population of tens of thousands of neurons. The dynamics of
the K0 set are described by a second order ordinary differen-
tial equation feeding into an asymmetric sigmoid function:

ab
d2x(t)

d2t
+ (a + b)

dx(t)
dt

+ x(t) = f(t) (1)

This equation was determined by measuring the electri-
cal responses of isolated neural populations to stimulation
and other conditions. The a and b parameters are time con-
stants that were determined through such physiological ex-
periments. x(t) is the pulse density of the modeled neural
population, in other words the average number of neurons
that are pulsing in the population at any given point in time.
f(t) is a nonlinear asymmetric sigmoid function describing
the influence of incoming activation, and is given in equation
2.

f(t) = k[1 − exp(−ev−1

k
)] (2)

A K0 unit models the dynamics of an isolated neural pop-
ulation. From the basic K0 unit can be built up architec-
tures that capture the observed dynamics of increasingly
larger functional brain areas. The KI models excitatory-
inhibitory feedback populations. KII models interacting
excitatory-inhibitory populations and correspond to orga-
nized brain regions such as the olfactory bulb (OB) or the
prepyriform cortex (PC). KIII combine 3 or more KII popu-
lations to model functional brain areas such as perceptual



cortex or hippocampus, and are capable of aperiodic dy-
namics of the type observed in these regions to, for exam-
ple, derive meaning from perceptual senses. In the sim-
ulations presented in this paper, we use a discretized ver-
sion of the K-model (described in (Harter & Kozma 2003;
2002)) developed for use in large-scale autonomous agent
simulations.

In the original K model, the purpose of the KIII set was
to model the chaotic dynamics observed in rat and rabbit
olfactory systems (Freeman 1987; Shimoide, Greenspon, &
Freeman 1993; Freeman & Shimoide 1994). KII are capable
of oscillatory behavior, as described above. When three or
more oscillating systems (KII) of different frequencies are
connected through positive and negative feedback, the in-
commensurate frequencies can result in aperiodic dynamics.
The dynamics of the KIII are produced in just this manner,
by connecting three or more KII units of differing frequen-
cies together. The KIII set was not only capable of produc-
ing time series similar to those observed in the olfactory sys-
tems under varying conditions of stimulation and arousal,
but also of replicating power spectrum distributions charac-
teristics of biological and natural systems in critical states
(Solé & Goodwin 2000; Bak, Tang, & Wiesenfeld 1987).

The power spectrum is a measure of the power of a par-
ticular signal (or time series as for example that obtained
from an EEG recording of a biological brain) at varying fre-
quencies. The typical power spectrum of a rat EEG (see
Figure 3, top) shows a central peak in the 20-80 Hz range,
and a 1/fα form of the slope. The measured slope of the
power spectrum varies around α = −2.0. 1/fα type power
spectra are abundant in nature and are characteristic of crit-
ical states, between order and randomness, at which chaotic
processes operate. Power spectra of biological brains have
been observed to vary from α = −1.0 to α = −3.0. The
atypical part of the experimental EEG spectra is the cen-
tral peak, indicating stronger oscillatory behavior in the γ
frequencies. This central peak in the 20-80 Hz range is
known as the γ frequency band, and is associated with cog-
nitive processes in biological brains. The K-models are ca-
pable of replicating the power spectra of biological EEG sig-
nals, as shown in Figure 3, bottom (Harter & Kozma 2003;
Freeman 1991).

The KIII sets are capable of organizing perceptual cate-
gories in the fashion observed in biological perceptual sys-
tems. The KIII used as such a pattern classifier is very robust
and compares well with more standard methods of pattern
classification (Kozma & Freeman 2001).

Hippocampal Simulation
Experimental Architecture
Perceptual meanings are formed through aperiodic attrac-
tors in the spatio-temporal activation of neuronal groups in
the perceptual cortex. The same basic mechanisms of ape-
riodic dynamic in perception are also used by the biological
brain in other areas to form memory and behavior producing
structures (Kozma, Freeman, & Erdi 2003). We use the ba-
sic KIII architecture to simulate formation of cognitive maps
in the hippocampus of an autonomous agent.
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Figure 3: The power spectrum of a rat Olfactory Bulb EEG
is simulated with the KA-III model. The calculated “1/f”
slope of the EEG and model is approximately -2.0. Rat OB
data from (Kay, Shimoide, & Freeman 1995), KA power
spectrum from (Harter & Kozma 2003)

In this experiment, we used the Khepera virtual environ-
ment simulator (Michel 1996). Figure 4 (bottom left) shows
the morphology of the Khepera agent. The Khepera robot is
a simple agent that contains 8 infra-red and 8 light sensors.
It has two independently controlled wheels that allow it to
move forward, backward, and turn left and right in place.
The environment for this experiment is shown in figure 4. In
the environment we place 8 light sources, which will be used
as salient environmental locations (i.e. they can be thought
of as good food sources for the agent in the environment).
The light sources are detectable to the agent at a distance,
and the range where the food source is detectable is indi-
cated in Figure 4. In addition to the 8 salient environmental
locations, there are 4 landmarks. The landmarks are always
detectable to the agent, and it knows the distance and direc-
tion to each of the 4 landmarks as part of its sensory infor-
mation.

The architecture of the simulated hippocampus is shown
in Figure 5. The portions of the architecture that form the
cognitive map of the environment are simulated by a KA-
III. These are the CA1, CA2 and CA3 areas, and are based
on biological evidence of the structure of the biological hip-
pocampus. Each of the CA areas contains an 8x8 array of
KA-II units (for a total of 64 units in each CA region). Each
CA area is connected to the other 2. The interconnection of
these 3 CA regions via inhibitory and excitatory feedback
forms a KA-III unit. The connections between CA regions
will be changed via Hebbian modification.

Orientation beacons are fed into the hippocampal simula-
tion through the DG region (Figure 5, left). The DG again
contains an 8x8 matrix of KA-II units. Orientation signals



Figure 4: Agent morphology (bottom left) and environmen-
tal setup for hippocampal simulations. The environment
contains landmarks, used as allocentric reference points by
the agent, and salient environmental locations, such as food
sources. The agent is only able to detect the presence of a
food source when it is within a particular range of it.

Figure 5: Architecture of KA-III hippocampal simulations

from the 4 landmarks are fed into the DG units. Each of
the 4 landmarks has 8 units associated with the direction to
the landmark, and 8 units associated with the distance. Di-
rections are broken into 8 cardinal units, North, NorthEast,
East, SouthEast, South, SouthWest, West and NorthWest.
Units are sensitive to the direction of a particular landmark,
though we use a graded response with a normal distribu-
tion, instead of a simple 1 unit is active and the others be-
ing inactive (). Similarly there are 8 cardinal distance val-
ues VeryClose, Close, MediumClose, Medium, MediumFar,
Far, VeryFar, Distant. Again a graded response with normal
distribution is applied to the units. The DG area connects
with the CA3 area, and the connections between these areas
are also subject to Hebbian modification.

Method
We use two types of learning in the simulation, Hebbian
modification and habituation. Hebbian modification only
occurs when the robot is within a certain range of a light
source. Therefore the light sources provide a certain valence
signal that acts as a stimulus to learn environmentally salient
locations. When the robot is not within proximity to a light
source, not reinforcement signal is produced. During these
times habituation of the stimulus occurs. This has the effect
of lessening the response of the simulated hippocampus to
unimportant regions in the environment (Kozma & Freeman
2001).

The expected effect of this stimulation is to form 2 dis-
tinct types of dynamical patterns in the CA regions. When
the agent is out of range of an environmentally salient loca-
tion, the dynamics should be in the high-dimensional chaotic
state, receptive to input but not indicative of recognizing a
salient event. When in range of a light source, the system
should transition to a low dimensional attractor, indicative
of recognition of the important location. Further, the spatial
amplitude modulation patterns in the CA regions upon such
recognition should form 8 unique patterns, one for each of
the recognized regions.

The agent is allowed to roam in the environment, using a
low level mechanisms to produce efficient, but random wan-
dering. The agent roams for some time, 10,000 time steps
in our simulations. In our simulation 10 time steps approx-
imates 1 second of real world running time, therefore the
totaled simulated time of an experiment is 1000 seconds.

Results
We first give examples of the time series produced in the
CA regions. Two broad classes of activity patterns organize
themselves as a result of the Hebbian and habituation weight
modifications. The spatial-temporal patterns stay in a rel-
atively high-dimensional background state when the agent
is in an uninteresting location. This pattern changes to a
more regular (e.g. cyclic) pattern when the agent is close
to a food containing area. The differences in these patterns
come about as a direct result of Hebbian modifications being
contingent on being within a meaningful area.

Evidence of this shift, between high dimensional back-
ground state and low dimensional recognition state, can be
seen in Figures 6. In this figure, we show a return plot of one



Figure 6: State space plots of unit 27 in the CA3 hippocam-
pal region. Top we show the plot when the agent is outside
of an important region. Bottom is the plot when the agent
is within an environmentally salient region. Most units de-
velop similar responses, which can be interpreted as a recog-
nition of being in an environmentally salient area.

of the units from the CA3 area (unit 27) when it is outside
of a food area (left) and when it is within (right). Notice that
the dynamics for the unit are much more cyclic and regu-
lar when the agent is in a recognized area. The patterns of
most of the units in the modeled hippocampus show similar
transitions in their patterns from unrecognized to important
areas.

Next we look at the amplitude modulation (AM) patterns
produced by the hippocampal simulation. Figure 7 shows
examples of the AM patterns formed in the CA3 hippocam-
pal matrix for 2 different locations within environmental re-
gions 2, 4, 6 and 8 respectively. The AM patterns shown
are from the CA3 hippocampal region. This region has 8x8
units, for a total of 64 time series. We measure the standard
deviation of each of the 64 units for a 50ms time window,
and plot the results as an 8x8 contour map of the deviations
of each of the units in the area. The AM pattern contour
plots, therefore, give you an idea of which units are more
highly stimulated (higher amplitudes in their activity) and
which are less so. As Figure 7 shows, the AM patterns are
more similar to those produced from locations within the
same environmental region.

As a more complete test of the formation of unique AM
patterns, we feed robot with input from randomly selected
locations, within the environmental food areas. AM patterns
were collected for the randomly selected regions and com-
pared to one another by calculating the euclidian distance
between each pattern. This testing showed that, in fact, the
patterns produced within a region are consistently more sim-
ilar to one another, than those produced in another environ-
mental region.

Figure 7: Example of AM Pattern formed in the CA3 hip-
pocampal region. In this figure we show a pattern from two
different locations within an environmentally salient region
(Top and Bottom). We show AM patterns from environment
regions E4 and E7. Similar AM patterns are organized and
exhibited when the agent is in the same environmental re-
gion.

Discussion
The KA-III hippocampal simulation described here forms
distinct AM patterns for the 8 salient environmental regions.
These patterns are aperiodic spatio-temporal activity in the
CA regions. The characteristic activity peaks in the AM pat-
terns are examples of so called ’place cell’ formation. Here
we see high activity among certain regions correlated with
being in a particular environmental location. For example,
looking at the AM pattern for location 8 (Figure 7, right) you
notice X peaks of activity among the units in the region. It
is possible to interpret these peaks as being correlated with
environmental locations, and therefore typical examples of
the place cell.

The next step in this research is to begin to understand
how such AM patterns might be used in the service of goal-
directed navigation. It is known that if you measure the onset
time of place cells in a biological brain, this time gradually
shifts back in phase as the animal moves through the envi-
ronment. This phase shift of the onset of the place cells may
be evidence of the formation of navigation planning in the
biological brain. One possible interpretation is that when the
animal forms an intention to travel to a goal location, a se-
quence of AM patterns cycle through the hippocampus. This
sequence can be interpreted as sequences of locations the
animal intends to visit, from the current one to the next one,
etc. in order to reach the goal. As the animal moves through
the environment, its idea of the current location changes, and
thus this whole sequence shifts back in phase in real-time to
represent the next few intended steps the animal is planning
to take. For this type of mechanism to be organized, the AM
patterns must not simple form in an isolated way, but con-



nections between adjacent locations must be incorporated
into the mechanism. If the agent learns which AM patterns
are co-located to which others, it may be possible to set up
such a mechanism to produce a goal-directed planning for
navigating in the environment.

Conclusion
The self-organization of spatio-temporal patterns in nonlin-
ear systems are essential to cognitive mechanisms in biolog-
ical brains. We need to better understand how such mecha-
nisms operate in order to build better models of cognition
and smarter autonomous agents. This paper has demon-
strated one such self-organizational mechanism for the cre-
ation of AM patterns in a cognitive map of an agents envi-
ronment.
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