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Abstract—Biological brains are saturated with complex dy-
namics. Artificial neural network models abstract much of this
complexity away and represent the computational process of
neuronal groups in terms of simple point, and sometimes periodic
attractors. But is this abstraction justified? Aperiodic dynamics
are known to be essential in the formation of perceptual mecha-
nisms and representations in biological organisms. Advances in
neuroscience and computational neurodynamics are helping us
to understand the properties of nonlinear systems that are fun-
damental in the self-organization of stable, complex patterns for
perceptual, memory and other cognitive mechanisms in biological
brains. Much of this new understanding of the principles of self-
organization in biological brains has yet to be modeled or used
to improve the performance of autonomous robotic and virtual
agents. In this paper we present a model of an autonomous agent
learning appetitive/aversive behaviors using a neuronal group
model capable of such aperiodic dynamics. We demonstrate how
such dynamics are useful in the self-organization of perception
and behavior, and discuss the use of aperiodic dynamics in the
self-organization of cognitive mechanisms in autonomous agents.

I. INTRODUCTION

The study of nonlinear dynamics has blossomed in all areas
of science in the past decades for many reasons. Nonlinear
dynamics provide new conceptual and theoretical tools that
allow us to understand and examine complex phenomena
that we have never been able to tackle before. Nonlinear
dynamics seem to show up everywhere, in physical systems
like electrical circuits, lasers, optical and chemical systems.
But such dynamics are especially ubiquitous in the biological
world, from fractal growth patterns in biological development
and city formation to the self-organizing characteristics of
population models, and the importance in regulating healthy
biological rhythms such as the beating of the heart.
Nonlinear systems in critical states have many interesting

properties. Phenomenon such as stochastic and chaotic reso-
nance [1] are known which enable such systems to actually de-
tect the presence of signals much better in noisy environments
than nonlinear systems are capable of doing. Their greatest
interest lies however in their fundamental relationship to self-
organization and emergence of complex patterns and behaviors
in complex environments. Complex, aperiodic dynamics are
both an indication of and a mechanism for the emergence of
such self-organizing properties.

Insights in nonlinear systems theory are beginning to be
applied to understanding the dynamics of the brains, and how
such processes produce cognition [2]–[4]. Aperiodic dynamics
are know to play a fundamental role in the mechanisms for
the self-organization of meaning in mammalian perceptual
systems [5], [6]. Neurological evidence has shown that percep-
tual meanings (of recognized smells) are created through the
formation and dissolution of chaotic attractors in the olfactory
bulb. We will discuss this example of the self-organization
of a perceptual pattern of meaning. We use this type of
organization in aperiodic systems to model the learning of
appetitive/aversive behaviors in an autonomous agent.

II. K-SETS: A NEURODYNAMICAL POPULATION MODEL
OF BRAIN DYNAMICS

A. Aperiodic Dynamics in Olfactory Systems

In their influential paper, Skarda and Freeman [5] argued
that chaos, as an emergent property of intrinsically unstable
neural masses, is very important to brain dynamics. In exper-
iments carried out on the olfactory system of trained rabbits,
Freeman was able to demonstrate the presence of chaotic
dynamics in EEG recordings and mathematical models. In
these experiments, Freeman and his associates conditioned
rabbits to recognize smells, and to respond with particular
behaviors for particular smells (e.g. to lick or chew). They
performed EEG recordings of the activity in the olfactory bulb,
before and after training for the smells.
The EEG recordings revealed that in fact, chaotic dynamics

(as shown by the observed strange attractors) represented the
normal state when the animal was attentive, in the absence of
a stimulus. These patterns underwent a dramatic (nonlinear)
transition when a familiar stimulus was presented and the
animal displayed recognition of a previously stored mem-
ory (through a behavioral response). The pattern of activity
changed, very rapidly, in response to the stimulus in both space
and time. The new dynamical pattern was much more regular
and ordered (very much like a limit cycle, though still chaotic
of a low dimensional order). The spatial pattern of this activity
represented a well defined structure that was unique for each
type of odor that was perceptually significant to the animal
(e.g. conditioned to recognize). Figure 1 shows an example of
such a recorded pattern after recognition of a stimuli of the



Fig. 1. EEG carrier wave patterns (left) and contour map (right) of olfactory
cortex activity in response to a recognized smell stimulus (from Freeman,
1991, p. 80)

EEG signals and the associated contour map. In this figure
after recognition, all of the EEG waves are firing in phase, with
a common frequency (which Freeman called the carrier wave).
The pattern of recognition is encoded in the heights (amplitude
modulations) of the individual areas. The amplitude patterns,
though regular, are not exact limit cycles and exhibit low
dimensional chaos. In other words, different learned stimuli
were stored as a spatio-temporal pattern of neural activity, and
the strange attractor characteristic of the attention state (before
recognition) was replace by a new, more ordered attractor
related to the recognition process. Each (strange) attractor was
thus shown to be linked to the behavior the system settles into
when it is under the influence of a particular familiar input
odorant.
Freeman suggests that “an act of perception consists of
an explosive leap of the dynamic system from the basin of
one (high dimensional, in the attentive state) chaotic attractor
to another (low dimensional state of recognition) [6]. These
results suggest that the brain maintains many chaotic attractors,
one for each odorant an animal or human being can discrim-
inate. Freeman and Skarda speculate on many reasons why
these chaotic dynamics may be advantageous for perceptual
categorization. For one, chaotic activity continually produces
novel activity patterns which can provide a source of flexibility
in the individual. But since chaos is a ordered state, such
flexibility is under control. As Kelso [7] remarks, such fluc-
tuations continuously probe the system, allowing it to feel its
stability and providing opportunities to discover new patterns.
Another advantage of chaos is that it allows for very rapid
switching between attractors, which random activity is not able
to do. Freeman also proposed that such patterns are crucial to
the development of nerve cell assemblies. For example high
dimensional chaos may provide a neutral pattern of correlation
activity so that learning does not occur during the attentive
state. Only upon collapse of activity to more ordered regions
do regular phase synchronizations occur between neural areas,
which allow for Hebbian synaptic changes to reliably occur.

B. K-Set Model of Aperiodic Dynamics

The K-set hierarchy, developed by Freeman and associates
[2], [5], [6], [8], is both a model of neural population dynamics
and a description of the architectures used by biological brains
for various functional purposes. The original purpose of the
K-set was to model the dynamics observed in the olfactory
perceptual system. The lowest level of the hierarchy, the K0

set, provides a basic unit that models the dynamics of a local
population of tens of thousands of neurons. The dynamics of
the K0 set are described by a second order ordinary differential
equation feeding into an asymmetric sigmoid function:

ab
d2x(t)

d2t
+ (a + b)

dx(t)
dt

+ x(t) = f(t) (1)

This equation was determined by measuring the electrical
responses of isolated neural populations to stimulation and
other conditions. The a and b parameters are time constants
that were determined through such physiological experiments.
x(t) is the pulse density of the modeled neural population, in
other words the average number of neurons that are pulsing
in the population at any given point in time. f(t) is a nonlin-
ear asymmetric sigmoid function describing the influence of
incoming activation, and is given in equation 2.

f(t) = k[1 − exp(−ev−1

k
)] (2)

A K0 unit models the dynamics of an isolated neural pop-
ulation. From the basic K0 unit can be built up architectures
that capture the observed dynamics of increasingly larger func-
tional brain areas. The KI models excitatory-inhibitory feed-
back populations. KII models interacting excitatory-inhibitory
populations and correspond to organized brain regions such
as the olfactory bulb (OB) or the prepyriform cortex (PC).
KIII combine 3 or more KII populations to model functional
brain areas such as perceptual cortex or hippocampus, and
are capable of aperiodic dynamics of the type observed in
these regions to, for example, derive meaning from perceptual
senses. In the simulations presented in this paper, we use a
discretized version of the K-model (described in [9], [10])
developed for use in large-scale autonomous agent simulations.
In the original K model, the purpose of the KIII set was to
model the chaotic dynamics observed in rat and rabbit olfac-
tory systems [11]–[13]. KII are capable of oscillatory behavior,
as described above. When three or more oscillating systems
(KII) of different frequencies are connected through positive
and negative feedback, the incommensurate frequencies can
result in aperiodic dynamics. The dynamics of the KIII are
produced in just this manner, by connecting three or more
KII units of differing frequencies together. The KIII set was
not only capable of producing time series similar to those
observed in the olfactory systems under varying conditions of
stimulation and arousal, but also of replicating power spectrum
distributions characteristics of biological and natural systems
in critical states [14], [15].
The power spectrum is a measure of the power of a particu-
lar signal (or time series as for example that obtained from an
EEG recording of a biological brain) at varying frequencies.
The typical power spectrum of a rat EEG (see Figure 2, top)
shows a central peak in the 20-80 Hz range, and a 1/fα form
of the slope. The measured slope of the power spectrum varies
around α = −2.0. 1/fα type power spectra are abundant in
nature and are characteristic of critical states, between order
and randomness, at which chaotic processes operate. Power
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Fig. 2. The power spectrum of a rat Olfactory Bulb EEG is simulated
with the KA-III model. The calculated “1/f” slope of the EEG and model is
approximately -2.0. Rat OB data from [16], KA power spectrum from [9]

spectra of biological brains have been observed to vary from
α = −1.0 to α = −3.0. The atypical part of the experimental
EEG spectra is the central peak, indicating stronger oscillatory
behavior in the γ frequencies. This central peak in the 20-80
Hz range is known as the γ frequency band, and is associated
with cognitive processes in biological brains. The K-models
are capable of replicating the power spectra of biological EEG
signals, as shown in Figure 2, bottom [6], [9].
The KIII sets are capable of organizing perceptual categories
in the fashion observed in biological perceptual systems.
The KIII used as such a pattern classifier is very robust
and compares well with more standard methods of pattern
classification [1].

III. APPETITIVE/AVERSIVE BEHAVIOR USING APERIODIC
DYNAMICS

A. Experimental Architecture and Environment

In this experiment, we used the Khepera virtual environment
simulator [17]. Figure 3 (bottom left) shows the morphology
of the Khepera agent. The Khepera robot is a simple agent
that contains 8 infra-red and 8 light sensors. It has two
independently controlled wheels that allow it to move forward,
backward, and turn left and right in place. The environment for
this experiment is shown in Figure 3. In the environment we
place 8 simulated food sources, 4 of which are good tasting
and edible by the agent, and 4 of which are poisonous and
have a correspondingly bad taste. We use light sources, and
the Khepera agents light sensors, to simulate the production of
an environmental gradient which may be followed by the agent
to locate a food source. This gradient following is similar to
simple tropic behaviors, such as following a chemical gradient
(chemotropism, of which smell is an example), or following
a light gradient (phototropism).

Fig. 3. Environment and agent used in the appetitive/aversive experiments.
The agent (bottom left) is equipped with sensors spaced around its body and
two independently controlled wheels for movement. The environment contains
8 food sources, 4 poisonous and 4 edible. Each food sources emits a property
(perhaps like smell) which produces a gradient in the environment that is
perceptible and followable by the agent.

The architecture used for learning appetitive/aversive be-
havior is shown in Figure 4, and is inspired by the Darwin
series of robotic agents [18], [19]. The agent receives sensory
information from four types of senses. A touch sense, a short-
range sense that can detect the presence of obstacles (using
the infra-red sensors), a sense of smell for following envi-
ronmental gradients (using the light sensors), and a simulated
sense of taste for detecting good/bad food sources. The touch
sense (not shown in Figure 3 bottom left), and distance sense
are used to allow the agent to wander in the environment and
approach food sources. There are 5 touch sensors, that allow
the agent to detect when it is touching an object in the front
of its body, behind it, or to the left and right, or when it is not
touching anything at all. There are also 8 short-range obstacle
senses that allow the agent to detect the presence of obstacles
at a short distance. When no food source gradient is detected,
they are hardwired to cause the agent to produce a searching
behavior behavior.
The smell sense (using light sources to detect environmental
gradients), is hardwired, along with the touch and obstacle
sense, to produce approach behavior to detected food sources.
The agent simply follows the gradient (avoiding obstacles) to
its source. There are 8 smell senses (light sensors) positioned
around the body of the agent. Finally, a sense of taste is
simulated for the agent using 2 sensors. When the agent
touches an edible food source, this produces appetitive be-
havior (consumption) and pleasure signals in the value system
of the agent. Poisonous sources produce avoidance behavior,
which causes pain signals and behaviors that make the agent
move away from the food source.
We use a KA-III to model the olfactory system and form
perceptual categories of the smells in the environment. The
olfactory KA-III is composed of three areas, the olfactory
bulb (OB), anterior olfactory nucleus (AON) and prepyriform
cortex (PC) (see Figure 4). These three areas are connected



Fig. 4. Architecture of the neural model used for the appetitive/aversive task.
There are four areas which receive direct stimulation from the agents sensors:
Smell (using light-source gradients), Touch, Distance (short-distance obstacle
sense using infra-red), and a simulated taste (Tasteapp and Tasteave).
Touch and distance senses are initially hardwired to produce search behavior
if no food source is in range. When a food source is detected, the agent
approaches and consumes it (approach and appetitive behavior Mapp). Some
food sources are edible, and some are poisonous. The agent is hardwired to
trigger avoidance behavior when a poisonous food source is tasted (Mave).
The agent learns to identify poisonous food sources at a distance from
smell and trigger avoidance behavior without having to first taste it. We
use a simulated olfactory system to learn the good and bad smells. The
olfactory simulation consists of an olfactory bulb (OB), anterior olfactory
nucleus (AON) and prepyriform cortex (PC). Each of these areas is an 8x8
matrix of KA-II units. The three areas together form a KA-III capable of
aperiodic dynamics and the formation of perceptual categories in the manner
of biological brains. Weights between the 3 olfactory areas and from the PC
to theMapp andMave are modified in response to pain and pleasure signals
by Hebbian modification.

through positive and negative feedback to one another. The
OB has projections from KA-I units that receive stimulation
from the environmental smells.

B. Method

There are four areas which receive direct stimulation from
the agents sensors: Smell (using light-source gradients), Touch,
Distance (short-distance obstacle sense using infra-red), and a
simulated taste (Tasteapp and Tasteave). Touch and distance
senses are initially hardwired to produce search behavior if no
food source is in range. When a food source is detected, the
agent approaches and consumes it (approach and appetitive
behavior Mapp). Some food sources are edible, and some
are poisonous. The agent is hardwired to trigger avoidance
behavior when a poisonous food source is tasted (Mave). The
agent learns to identify poisonous food sources at a distance
from smell and trigger avoidance behavior without having to
first taste it. We use a simulated olfactory system to learn the
good and bad smells. The olfactory simulation is composed
of the OB, AON and PC areas. Each of these areas is an 8x8
matrix of KA-II units. The three areas together form a KA-III
capable of aperiodic dynamics and the formation of perceptual

categories in the manner of biological brains.
The input to the olfactory system are the 12 KA-I units of
the sense of smell. These units are stimulated from the 8 light
sensors and from four additional signals which are invariant
with regards to the type of smell being encountered, edible
or poisonous. Simply put, each food source has a distinct and
characteristic odor which is detectable by the agent. The light
sensors give information on the direction of the smell, and the
invariant stimuli provides information that lets the agent form
appropriate categories.
The task of the simulated olfactory system is to learn to
differentiate between the two basic types of smells in the
environment and to trigger appropriate behaviors at a distance,
before it actually has to taste the food source. Therefore,
we want the olfactory system to become connected in an
appropriate way to the appetitive and aversive behaviors, and
to learn to override the instinctive approach behavior when it
detects that the food source is poisonous.
We use two types of learning in the simulation, Hebbian

modification and habituation. Hebbian modification is directed
by the valence system (V), attached to the simulated sense
of taste. Tasting good food sources causes pleasure signals
to be generated, which strengthens the connections (e.g. via
Hebbian modification) between active units. Poisonous foods
sources cause pain, and a reversal of this effect by weakening
connections between active units. The second learning mech-
anism is simple habituation. During times when the agent can
not detects the presence of a salient smell, habituation of the
stimulus occurs. This has the effect of lessening the response
of the simulated olfactory system to unimportant stimuli [1].
The expected effect of this simulation is to form 2 dis-
tinct perceptual categories of the environmental smells. These
should become strong enough to eventually activate appetitive
or aversive motor actions at a distance, before the agent tastes
the food source.

C. Results

In Figures 5 and 6 we give an example of the change in
behavior that results from the agent being exposed to and
forming perceptual categories of the smell sense. Figure 5
shows activity in the Mapp and Mave motor units as well
as activity in the Taste units before learning has occurred.
The agent first approaches and edible food source when it is
detected in the environment. The Tasteapp becomes active
when the agent reaches the food source since it is edible,
which provides a pleasure signal for learning purposes. Next
the agent approaches a poisonous food source. When the agent
reaches this source, Tasteave becomes active and a pain signal
is generated. This in turn causes aversive Mave motor units to
become active.
In Figure 6, we show activity after the agent has spent some
time in the environment. Again, the agent first approaches
an edible food source, and eventually reaches and consumes
it, and therefore Tasteapp becomes active. Next the agent
detects a poisonous food source. Now we see that instead of
Mapp appetitive approach behavior becoming active, instead
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Fig. 5. Change in motor and taste unit activity before leanring. We show
time series plots of the activity of a unit in the Mapp, Mave, Tasteapp and
Tasteave areas. In this figure we show activity before learning has taken
place. First the agent approaches and consumes an edible food source. Then
the agent approaches and tastes a poisonous food source, causing Tasteave

to become active.
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Fig. 6. Change in motor and taste unit activity in response to learning. We
show time series plots of the activity of a unit in theMapp,Mave, Tasteapp

and Tasteave areas. In this figure, the same behavior still occurs for edible
food sources, which happens first in these time series. But upon detecting
a poisonous food source, Mave becomes immediately active and the agent
avoids the food source without tasting it.

the Mave aversive behavior becomes activated. The agent
avoids the poisonous food source, and never tastes it, thus
we see no activity on Tasteave.
As discussed in section II, what develops in the simulated

olfactory regions are patterns of Amplitude Modulation (AM)
which are indicative of meanings formed by the agent. In
Figure 7 we show examples of the AM patterns formed in
the PC region. The left contour map shows the AM pattern
formed for edible smells, and the right map for poisonous
smells. These contour maps were generated by recording the
activity in the 8x8 array of the PC for 50ms, then calculating
the amplitude of each of the 64 units for the 50ms (e.g. by
using the standard deviation). We then plotted the results as a
standard contour map.
The AM patterns thus formed are not static entities. There-
fore, they will not be exactly the same between two presen-
tations of the same type of stimuli. However, they do form
two distinct categories, and the AM patterns for one type of
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Fig. 7. Examples of AM patterns formed in response to edible (left) and
poisonous (right) smell stimuli. AM patterns in response to like stimuli (e.g.
to edible food sources) will be more similar to each other than to other stimuli
as measured by euclidian distance.
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Fig. 8. State space plot of the activity of unit (row 7, col 3) in the PC area.
We show the dynamics of the unit plotted against itself with a time delay of
7ms. for a 5 sec. period. Left plot is in response to stimulation by an edible
food source, while right plot is in response to a poisonous food source.

stimuli (edible) exhibited will be closer to each other, than
those formed for the other stimuli (poisonous), as measured
by the euclidian distance between the AM patterns.
In Figure 8 we show an example of this type of variance.

Here we generate a state space plot of the activity of one of
the units (unit in row 7, col 3) in the PC area, with a 7ms time
delay. This state space plot shows the activity over a 5 second
time period. The left side is the activity in the unit when a
edible smell is being presented, the right side is for a poisonous
smell. In this figure, it is difficult to see any difference, and it
appears that both stimuli produce similar dynamics.
However, if you look at where in the state space the activity
occurs for each of the stimuli, you can detect the difference.
In Figure 9 we show the same plots, but now we only plot the
points in the space, and don’t connect them with lines. Now
you can see that, though the unit visits the same areas of the
state space in both cases, it is more likely to be in one area of
the state space for edible stimuli, and in another for poisonous
stimuli. In essence what you see is that unit continues to visit
all areas of its chaotic attractor no matter what type of stimuli
is occurring. However, it will tend to more actively reside in
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Fig. 9. The same state space plot as previous figure, except we only plot
the points where the dynamics of the unit occurs. You can see the difference
in density of the spaces visited by the unit in response to the different types
of stimuli. Left is in response to edible stimuli, and right is in response to
poisonous stimuli.

one part of the attractor in response to a particular stimuli.
Different stimuli cause the unit to reside in different wings
of the chaotic attractor. This can be seen as differences in the
density of the activity of the dynamics in the state space plots.

IV. DISCUSSION

The KA-III olfactory simulation described here forms dis-
tinct AM patterns for the two types of smells encountered in
its environments. These patterns are aperiodic spatio-temporal
activity in the olfactory regions (OB, AON and PC). The am-
plitude patterns are shaped through Hebbian modification and
habituation to become sensitive to the environmental stimuli.
The shaped patterns of activity are meaningfully connected to
environmental stimuli, and become connected to appropriate
behaviors, also through learning.
While our method is similar to other approaches using

dynamical systems to build cognitive mechanisms for agents
[20], it is unique in emphasizing the roles that aperiodic
dynamics might play in such processes. This simulation is
only an example of the use of aperiodic dynamics to organize
perceptual categories, and the sensory environment is still very
simple. However, the self-organization of categories using such
aperiodic dynamics have distinct advantages as the basis for
cognitive mechanisms of perception and action. Perceptual
mechanisms based on aperiodic dynamics are potentially able
to perform much better than other methods in noisy environ-
ments because of chaotic resonance [1]. Chaotic resonance,
like stochastic resonance, helps nonlinear system detect the
presence of faint signals in noisy environments much better
than linear models. Perceptual mechanisms that display these
types of aperiodic dynamics are capable of exhibiting chaotic
resonance.

V. CONCLUSION

The self-organization of spatio-temporal patterns in nonlin-
ear systems are essential to cognitive mechanisms in biological
brains. We need to better understand how such mechanisms
operate in order to build better models of cognition and smarter

autonomous agents. This paper has demonstrated one such
self-organizational mechanism for the creation of AM patterns
in the perceptual system of an autonomous agent for use in
categorization and appetitive/aversive behavior generation.
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