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Abstract

How does the brain compute? This, in its simplest form, is the question that the dis-
cipline of computational neuroscience is trying to answer. The view of the brain as, in
some sense, performing a computation has been a unifying idea for all areas of cogni-
tion from neurobiology to artificial intelligence (AI). This idea has spawned many hy-
potheses on how neural activity gives rise to cognition. Much progress has been made
in our understanding, from low level models of neural activity (e.g. Hodgkins/Huxley
equations of neurobiology), to more abstract models of how groups of neurons might
compute (e.g. parallel distributed processing (PDP) and artificial neural network
(ANN) models of AI). However, despite much progress, a complete story of how brains
compute, from the lowest levels of molecular biology to the mysteries of cognition and
consciousness, still eludes us.

The fundamental idea of this proposal is this: Do more complex dynamics, such as
oscillatory and chaotic behavior, play a role in understanding how brains compute?
The hypothesis of the proposed research is that, yes, such dynamics do play an
important role in the processes of cognition. The goal of the proposed research is
to demonstrate how such mechanisms might operate in the perceptual, memory and
behavioral systems of an autonomous agent. A secondary goal is to demonstrate
what advantages, if any, chaotic neurodynamics might convey to the operation of an
autonomous agent. The tool of choice are autonomous agents in virtual environments,
with simple yet complete perceptual, motor, memory and motivational systems.

Chaotic dynamics in perception and behavior generation represent an additional
level of understanding of how brains compute. Another insight to be explored in

this research is the simplest possible architecture, making use of such dynamics, that



produces intentional, motivated behavior. The basic limbic system of vertebrates
represents one such possible architecture. In this proposal I will present a plan for
moving towards the demonstration of complex dynamics in a simulated limbic system

to produce intentional behavior in an autonomous agent.
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Chapter 1

Introduction

There have always been two main goals for people working in the field of Artificial
Intelligence (AI). One goal has to do with building machines that can perform tasks
that have heretofore required the intelligent activity of a human being. Examples
include the diagnosis of disease, the playing of games like chess, or the exploration of
environments for the purposes of discovery or more specific goals (performing scientific
experiments, bomb disposal, etc.). The development of intelligent artifacts have often
taken inspiration from how biological brains might perform these tasks. However, the
main focus of such research has been towards the development of intelligent behavior,
and has not been specifically concerned with the biological plausibility of the solutions
thus produced.

The second main goal of Al has been as a tool of Cognitive Science in forming and
testing hypotheses of how biological brains might be organized to perform intelligent
behavior; and in particular the intelligent behavior of human brains. In such research,
the goal is not only producing intelligent artifacts, but creating models that shed light
on some of the processes of intelligent behavior in actual biological brains.

Up until the mid ’80s, a hidden assumption of the Cognitivist, or Symbolic
paradigm, was that the hard problems of intelligent behavior had to do with things

like logical reasoning and linguistic abilities (Clark, 2001; Johnson-Laird, 1988). But



slow progress in scaling up models of such behavior have lead many to rethink this
position. If the hard problems were once believed to be language and reasoning; then
it was thought once those were solved, things like motor skills, spatial orientation
and navigation would be easily conquered. But such a position has lead to systems
that seem to be very inferior when compared to the performance of biological organ-
isms. They can perform some very constrained tasks intelligently, but the systems
are incredibly brittle and do not scale up well. Further, by pushing off the problem
of interacting with the real world to mere perception, seemingly intractable prob-
lems such as the frame problem in robotics have continually plagued such approaches
(Pylyshyn, 1987).

In reaction to these difficulties, many people have begun to turn the problem on
its head. No longer are mere perception, motor skills, orientation and navigation seen
as the simple problems whereas logic, reasoning and language are the hard problems.
Perceptual and motor skills may seem like child’s play to us, but this very appearance
of simplicity hides a deep and fundamental ability of biological organisms to perform
and act in the world. Perceptual and motor skills are now seen by many as the difficult
problems that, once solved, can provide a firm foundation on which abilities such as
reasoning and language can be built. It has been argued that a key component in
producing such behavior in animals is the basic limbic system (Freeman, 2000), which
provides the basic architecture needed for intentional behavior.

These types of problems in cognitivist models have lead to a renewed interest in
taking inspiration from biological systems in order to better capture their flexibility
and complexity of behavior. Such motivations have been behind the renewed interest
in connectionism in the mid ’80s, as well as continuing alternatives to the cognitivist
paradigm of the computer metaphors of the brain. Biologically inspired approaches

have lead to important advances in our conceptions of how brains function. Parallel



and distributed representations capture many important strengths and weaknesses of
biological systems including: subsymbolic representations, pattern completion, learn-
ing, generalization and graceful degradation.

Later generations of connectionist thought have continued to extend the mod-
els to cover other important properties of biological behavior. By adding recurrent
connections, connectionist models can deal with and produce dynamically generated
temporal structure, or in other words, patterns that extend not only in space but in
time. This is an important shift from perceptual patterns as relatively static entities,
to more dynamic, real-time, environmentally complex patterns. Another important
extension in connectionist networks is towards more complex, and biologically moti-
vated architectures. These networks are moving away from the traditional three layer
networks, to models with many processing areas or maps, and complex hard coded
wiring and recurrent connections. Such work, in parallel with ideas of dynamics, em-
bodiment and autonomous agents, are beginning to model complete organisms that
perceive, act and learn within an environment.

This work, however, has continued to be carried out using neural models, ab-
stracted from results in computational neuroscience, of the simplest variety. Oscilla-
tory and chaotic dynamics are usually strictly avoided in such models. This leaves
many questions open, however, on what use biological brains might have with all of
the noisy and varying oscillatory patterns that they produce. In short, while the
highly abstract ANN models have enlightened us in many fundamental ways on how
neural tissue computes, it seems clear that many more fundamental principles remain
to be articulated on how collective groups of neurons develop into perceptual, memory
and behavior producing systems.

The continuing progression of connectionist models has produced impressive in-

sights into how simple organisms may organize and develop perceptual and behavioral



patterns. We are now at a point of asking how such models can be further expanded
to capture even more of the abilities of biological organisms. Current research into
the neurodynamics of biological brains (Skarda & Freeman, 1987; Freeman, 1999b)
suggests that one missing ingredient of connectionist models may be chaotic dynam-
ics. Chaotic dynamics have been shown to occur in the mesoscopic ! organization of
neural patterns during perception (Skarda & Freeman, 1987). It has been hypoth-
esized that such chaotic dynamics, far from being noise or an epiphenomenon, may
actually be essential to the flexible formation of perceptual categories and behavior.
The exploration of the uses of chaos as a fundamental property of the development of
behavior in autonomous agents has not yet been adequately explored. If the hypothe-
sized functioning of chaos as useful and necessary for biological brains is true, the use
of chaos in models of perception and action selection may provide useful extensions
to their capabilities. Further, it has been suggested (Freeman, 1991, 2000; Harter &
Kozma, 2001a) that chaotic dynamics may be useful for more than just perceptual
tasks. As chaotic dynamics allows for the flexible formation and instantaneous access
of perceptual categories, it may also be essential in the formation of hierarchical goal
states for intentional behavior. Chaotic dynamics has been shown to be useful in
the self-organization of attractors for perceptual processing. The basics of intentional
behavior have to do with the self-organization and formation of hierarchical goal-
states of an organism that guide intentional behavior out into the environment. Just
as chaotic dynamics may be necessary for the flexible self-organization of perceptual
patterns, it may also be necessary for the self-organization of hierarchical goal-states
of intentional behavior.

This proposal will first present an overview of some of the ideas and areas that are

! Mesoscopic dynamics refer to a level of organization between the microscopic activity of single
neurons and the macroscopic activity of whole brain areas. Mescoscopic dynamics are generated by
groups of interconnected and cooperating neurons.



key influences on the proposed research. This section includes a discussion of the dy-
namical cognitive hypothesis, a review of influential research combining autonomous
agents and computational neuroscience relevant to this proposal, and a review of the
literature of chaotic neurodynamics in neuroscience and cognition. The next section
will present some preliminary results that have been obtained in developing a discrete
and deterministic version of the K-Sets (Freeman, 1975, 1987) that will be used as
fundamental units for the proposed research. These K-sets for autonomous agents
(KA-sets) are faster, discretized versions, of the original continuous K-sets, suitable
for computation in real-time autonomous agents. I will present work done with the
KA-sets in implementing some of the fundamental principles of neurodynamics (Free-
man, 1999b), including how they generate oscillatory and chaotic dynamics. I will
also present some results of using hebbian mechanisms for learning among the os-
cillatory units of the KA-sets. In the final section I describe the proposed research
project. I will describe the problems and agents to be used plus some preliminary
ideas on what might be done to demonstrate the use of chaotic neurodynamics for

the control of an autonomous agent and the simulation of basic intentional systems.



Chapter 2

Review

2.1 Symbolic Cognition

To date there have been two major approaches in Cognitive Science to the question
of how minds work. These can be broadly described as the cognitivist, or symbolic
approach, and the connectionist, or parallel distributed approach to cognition. While
both viewpoints had their origins in the early 1900’s and were articulated at the birth
of Al and modern Cognitive Science, the symbolic approach has held sway for much
of that time as the dominant viewpoint.

The symbolic approach to cognition is typified by Newell and Simon’s physical-
symbol system hypothesis (Newell & Simon, 1972, 1976; Newell, 1980, 1990). A
physical-symbol system is a physical device that contains a set of interpretable and
combinable items (symbols) and a set of processes that can operate on the items (copy-
ing, conjoining, creating, and destroying them according to instructions) (Newell &
Simon, 1976, p. 86). The physical-symbol system hypothesis states that a physical
symbol system has the necessary and sufficient means for general intelligent action
(Newell & Simon, 1976, p. 87). This is a strong empirical claim on the nature of
intelligence. It states that any system that manipulates symbols is sufficient for pro-
ducing intelligent behavior, and further that all intelligent systems are necessarily

implementations of physical-symbol systems.



In practical terms, the types of syntactic manipulation of symbols found in formal
logic and formal linguistic systems typifies this view of cognition. In this viewpoint,
external events and perception are transduced into inner symbols to represent the
state of the world. This inner symbolic code stores and represents all of the system’s
long-term knowledge. Actions take place through the logical manipulation of these
symbols to discover solutions for the current problems presented by the environment.
Problem solving takes the form of a search through a problem space of symbols, and
the search is performed by the logical manipulation of the symbols through stated
operations (copying, conjoining, etc.). These solutions are implemented by forming
plans and sending commands to the motor system to execute the plans in order to
solve the problem. In the symbolic viewpoint, intelligence is typified by and resides
at the level of deliberative thought. Modern examples of systems that fall within this
paradigm include SOAR and ACT-R.

Symbolic systems are often equated with the machine metaphor of mind. In this
viewpoint of cognition, the brain is seen in some sense as a computer. The physical
brain represents the hardware of the system, and the mind represents the software.
The machine metaphor is a very attractive position for many reasons. It explains
how the mind connects with and controls the body, the old mind-body problem, in a
way that does not resort to a form of dualism.

The symbolic approach works well as a model of cognition, and is capable of mod-
eling many impressive examples of intelligent behavior in AI. However, challenges to
this viewpoint of cognition have appeared, both as practical criticisms of the per-
formance of such systems and more philosophical challenges to the physical-symbol
system hypothesis.

On the practical side, symbolic models are notoriously inflexible and difficult to

scale up from toy environments to real world problems. If symbolic systems are



both necessary and sufficient for intelligent behavior, why do we seem to have such
problems in producing the flexibility of behavior exhibited by biological organisms?
The inability of symbolic systems to cope with such problems has lead many to
a new viewpoint of cognition. When one views cognition as mainly working on the
level of deliberative thought, then the hard problems of intelligence appear to be
those such as logic and language use. From this viewpoint, the abilities of organisms
to orient themselves spatio-temporally, form perceptual categories and develop basic
motor skills seem to be easy problems that can be immediately solved once basic
systems exist to take care of the harder problems of deliberative thought. But if the
physical-symbol system hypothesis does not hold and deliberative thought is not the
basic level where intelligence resides, then this viewpoint may be exactly backwards.
Those abilities that are so easily dismissed as simple because all children learn them
with seeming effortlessness are instead seen as complex and essential to cognition.
Perhaps it has taken most of the time of evolution to solve these basic features of
intentional activity, and language and logic are phylogenetically more recent and
comparatively easy to solve once the proper base of spatio-temporal skills is in place

to support them.

2.2 Connectionism

A connectionist view of cognition provides an alternative theory of mind to the sym-
bolic approach. The connectionist approach to cognition has existed for as long as
the symbolic approach. However, symbolic viewpoints of cognition have dominated
the field of cognitive science until a resurgence of interest in connectionist models in
the mid 80s.

The connectionist approach differs from the symbolic paradigm in almost all major

dimensions. Connectionist models offer a subsymbolic paradigm, where representa-



tions are built from the changing contributions of processing units that represent
features below the normal level of human symbolic features. Connectionist models
emphasize parallel processing, while symbolic systems tend to process information
in a serial fashion. Connectionist representations are distributed over many units,
while cognitivist symbols are static localized structures. Connectionist models offer
many attractive features when compared with standard symbolic approaches. They
have a level of biological plausibility absent in symbolic models that allows for easier
visualization of how brains might process information. Parallel distributed represen-
tations are robust, and flexible. They allow for pattern completion and generalization
performance comparable to biological organisms. In short, connectionist models are

an attractive alternative model of cognition.

2.2.1 First Generation

Clark (2001) categorizes modern connectionism into three generations. The first-
generation of connectionism, that began with the perceptron and the work of the cy-
berneticists (Rosenblatt, 1958; McCulloch & Pitts, 1943), was revived in the mid '80s
with the PDP research groups work (among others) on parallel distributed process-
ing (Rumelhart, McClelland, & The PDP Research Group, 1986). First-generation
connectionist systems were typified by a multi-layer architecture (usually composed
of two or three layers) with strictly feed-forward connections. Such architectures are
very familiar to practitioners of Al and Neural Network research. As stated previ-
ously, connectionist models of cognition are very attractive and important for many
reasons. They are biologically plausible models with some of the flexibility of pattern-

recognition and generalization exhibited by biological organisms.



2.2.2 Second Generation

Second-generation connectionism began to appear in the early ’90s. Second-generation
connectionism extends first-generation networks to begin to deal effectively with dy-
namic spatio-temporal events. First-generation networks displayed no real capacity to
deal with time or order in the environment. Second-generation connectionist systems
added recurrent connections to the networks in order to expand these capabilities
(Elman, 1990, 1991). Recurrent connections are connections that connect later layers
in the network with earlier layers. So second-generation connectionist networks are no
longer strictly feed-forward, they contain recurrent connections. The addition of re-
current connections allows for previous states of the network to affect decisions about
the current input. In essence, recurrent connections provide a type of short term
memory that allows for the categorization of patterns extended in time across the
inputs of the network. This ability to deal with spatio-temporally extended patterns

in time is an important addition to the capabilities of connectionist systems.

2.2.3 Third Generation

Third-generation connectionism is the most recent extension of the connectionist
paradigm. This generation of models is typified by even more complex dynamic
and time involving properties. These models use more complex, and biologically in-
spired architectures, along with various recurrent and hard-coded connections. So, for
example, rather than the typical three layers of first and second generations, third-
generation networks may have many areas that represent and reflect architectures
and subsystems of biological brains. Because of the increasing emphasis on dynamic
and time properties, third-generation connectionism has also been called dynamic
connectionism. I will discuss some examples of third generation connectionist models

in section 2.5.
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2.3 Dynamical Cognitive Hypothesis

Connectionist models have begun to be expanded to capture the more dynamic and
time-varying properties of real biological networks. Another view of cognition, com-
patible with this dynamical connectionism, emphasizes the dynamics of change (from
neurochemical, to electrical to behavioral). This view of cognition uses the formal
language of dynamical systems theory and has been emerging recently in cognitive
science as a result of the perceived defects of symbolic and standard connectionist
models (van Gelder, 1998; Bechtel, 1998; Hendriks-Jansen, 1996; Clark, 1997, 2001;
Port & van Gelder, 1995).

The paradigm of dynamics views what the brain does in terms of attractors, bi-
furcations, order parameters, instabilities and phase transitions in complex systems.
There is a subtle, yet significant, shift in perspective when viewing cognition from
a dynamical viewpoint. Neurobiological and connectionist models are increasingly
interpreting their results in terms of dynamics. The behavior of simple elements in
networks lends itself naturally to the language of dynamics, and symbolic analogs
are hard to articulate at these levels. However, the dynamical paradigm is increas-
ingly being extended to higher, more abstract levels of cognitive modeling. Dynamics
increasingly forms the explanatory language in psychopyhsics, perception, develop-
mental psychology, cognitive psychology, situated and autonomous agents, artificial
intelligence and social psychology (van Gelder, 1998). It is central to a number of
general approaches, such as ecological psychology (Gibson, 1979; Kugler, Kelso, &
Turvey, 1982), synergetics (Haken & Stadler, 1990; Tschacher & Dauwalder, 1998),
and morphodynamics (Thom, 1983). In this section I review some important research
that views cognition through the use of dynamical explanations. We highlight some
of the implications of viewing cognition through a dynamical perspective, and I relate

this work to the proposed research.
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2.3.1 Kelso: The Self-Organization of Behavior

J. A. Scott Kelso believes that cognition can best be understood as the unfolding of

a dynamic system through time (Kelso, 1995; Kugler et al., 1982). His approach to

understanding cognition emphasizes the concept of self-organization: the way groups

of things cooperate to form emergent, coherent patterns. In Kelso’s words:

“The thesis here is that the human brain is fundamentally a pattern-
forming self-organized system governed by nonlinear dynamical laws. Rather
than compute, our brain ’dwells’ (at least for short times) in metastable
states: it is poised on the brink of instability where it can switch flexibly
and quickly. By living near criticality, the brain is able to anticipate the
future, not simply react to the present. (Kelso, 1995, p. 26)”

Elementary Concepts of and Conditions for Self-Organization

Kelso postulates seven concepts and conditions for self-organization to occur. In

abbreviated form they are (Kelso, 1995, p. 16):

1.

Patterns arise spontaneously as the result of large numbers of interacting com-
ponents. The nature of the interactions must be nonlinear.

The system must be dissipative and far from equilibrium.

Relevant degrees of freedom (order parameters) are created by coordination be-
tween parts, but in turn influence the behavior of the parts (circular causality).

Order parameters are found near nonequilibrium phase transitions, where loss
of stability gives rise to new or different patterns and/or switching between
patterns.

Fluctuations continuously probe the system, allowing it to feel its stability and
providing opportunities to discover new patterns. Fluctuations are positive
sources of noise, not just something to be rid of.

Control parameters lead the system through different patterns, they do not act
as a code or prescription for the emerging patterns.

The dynamics of the system may have simple (fixed point, limit cycle) or com-
plicated solutions including deterministic chaos and stochastic aspects, giving
rise to enormous behavioral complexity.

Kelso’s seven conditions of self-organization are important for several reasons.

First of all, by articulating such conditions we make concrete what is meant by self-

organization, a term that is often abused. These conditions can act as essential
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guide-posts towards developing systems that display emergent behavior in brain like
ways. We can be more confident that our models exhibit self-organization if they
meet the conditions proposed here.

The first condition is one common in connectionist models. An important point
is that the interactions of the components must be nonlinear. Through nonlinear
interactions develop patterns of the whole that are greater than and different from
the behavior of the parts. Principle 5, dealing with fluctuations, is interesting in
many ways. In a self-organized system, positive sources of noise are not problems,
but are actually necessary to the correct functioning of the system. The purpose
of fluctuations, as stated, is to probe the system continuously such that new stable
patterns may be found. Deterministic chaos provides a controlled source of noise that

fulfills the requirement of fluctuations for self-organization.
Illustration of a Dynamic Model: Phase Transitions in Rhythmic Behavior

As a simple illustration of a dynamical model of behavior in this section I will briefly
present the Haken-Kelso-Bunz (HKB) model of phase transition’s in rhythmic fin-
ger movements. Many patterns of locomotive behavior are based upon oscillatory
rhythms (though, interestingly, not completely periodic as the patterns must main-
tain a certain amount of flexibility in order to deal with environmental irregularities).
For example, walking is basically rhythmic motion of alternating limbs. Horses have
3 basic gait patterns: walking, trotting and galloping. It is a well-known fact that
horses (as well as other quadrupeds and humans) employ restricted ranges of speed for
any given mode of locomotion (Kelso, 1995). Going to fast or to slow out of this range
causes a spontaneous transition into a different mode of locomotion. Interestingly, the
preferred speed for any mode of locomotion is such that it is the most efficient speed
in terms of energy expenditure vs. oxygen consumption (Hoyt & Taylor, 1981). This

is a common example of an order parameter of developmental dynamics, in which
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embodied proprioception of bodily functions helps to develop patterns that are close
to optimal for certain purposes.

Haken, Kelso, and Bunz (1985) developed a dynamical model of a simple phase
transition in rhythmic behavior. In this experiment, they asked people to wave the
index fingers of their hands back and forth (like windshield wipers on a car). Their
fingers were hooked up to devices that could measure their position (or angular dis-
placement) over time. The were asked to rhythmically wave their fingers to the beat
of a metronome. At low speeds there are two stable states (attractors) of behavior.
We can call these in phase (both fingers are at the same angle, relative to the center
of the body), or out of phase (exactly 180°) apart). At high speeds, one of these
patterns (out of phase) becomes unstable and is unable to be naturally produced.
When the speed of the metronome is gradually increased, people naturally shift from

an out of phase pattern to being in phase once a critical speed is reached.

Figure 2.1: The HKB model of coordination. Upper left is low speed of the
metronome, which transitions to the lower right and a high speed (from Kelso, 1995,
p. 55)
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Haken, Kelso and Bunz were able to develop a first order differential equation
that describes the dynamics of this rhythmic behavior. Figure 2.1 shows a visual
representation of the state space of this system. In these figure, the speed of the
metronome acts as an order parameter of the system. In the upper left panel, the
speed is very low, and there are two stable attractors of behavior of the system (at 0°
and +7° relative phase). As the speed of the metronome increases (moving from left
to right and then top to bottom), the out of phase stable attractor basin eventually
disappears. This point engenders a behavioral phase transition from out of phase to

in phase behavior.

2.3.2 Thelen and Smith: Developmental Systems, Dynamics
and Cognition

The ontogenetic development of behavior provides a powerful mechanisms by which
organisms learn to organize effective patterns of behavior for performing the neces-
sary tasks of survival (Thelen & Smith, 1994; Iverson & Thelen, 1999; Oyama, 1985;
Thelen, 1995). There are many properties of this type of development. It is funda-
mentally a self-organizing process, in which the constraints of body and environment
guide the system towards discovering certain patterns of behavior. Development of
behavior in organisms is not so much a process of finding complex chains of effec-
tive behaviors, but in finding salient perceptual cues and effective manipulations that
simplify and transform the task environment into problems that are directly recog-
nizable and solvable. Problem solving in natural cognitive systems is more often the
application of many transformations until the problem is sufficiently simplified to be
directly solved. Clark (1997) calls such phenomena action loops. Kirsh and Maglio
(1994) call actions that are primarily performed to transform and simplify the task
environment epistemic actions.

Thelen and Smith (Thelen & Smith, 1994; Thelen, 1995) envision the development
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Figure 2.2: Metaphorical ontogenetic landscape for locomotion (from Thelen & Smith,
1994, p. 124)

of behavior in cognitive systems as an ontogenetic landscape of stable and unstable
attractors and repellors (figure 2.2). As the body of the organism changes, new oppor-
tunities for behavior are created and destroyed. Development is seen as a reduction
of the degrees of freedom of the system as useful patterns for solving problems are
discovered. As stable solutions to problems develop, these in turn change the onto-

genetic landscape, opening up new opportunities for some behaviors, and closing off
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opportunities for others. Development is the discovery of stable patterns of behavior,
given the current constraints of the body and the environment.

Natural cognitive systems display both physical and behavioral development.
Physical changes in a maturing organism are continually reshaping the ontogenetic
landscape, destabilizing previously stable solutions, and forcing the system into find-
ing new patterns of behavior. Natural cognitive systems also display this flexibility
in the development of behavior for problem solving. Sequences of behaviors are not
learned so much as behaviors that change the state of the environment and thus cue
the next behavior. Therefore chains of complex behaviors are seen as loops of simple
perception/action feedback pairs that reliably transform a problem into a desired goal

or result.

2.4 Embodiment

Embodied cognition is an emerging viewpoint in cognitive science that emphasizes
many differing aspects from the standard cognitive hypothesis (Clark, 1997; Hendriks-
Jansen, 1996; Pfeifer & Scheier, 1998; Varela, Thompson, & Rosch, 1993; Franklin,
1995, 1997). Many of the ideas of embodied cognition are compatible with and com-
plement a dynamical perspective.

In the standard view of cognition, the mind is the product of the manipulation of
symbolic representations of the problem in order to produce solutions and generate
intelligent behavior (Johnson-Laird, 1988; Newell & Simon, 1972, 1976; Newell, 1990).
The environment is perceived and transduced into symbolic representations. These
symbols encode the current state of the environment and the problem to be solved.
They can be manipulated, independent of the environment, to discover solutions
to the problem and produce intelligent behavior for the organism. In an embodied

view of cognition, intelligence in biological organisms does not arise through the
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static manipulation of amodal symbols and representations. Instead, organisms are
seen to be embedded in their environments in fundamental ways. Through their
real time experiences with their bodies and environments, they begin to embody the
salient aspects of situations in ways that guide future perception and behavior towards
improved performance. Experience with their ecological niche develops expectations
of the environmental regularities that are of benefit to the intrinsic needs and desires
of the organism. The organism actively learns to seek out expected stimuli that are
relevant to the desires and needs of the organism at a particular moment.

There are many concepts associated with an embodied perspective of cognition.

I will briefly present some of the more important ones in the next sections.

2.4.1 Embodied Organisms are Complete Organisms

Biological organisms are currently the only examples capable of producing a full range
of intelligent, adaptive behavior. Standard views of cognition place no special empha-
sis on the fact that these natural examples of cognition are complete organisms. In
the standard view of cognition, it seems plausible that by connecting together many
specialized subsystems that solve problems in limited, specialized domains, eventually
a complete intelligence will be produced.

According to an embodied perspective, we are not likely to understand natural
cognition from such a piecemeal approach to studying and building systems. Instead,
we must examine and build complete cognitive systems. In this context, complete
refers to systems that are autonomous and adaptive. Autonomous systems are those
that have certain intrinsic needs, and that are able to produce behavior that is capable
of satisfying those needs consistently over time. Pfeifer (1996), Pfeifer and Scheier
(1998) characterizes autonomy as the ability of the organism to maintain its critical,
intrinsic values within a zone of viability. This is often referred to as “homeostasis”.

Adaptivity refers to organisms that are capable of modifying their behavior so that
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they can more efficiently maintain their critical parameters in their zones of viability
(Franklin & Graesser, 1997).

Studying complete cognitive systems is important for several reasons. Classical
approaches to modeling cognition often tackle restricted problems in limited domains.
The hope is that the techniques developed can then be scaled up to the full problems
of cognition. Embodied cognition, with its emphasis on complete systems, maintains
that the answer is not to start with restricted portions of the cognitive system. In-
stead we should begin by studying simple, but complete, organisms, in more realistic
environments (Brooks, 1990; Pfeifer & Scheier, 1998). Only complete organisms are

capable of developing embodied representations and displaying intentional behavior.

2.4.2 Active, Action-Oriented Representations

Another important difference of embodied and classical perspectives concerns the
nature of the representations developed and used by the organism. In a classical per-
spective, symbols are seen as passive structures that are syntactically manipulated
to produce solutions. In an embodied perspective, representations are much more
intimately tied to the intrinsic needs of the organism. Clark (1997) calls such struc-
tures action-oriented representations. Action-oriented representations are not passive
representations of the state of the environment as it exists at some time. They are
continuously updated from sensory information, and they continuously prescribe pos-
sibilities for action. In this sense they are not representations at all, in the traditional
meaning of the word. Gibson (1979) has called this the concept of affordances, where

the representations afford opportunities for action for the organism.

2.4.3 The World Represents Itself

Classical models of cognition often experience an exponential explosion of computa-

tional power as the environment increases in complexity. An embodied approach to

19



cognition avoids this problem because it advocates the use of simple, cheap, action-
oriented representations. From an embodied perspective, it is better to use cheap and
active sensing to inform oneself of the state of the environment, rather than build-
ing complex representations of the environment. Brooks (Brooks, 1995) states this
principle as “the world is its own best model”. Embodied cognition avoids the use
of costly and detailed representations. Cheap, quick, active, specialized sensing of
the environment is preferred. Instead of maintaining a complex representation of the
state of the environment, we simply direct specialized sensory apparatus to directly
perceive the information required for behavior. This approach helps keep the need

for computation from exploding in complex environments.

2.4.4 Emergence of Solutions through Collective Activity

A key concept of embodied cognition is the emergence of solutions from many parallel,
distributed activities. In an embodied perspective, intelligence is seen as emerging
from the parallel activity of many cooperating and competing processes. As in connec-
tionist models, parallel emergence of solutions provides many benefits to the behavior
of the system. Such emergent solutions are robust and resistant to damage; toler-
ant of noisy, incomplete data; satisfy general goals and yet are variable and context
dependent. They are also fast, able to produce solutions easily in real time demand-
ing environments. Unlike most classical connectionist modeling, embodied cognition
views recurrent, non-linear interactions as a crucial property in the emergence of

solutions.

2.4.5 Developing Within the Environment

The emergence of solutions through many parallel processes is not simply a product
of the non-linear interactions of components in the organism’s brain. Intelligent

behavior also emerges as the product of the interaction of simple behaviors with
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a complex environment. Simple, instinctive behaviors are seen as intelligent when
they are coupled with local environmental cues (Braitenberg, 1984). Development of
action-oriented representations aids in this process. Organisms learn simple actions
that, when coupled with appropriate learned stimuli, yield intelligent, purposeful
behavior.

Clark (1997) states that embodied minds use extensive external scaffolding, where
the environment itself is used as a type of external memory. The ecological niche of
the organism provides many consistent cues for intelligent behavior. Most intelligent
behavior in natural organisms involves the fast recognition and exploitation of such
opportunities, not in complex planning and reasoning. Also, most organisms tend to
offload complex planning and reasoning tasks onto the environment. They do this
by allowing the state of the environment to represent the progression of the problem
solving task. One example, given by (Rumelhart et al., 1986), is in the behavior of
people when multiplying large numbers. Most people can instantly recognize and
produce the answer to simple, single digit multiplication problems, of the type 7 x
7 = 49. However, when given the task of multiplying large numbers together, say
4356 X 1897, they invariably resort to pencil and paper (when denied the used of
a calculator). People do not compute large chains of complicated reasoning and
logic. Instead they offload the representation of the progress of the task onto the
environment by maintaining the state of the problem solving task with environmental
cues. In this case, people make marks on paper (the environment) to keep track of
their problem solving progress, while reducing the problems to those simple ones that
they can directly recognize and solve. Embodied cognition sees this type of external
scaffolding not as simply useful, but as a prevalent and pervasive method used by
cognitive systems to reduce computational complexity and perform problem solving

tasks in real time.
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2.4.6 Better Imperfect than Late

Biological cognition is exemplified by fast pattern completion. It has evolved to
produce behavior in real time. The behavior does not necessarily have to be perfect,
so long as it is good enough for the continued survival of the organism (at least until
the next crisis occurs). Organisms are continually presented with threats and dangers
that must be handled immediately in order to ensure their survival. Such requirements
do not favor solutions that take large amounts of time. Natural cognition seems to
be built upon a foundation of fast pattern recognition and behavior generation keyed
to threats and opportunities for action. The embodied cognitive viewpoint recognizes
this fundamental feature of natural cognitive systems. According to Port and van
Gelder:
“The cognitive system is not a discrete sequential manipulator of static
representational structures; rather, it is a structure of mutually and si-
multaneously influencing change. Its processes do not take place in the
arbitrary, discrete time of computer steps; rather, they unfold in the real

time of ongoing change in the environment, the body, and the nervous
system. (Port & van Gelder, 1995, p. 3)”

2.5 Autonomous Agents in Computational Neuro-
science

One reaction to some of the typical problems encountered by the cognitivist paradigms
is to begin to study and emphasize complete autonomous agents (Pfeifer & Scheier,
1998; Maes, 1990; Steels & Brooks, 1995; Brooks, 1995). By focusing on complete,
if simple, agents (the thinking goes) we force ourselves to face the hard problems of
perception and action right from the beginning. Rather than focusing on narrow,
isolated faculties (memory, language, vision) and tasks (memorizing lists, reaction
times), the study of complete agents allows us to study how such disparate systems
might be integrated to perform the functions of cognition. The hope is that by

studying integrated systems we will gain more (or new) insights into cognition than
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can be gleaned by studying the components in isolation. In addition, the development
of complex behavior may in fact be as much a result of the coupled interaction between
the biological organism and a complex, changing environment. Models of complete
agents in complex environments are more likely to offer insights into these types of
developmental systems.

Complete agents are usually perceived as having a number of properties. They are
self-sufficient and autonomous. This means that they have their own goals and needs,
and are able to act within their world to satisfy these need. Autonomous agents are
situated in their environments. They are embodied. They display adaptivity but, at
the same time, are often surprisingly specialized for operations within their ecological
niche (Franklin & Graesser, 1997; Pfeifer & Scheier, 1998).

A dynamical perspective often plays a role at many levels of explanation in com-
plete autonomous agent research. For example, many people conceive of the agent
and environment as a tightly coupled pair of interacting dynamical systems. In this
view, behavior does not completely originate from the internals of the agent, nor is it
completely a property of the environment. Instead, behavior is an emergent property
of the agent/environment interaction. A conclusion of this insight is that it is not
enough to study the cognitive agent if you completely wish to understand its behav-
ior. The agent/environment system must be studied together to fully understand the
behavior.

The research proposed here is very much in the tradition of complete agent ap-
proaches to cognition. I am proposing to explore two major questions in the light of
complete autonomous agents. First of all, what roles might complex dynamics, like
chaos, play in the formation of memory, perception and behavior. And secondly, what
insights might we glean from the limbic system that will improve the performance

of agents in producing intentional behavior. In the rest of this section I present a
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few examples of work that is combining models from neurobiology and computational

neuroscience, with an autonomous agent perspective.

2.5.1 Verschure and Pfeifer: Distributed Adaptive Control
(DAC)

& Proximity
Light
N [ Coliision

Figure 2.3: Generic agent scheme used for DAC experiments (Khepera like) (from
Pfeifer & Scheier, 1998, p. 155)

The first model T will discuss, is a simple, yet instructive, model of classical con-
ditioning. Distributive Adaptive Control (DAC), developed by Paul Verschure and
Rolf Pfeifer (Verschure, Krose, & Pfeifer, 1992; Verschure & Pfeifer, 1993; Verschure,
Wray, Sporns, Tononi, & Edelman, 1995; Verschure, 1998; Pfeifer & Scheier, 1998),
illustrates some of the strengths of the complete agent approach to studying cogni-
tion. The agent used was the khepera robot, shown in figure 2.3, which has three
types of sensors: collision detectors, proximity sensors (infra-red) and target sensors
(light). Eight sensors of each type are arranged around the body of the agent, mostly
concentrated in the front part of the body.

The architecture for the DAC simulations is shown in figure 2.4. In this figure,
solid arrows represent hard coded connections, while dotted arrows are weights that
will be modified by learning. As can be seen, there are areas of units, labeled C,

P and T, which receive stimulation from the collision, proximity and target sensors
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Figure 2.4: Architecture for DAC experiments (from Pfeifer & Scheier, 1998, p. 164)

respectively. These areas each contain 8 simple neural units, that receive stimulation
from a single one of the sensors. The motor area M contains units that produce three
simple behaviors: turn left, turn right and move forward. The robot is initially hard
coded with a set of instinctive, reflexive behaviors. In this case, the weights between
the C and M areas are hard coded such that, if there is a collision with an object on
the right side of the agent, the agent turns to the left. Similarly the agent reacts to
a collision on the left by turning to the right. When no collisions are detected, the
agent is hard coded to move forward.

In the first simulation, in which we ignore the use of the target sensors for now
and concentrate solely on the collision and proximity sensors, the robot initially wan-
ders forward in its environment, colliding with objects, turning away from them and
moving on to collide with the next object. The units in the proximity area (P) are
fully connected with the units in the collision area (C), and these weights are plastic
and can be modified through hebbian learning. Whenever the agent collides with
an object, both the collision and proximity sensors will be highly active. Because of

the coactivation of activity between these units, the weights between corresponding
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collision and proximity sensors will be strengthened. Eventually, the activation of the
proximity sensors alone will be enough to stimulate the appropriate collision sensor
and cause avoidance behavior to be produced. Since the proximity sensor becomes
active at a distance, the resulting behavior is that the robot learns to avoid objects

at a distance without colliding into them (figure 2.5).

Figure 2.5: Development of DAC behavior over time. (left) Obstacle avoidance be-
havior. Initially the robot hits obstacles. Over time, it starts turning away before
hitting. (right) Wall-following behavior. When light sources are found along walls,
wall-following behavior emerges over time (taken from Pfeifer & Scheier, 1998, p.
161)

In the second simulation, the target sensors are now used to develop a type of wall-
following behavior. In this simulation, light sources are placed around the outside
edges of the wall. The target area units (T) are hard coded to cause the agent to turn
towards and approach the strongest light source (indicated by strongest stimulation of
one of the light source sensors). The I unit in figure 2.4 provides inhibition between the
collision and target areas. The behavior of the agent is to approach and collide with
the wall. At this point the target area units are inhibited by the collision area, and
reflexive turning away is performed. When the agent has turned sufficiently far away,
inhibition decreases which allows approach to again occur. The resulting behavior
is to follow the wall, as shown in figure 2.5. If learning is allowed to occur between
the proximity (P) and target (T) layers, eventually the robot learns to associate light
sources with proximity to walls. After this has happened, the light sources can be

removed and the agent will continue to approach walls. If we think of the light as

representing food sources, we can say that the robot has learned that food is to
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normally be found along walls. It follows walls now, even in the absence of light, in
the hopes of finding food.

In this simulation we can describe the behavior of the agent as learning to cor-
rectly generalize from experience. It starts avoiding obstacles and finally ends up
anticipating them as a result of the conditioning between collisions and proximity
sensors. In a similar manner, light sources are appropriately generalized to approach

behavior of any wall, through the coactivation of proximity and target sensors.

2.5.2 Edelman: DARWIN

The next agent I will present is work done by Gerald M. Edelman and research asso-
ciates on the DARWIN agents (Edelman et al., 1992; Alméssy, Edelman, & Sporns,
1998; Friston, Tononi, Reeke, Sporns, & Edelman, 1994; Sporns, Almassy, & Edel-
man, 1999; Edelman, 1987; Edelman & Tononi, 2000). The DARWIN series of models
have been developed by Edelman et al. since the early 1990’s. The purpose of the
various models have been to demonstrate some of the principles of Edelman’s theory
of neuronal group selection and recurrent maps. I will concentrate solely on the lat-
est incarnation, DARWIN V., that has been implemented on a real world robot called
NOMAD.

The purpose of DARWIN V was to explore questions of the specific roles of self-
generated movements and behavioral interactions with an environment in the devel-
opment of complex neuronal properties (Almdssy et al., 1998). In other words, how
important are active (as opposed to passive) interactions with the environment in
developing representations and behaviors. The DARWIN V architecture is shown in
figure 2.6. The DARWIN robot comes equipped with two types of sensors, a color
camera (with 64x64 pixel resolution) and a sensor that registers electrical conductance
of objects it touches (which they equate with a type of taste sense).

In the agents environment are placed two types of objects that have regular re-
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Figure 2.6: Architecture for DARWIN V experiments. Each box represents a modeled
area containing neuronal units, numbers within boxes indicate dimensions of the
neuronal array (from Alméssy & Sporns, 1998, p. 316).

lationships between the properties that the agent is sensitive to. Some objects are
painted with blobs (visual) and are made of metal so that they conduct electricity
(taste). Other objects are painted with stripes and are coated with a material that
will not conduct electricity. In the experiment, nonconductive objects (the stripey
ones) are considered to taste good to the agent (e.g. a source of food) and are hard
coded into the agent’s value system as such. Blobby objects, that are conductive,
are poisonous to the agent. The agent is hard coded in such a way that initially it
approaches and tastes all objects it comes across in its environment. The goal of the
experiment, similar to the DAC setup, is to learn which visual properties (blobs or
stripes) are reliably associated with good tasting or bad tasting food, and to learn
to avoid the blobby objects without having to actually taste them, simply by seeing
them at a distance and avoiding them.

In the DARWIN V architecture (figure 2.6), the taste sensors are hard coded
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to the appetitive (7,,,) and aversive (Tg,.) areas, which in turn cause appetitive
(M,,,) and aversive (M,,.) motor behaviors. These connections are hard coded, as
described previously, for the good and bad tasting objects. The colliculus (C, and
C;) areas receive input from the reticular (R) formation (camera sensor). These
objects are hard coded to sense the brightest area in the camera’s field of view, which
will correspond to the closest object, and to then rotate (M,,) and move (M;.,)
the robot to approach that object. The effect of these hard coded connections is to
cause the agent to approach the closest object and attempt to taste it. The reticular
(R) area projects into three areas (VA,B, VA,H and VA,V) which are coded to
respond selectively to blobs, and horizontal and vertical stripes in the camera view.
The results of these three visual processing areas are integrated into the V A, area.
Connections between the three VA, and VA, areas are plastic, as well as those
between V' A, and the appetitive and aversive motor areas (M,,, and M,,.). Plastic
connections are those that are subject to modification through hebbian learning. In
the DARWIN experiments, learning only takes place when salient events occur (such
as tasting good, or bad food). The value area (S) turns on hebbian plasticity during

these important events.
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Figure 2.7: Comparison of average group activity in DARWIN V during early (left)
and late (right) visual development. Solid lines are appetitive activity, while dashed
lines are aversive (from Alméssy & Sporns, 1998, p. 316)
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Initially the weights from the visual (VA) to the motor (M) areas are not strong
enough to affect behavior. However, whenever the robot finds and tastes a good
object, learning is turned on. In this case, certain patterns (from striped, good tasting
objects) will be active in V A;. Since these patterns are active when the appetitive
behavior is active (M,y,), these weights will be strengthened. Likewise, when a bad
tasting blobby object is encountered, weights will be strengthened between blobby
patterns in VA, and M,,.. Eventually, the weights are strong enough between V A,
and the motor areas that they can activate appetitive or aversive behavior on their
own, simply from visually identifying the object. Some sample results of the activity
of units before and after learned behavior has developed are shown in figure 2.7. In
the left panel showing an early phase of the simulation, the robot must taste the
bad tasting blob before aversive motor behaviors become active. In the right panel,
however, when it sees the blob in the visual area this causes the appetitive motor

behavior to become active, before the robot actually gets to taste the object.

2.6 Chaotic Dynamics in Cognition

That the brain is a complex nonlinear dynamical system seems beyond dispute (Ward,
2002, p. 237). When the well known philosopher and neuroscientist, Patricia Church-
land was asked this question she replied that it was obviously so, but she then went
on to question what, if anything, saying this does to enhance our understanding of
how brains work (Kelso, 1995). Some believe that understanding the brain and its
relationship to behavior and mind does require an understanding of its dynamics.
If the brain is a nonlinear system, do the dynamics create chaotic or edge-of-chaos
functioning? Is the chaos high dimensional, or low dimensional? What functions, if
any, does chaotic dynamics play in perception, memory and behavior?

ANN models have greatly increased our understanding of how neural like units
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might collectively achieve certain results, such as pattern completion, generalization
and graceful degradation of performance. They have proved useful in modeling some
types of perception and behavior generation in complete autonomous agents. In
the past most classic ANN models have relied solely on point attractor dynamics
to achieve their results. Oscillatory dynamics, while not completely ignored, have
played much less of a role, and chaotic dynamics even less so, especially in the area
of autonomous agent research. Brains are saturated with oscillating and chaotic
patterns. There remains much yet to be explained of how this type of activity in the
brain contributes to mental life. Many principles have yet to be fully articulated in
formal models and demonstrated in actual systems.

Many phenomenon that appear in nature (outside of the realm of cognition) are
beginning to be explained by invoking concepts of chaotic dynamics. For example in
predator-prey models (Solé & Valls, 1992; Hassell, Comins, & May, 1991), extinction
of species (Solé, Manribia, Benton, Kauffman, & Bak, 1997), growth of cities (Makse,
Havlin, & Stanley, 1995), traffic patterns, heart rhythms (Poon & Merrill, 1997) and
many more. Models that use chaotic dynamics to explain cognitive behavior are also
beginning to appear in many places (Ward, 2002; Beer, 2000). Psychological models,
that invoke chaos, have been done for mental illness (Scheier & Tschacher, 1996) and
memory (Clayton & Frey, 1997) to name a few.

Chaotic dynamics have begun to be explored as possible principles for the orga-
nization of behavior in biological brains (Freeman, 1991, 1999b; Tsuda, 2001). In
this section I will present the most well known and detailed analysis of chaos in the

operation of perception, Freeman’s work with the olfactory system of the rabbit.

2.6.1 Chaotic Neurodynamics in Olfactory Perception

In their influential paper, Skarda and Freeman (1987) argued that chaos, as an emer-

gent property of intrinsically unstable neural masses, is very important to brain dy-
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namics. In experiments carried out on the olfactory system of trained rabbits, Free-
man was able to demonstrate the presence of chaotic dynamics in EEG recordings and
mathematical models. In these experiments, Freeman and his associates conditioned
rabbits to recognize smells, and to respond with particular behaviors for particular
smells (e.g. to lick or chew). They performed EEG recordings of the activity in the

olfactory bulb, before and after training for the smells.
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Figure 2.8: EEG carrier wave patterns (left) and contour map (right) of olfactory
cortex activity in response to a recognized smell stimulus (from Freeman, 1991, p.
80)

The EEG recordings revealed that in fact, chaotic dynamics (as shown by the
observed strange attractors) represented the normal state when the animal was at-
tentive, in the absence of a stimulus. These patterns underwent a dramatic transition
when a familiar stimulus was presented and the animal displayed recognition of a
previously stored memory (through a behavioral response). The pattern of activity
changed, very rapidly, in response to the stimulus in both space and time. The new
dynamical pattern was much more regular and ordered (very much like a limit cycle,
though still chaotic of a low dimensional order). The spatial pattern of this activ-
ity represented a well defined structure that was unique for each type of odor that
was perceptually significant to the animal (e.g. conditioned to recognize). Figure
2.8 shows an example of such a recorded pattern after recognition of a stimuli of the
EEG signals and the associated contour map. In this figure after recognition, all of

the EEG waves are firing in phase, with a common frequency (which freeman called
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the carrier wave). The pattern of recognition is encoded in the heights (amplitude
modulations) of the individual areas. The amplitude patterns, though regular, are
not exact limit cycles and exhibit low dimensional chaos. In other words, different
learned stimuli were stored as a spatiotemporal pattern of neural activity, and the
strange attractor characteristic of the attention state (before recognition) was replace
by a new, more ordered attractor related to the recognition process. Each (strange)
attractor was thus shown to be linked to the behavior the system settles into when

it is under the influence of a particular familiar input odorant.
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Figure 2.9: Change in contour maps of olfactory bulb activity with the introduction
of a new smell stimulus (from Freeman, 1991, p. 81)

In figure 2.9 is shown the effects on the spatial attractor pattern due to learning.
Every time a new odor was learned by the animal, all of the existing attractor patterns
changed. In this figure is shown the contour pattern of activity for sawdust (before
learning the banana odor), for the banana odor, and then again for sawdust. Notice
that the spatial pattern for sawdust no longer resembles its previous pattern. When-
ever an odor becomes meaningful in some way, changes in the synaptic connections
between neurons in different parts of the olfactory cortex take place. Just as in the
Hopfield model and other neural networks, these changes are able to create another
attractor, and all other attractors are modified as a result of this learning. However,
in real brains, the attractors of perceptual meaning are not simple point attractors,

but are specific strange attractors.
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Freeman suggests that “an act of perception consists of an explosive leap of the
dynamic system from the basin of one (high dimensional, in the attentive state)
chaotic attractor to another (low dimensional state of recognition) (Freeman, 1991).
These results suggest that the brain maintains many chaotic attractors, one for each
odorant an animal or human being can discriminate. Freeman and Skarda speculate
on many reasons why these chaotic dynamics may be advantageous for perceptual
categorization. For one, chaotic activity patterns continually produce novel activity
patterns which can provide a source of flexibility in the individual. But since chaos
is a ordered state, such flexibility is under control. As Kelso remarks, such fluctu-
ations continuously probe the system, allowing it to feel its stability and providing
opportunities to discover new patterns. Another advantage of chaos is that it allows
for very rapid switching between attractors, which random activity is not able to do.
Freeman also proposed that such patterns are crucial to the development of nerve
cell assemblies. For example, as discussed in section 3.6, high dimensional chaos may
provide a neutral pattern of correlation activity so that learning does not occur during
the attentive state. Only upon collapse of activity to more ordered regions do regular
phase synchronizations occur between neural areas, which allow for hebbian synaptic

changes to reliably occur.

2.6.2 Freeman’s K-Sets: Modeling the Olfactory System

From these experiments and data collected from the olfactory system of rabbits, Free-
man and associates developed a mathematical model of neural populations called the
K-model (so named in honor of Katchalsky, a famous and influential neuroscientist)
(Freeman, 1975, 1987). The K-models dynamics are designed to model the dynamics
of the mean field (e.g. average) amplitude of a neural population. A nonlinear, second
order, ordinary differential equation was developed to model the dynamics of such a

population. The parameters for this equation were derived by experimentation and
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observation of isolated neural populations of animals prepared through brain slicing
techniques.

The basic ODE equation of a neural population of the K-model is:

1 d? at+bd
= z(t)] + 2 %[l‘(t)] + 2(t) (2.1)

AQ(z(t)) + RI(t)

In this equation x(t) is the activity level (mean field amplitude) of the neural pop-
ulation. a and b are timing constants (derived from observing biological population
dynamics, as in figure 3.7). The right side of the equation expresses the intrinsic
dynamics of the population unit.

On the left side of the equation are factors that allow for external input to the
population (RI(t)) and stimulation from other populations of units (A is the weight
matrix). Q is the transfer function used in the model, which was derived again
from observation of biological populations that relates the mean field amplitude of a
population to the stimulation it gives to connected populations. ) takes the form of

an asymmetric sigmoid function, and is given by the equation:

Q(v) = Q{1 - exp[%]} (2.2)

where @, is a parameter that indicates the level of arousal in the population (high
values indicated a more aroused, motivated state), and v is the mean field amplitude
(x(t) in the previous equation).

As stated, these equations model the dynamic behavior of the activity of isolated
neural populations. In Freeman’s K-model, these are the basic units that are con-
nected together to form larger cooperating components. Two excitatory or inhibitory
units together form a KI set. A KI excitatory with a KI inhibitory pair form a KII
set of four units (see figure 3.17 and section 3.2.4).

Freeman and associates used these models of neural populations to construct a

model of the olfactory system and replicate the dynamics observed from the EEG
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Figure 2.10: The olfactory cortex: (left) real topological organization of different
areas; (right) simplified KIIT model of the olfactory bulb (from Skarda & Freeman,
1987, p. 165)
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Figure 2.11: Simulated chaotic background activity generated by the KIIT model
(from Skarda & Freeman, 1987, p. 166)

experiments. In figure 2.10 is shown, on the left, a schematic diagram of the ol-
factory system, and on the right, the simplified KIII model developed to replicate

the dynamics observed in olfaction. In this figure, you can see three groups of KII
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units (M/G, E/I and A/B pairs), connected together. These three groups represent
mitral/granule (M/G) dynamics in the olfactory bulb (OB); excitatory/inhibitory
(E/I) dynamics in the anterior olfactory nucleus (AON); and excitatory/inhibitory
A/B pair dynamics in the prepyriform cortex respectively. Three or more groups of
KII units connected together form a KIII unit, which is capable of producing chaotic

dynamics (see sections 2.6.3 and 3.2.4).
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Figure 2.12: Comparison of biological EEG recordings of OB and PC to those gener-
ated by KIII model (from Skarda & Freeman, 1987, p. 167)

The KIII model is used to replicate the dynamics observed in the olfactory bulb.
For example, in figure 2.11 we see some examples of chaotic background activity
(e.g. the attentive state, before stimulus) generated by the model. In figure 2.12 are

comparisons of biological EEG recordings and those produced by the KIII model.
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2.6.3 Principles of Chaotic Neurodynamics

As a result of his work in olfaction and the K-models, Freeman (Freeman, 1999b)
has developed a set of principles of how chaotic dynamics is formed in brains, and
how these contribute to producing cognition. These principles of chaotic neurody-
namics are reproduced in their entirety in appendix A. The KI, KII and KIII models
are reflected in the first four principles, which state how neural populations produce
oscillatory and chaotic dynamics through particular types of feedback mechanisms.
Principles 5-7 deal with the creation of the carrier wave, and the formation of mean-
ings through synaptic modifications by spatial patterns of amplitude modulation.
These principles codify the results of the formation of spatial activity patterns in the
olfactory bulb. The remaining principles (8-10) propose principles that lead from the
recognition of meanings, to intentional behavioral patterns. The creation of inten-
tional behavior through brain dynamics will be discussed in the next section.

These ten principles represent a new set of ideas on how brain dynamics may come
to embody meaning and intentional behavior in biological brains. They go beyond
the principles that have been articulated by standard ANN modeling in Al, cognitive
science and autonomous agents. To date, these principles have not been implemented

in any full scale autonomous agent, to test their usefulness as models of cognition.

2.7 Basic Intentional Systems

I now turn from a discussion of chaotic neurodynamics embodied in the first 7 prin-
ciples (appendix A), to the formation of intentional behavior patterns. Intentional
behavior, in the words of Freeman (Freeman, 2000), is:
. an act of observation through time and space, by which information is
sought for the guidance of future action. Sequences of such actions con-
stitute the key desired property of free-roving, semi-autonomous devices...

Intentionality consists of the neurodynamics by which images are created
of future states as goals, of command sequences by which to act in pursuit
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of goals, of predicted changes in sensory input resulting from intended ac-
tions by which to evaluate performance, and modification of the device by
itself for learning from the consequences of its intended actions.

Intentionality is a result of the endogeneous (e.g. internally generated) construc-
tion and direction of behavior into the world. We see it in all biological organisms
that select their own goals, balance their activities to satisfice multiple, and sometimes
conflicting needs, and learn from experience statistical regularities of their environ-
ment that are exploitable for survival. Intentional behavior has very much to do with
the coordination of all parts of the body, into focused activity. This type of perceptual
awareness and coordination is consistent with the concepts of situated and embodied
cognition. As noted before, the successful understanding of intentionality is believed
by some to be a more fundamental way of understanding cognition as a whole, and
upon which more deliberative and logical reasoning skills of humans are built.

The concept of intentional behavior has to do with how the biological organism
dynamically organizes and constructs goal states and generates behavior to approach,
evaluate and satisfy those goals. In a more traditional autonomous agent view, this
boils down to solving the action selection problem, but in a way that does not depend
on hard-coding the goals and desires into the organism. Instead through normal
developmental progressions, such goal states need to be discovered, constructed, and
hierarchically organized. Baars, among others, has postulated a hierarchy of goal
contexts that provide a focus for attention and action (Baars, 1988). However, little
has been proposed on how such a goal hierarchy comes to develop in an organism.
Thelen and Smith’s concept of the ontogenetic landscape (Thelen & Smith, 1994)
provides the beginnings of a metaphorical representation of how a goal hierarchy
develops. They believe that skills are developed by the successive formation and
dissolution of attractor dynamics. Development is seen, by them, as the hierarchical

organization and construction of the ontogenetic landscape in the service of the needs
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and desires of the organism. This formation is the same as Freeman’s tenth principle
of the formation of a sequence of patterns that integrates and directs intentional
behavior. Freeman’s principles, along with the mechanisms of self-organization in
dynamical systems, begin to show us exactly how such hierarchies of goal states may

come to develop in actual biological brains.
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Figure 2.13: A schematic representation of the basic vertebrate limbic system. There
are three major divisions, sensory areas, cortex, and motor areas, along with a hip-
pocampus for cognitive maps and other types of long term memory (from Freeman,
2001)

RECEPTOR%——{ ENVIRONMENT SEARCHING

motor loop 3

proprioceptive loop

80DY

reafference cantrol
Y loop ) ) loop
ALL »| ENTORHINAL > ALL
SENSORY |« CORTEX MOTOR
SYSTEMS 7'y SYSTEMS
time toop

HIPPOCAMPUS

Figure 2.14: A diagram of the major interactions of the limbic system. This diagram
shows the forward and backward feedback flows between the three major areas of the
limbic system, along with their relationship to the body and external environment
(from Freeman, 2001)
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Brain scientists have known that the minimal nervous system that is capable of
supporting the basics of intentional behavior is what is called the limbic system. Phy-
logenetically, the development of the basic limbic system first appears in amphibians,
such as the salamandar. This system is comprised of the phylogenetically oldest parts
of the forebrain, along with the paleocortex and the deeper lying motor nuceli, as well
as some form of a primitive hippocampus. Figure 2.13 shows a schematic illustra-
tion of a prototypical vertebrate limbic system. Figure 2.14 is a more diagrammatic
representation of the feedback relationships between the major areas of the limbic
system.

The model of the basic limbic system presented here provides a starting framework
upon which to develop models of the formation of hierarchical goal-state dynamics.
This basic architecture, along with principles of self-organization and chaotic neu-
rodynamics, provides a framework for the development of intentional behavior in

autonomous agents and a better understanding of such mechanisms in real brains.
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Chapter 3

Preliminary Experiments

As stated previously, the ultimate goal of the proposed research is to demonstrate the
use of oscillatory and chaotic dynamics for perceptual and behavioral control of an
autonomous agent. In this section I will present some preliminary work and results
leading up to this goal.

A fundamental component needed for this proposal are suitable basic compu-
tational units capable of the required oscillatory and chaotic dynamics. Freeman’s
K-sets (Freeman, 1975; Skarda & Freeman, 1987) provide such basic units. The K-set
model is a model of the dynamics of a neuronal population and as such describes how
the average population current density changes in response to external stimulation,
internal arousal and other factors. The original K-sets were described by a second
order differential equation (see section 2.6.2). A series of such equations can be used
to model a given neural architecture (e.g. the olfactory system), and the dynamics
resulting from the interaction of such populations. The form and parameters of these
equations were determined by observing the effects of stimulation and other experi-
ments on real biological neural populations prepared through brain slicing techniques.

The K-set provides a starting point for the basic units to be used in the proposed
research. However, in order to use the K-sets to simulate an even moderately sized

model architecture requires the solution of a large number of lumped simultaneous
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differential equations. This process can be very time consuming even for a relatively
small population or a few seconds of simulated activity. This cost is prohibitively
expensive for use in a real-time autonomous agent.

A simple solution is to use a discrete difference equation, of the type used in
standard ANNs. However, standard ANN methods do not inherently display more
complex dynamics and are specifically designed to converge to a point attractor.
In fact oscillatory behavior is often taken as a sign of divergence, and is usually
considered an indication of failure in standard approaches.

I have developed a discrete, deterministic version of the K-sets for adaptive agents
named KA-sets. Although the KA-sets are not an exact discretization of the original
K-set equations, they have been designed to emulate the basic dynamical behavior
of neuronal populations. In this section I will describe the internal mechanisms of
the KA model, along with many experiments using the KA models to demonstrate
the principles of chaotic neurodynamics, their behavior under various conditions and
hebbian learning mechanisms for oscillatory units (Harter & Kozma, 2002b, 2002a,

2001a; Kozma, Harter, & Franklin, 2001).

3.1 KA Model Description

At its heart the KA model uses a difference equation to replicate the dynamics of
the original second order ordinary differential equations of the K-sets. A unit in the
KA model simulates the dynamics of a neuronal population. Each KA unit simulates
an activity level, which represents an average population current density. The basic
form of the difference equation can be stated simply as shown in equation 3.1, which
states that the current at time step ¢+ 1 depends on the current at the present time

t plus some change that is applied to the current.
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Cit+1 — Ct + Mt (31)

The evolution equation of a KA unit can be described as three components that
are combined to compute the simulated current at time ¢ + 1 from the current and
the rate of change of the current at time ¢. These three influences on the simulated
current are 1) a tendency to decay back to the baseline steady state; 2) a tendency to
maintain the momentum of the current in a particular direction under excitation or
depression; and 3) the influences of external excitation or inhibition as input to the
unit. In addition a saturation effect is simulated such that as the unit moves towards
its theoretical maximum or minimum, it becomes increasingly difficult to continue
to push the current towards those extremes. I describe these influences in the next

sections.

3.1.1 Baseline Decay

In the KA model the simulated current has a tendency to return back to its baseline
steady state. The activity level is constrained to range from —1.0 to 1.0, with a
current of 0 being the resting current. The effect of decay is described by equation

3.2.

pl=—c; x a (3.2)

Here « is a parameter that indicates the rate of decay. Since the decay is pro-
portional to the negative of the current, the effect is to cause the decay to be rapid
for values of the current far from the baseline, while it slows down as the current
approaches 0.

We can illustrate the effect of the decay term on the activity level by showing the

result of decay for various values of a. In Figures 3.1 and 3.2 we use the equation
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Figure 3.1: Decay to baseline steady state for various « values from a positive initial
current.
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Figure 3.2: Decay to baseline steady state for various a values from a negative initial
current.

cir1 = ¢ + pd to demonstrate only the effects of decay on the activity. Figure 3.1
displays how the current decays from a starting current of 0.8 for a values of 0.02,
0.05 and 0.1 respectively. Figure 3.2 is the same except we now use an initial value

of -0.8 for the current.
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The a parameter effectively controls the rate of decay back to the baseline state.
In the difference equations, o can be thought of as the percentage that the current

should decay at each time step.

3.1.2 Momentum

Neural populations exhibit a certain amount of momentum in the dynamics of their
activity over time. In essence, once a population’s current begins to move in a certain
direction (positive or negative) it tends to keep moving in that direction even for
some time after any influence pushing it has been removed. In the original ODE
equations of the K-set, this was reflected in the use of a 2nd order term. The KA
model adds momentum by looking two steps back in time to determine the rate of
change of activity in the unit.

We first define the rate of change of the current at time ¢ (r;). This is defined
as the difference of the current at time ¢ from the current at the previous time step

t — 1. The rate at time ¢ is given in equation 3.3.

Tt = Ct — Ct—1 (33)

With the rate at time ¢ defined, we can describe the momentum as shown in

equation 3.4.

,U,;n =1 X ﬁ (34)

Where [ is a parameter that controls how much of an influence the momentum
has on the dynamics of the model. 8 can be thought of again as a percentage which
indicates what portion of the momentum at the current time step should continue
into the next time step. In figure 3.3 we show the effects of 3 different 5 parameters

on the momentum. In this figure, ¢ ;1 = 0.5 and ¢; = 0.6 (therefore ry = 0.1).
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Figure 3.3: Momentum for various 3 values. ¢_; = 0.5 and ¢q = 0.6.

3.1.3 External Stimulation

In the KA model, units may be connected together with other units to form networks.
A KA unit is strictly either excitatory or inhibitory. Excitatory units cause the
activity level to be increased in units they are connected to while inhibitory units
have the opposite effect. The effect of excitation or inhibition is scaled by a weight
on the link between the units.

Figure 3.4 represents a portion of a generic KA network. The simulated current
for the unit in layer j is affected by the currents of the connected units in layer i.
The effect of the external stimulation at time ¢ is calculated by equation 3.5. In
this equation f is a transfer function of the current (discussed in the next section).
wj; is the weight of the connection between the i* and j* units, and + is a scaling
factor. v is used to tune the input for various network configurations. For example
in a simulation with approximately 10 connections to each unit, v might be set at
0.1. However, if the simulation has approximately 100 connections per unit, v might

only be 0.01. The v parameter scales the input in order to keep the model within
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Figure 3.4: A generic KA Network. Units have connections to other units with weights
associated with each connection

reasonable bounds and will vary depending on the connectivity of the simulation

being tested.

N
pg =y f(cwjiv (3.5)
i=1
Asymmetric Sigmoid Transfer Function
The output of a KA unit is calculated as a function of its current. We use the

asymmetric sigmoid function, shown in equation 3.6, to calculate the output.

_(pCt — 1
op = €e{l — eacp[g
€

I} (3.6)

o; is used as the output if the unit is excitatory, otherwise —o; is used.

(3.7)

o1 0 if unit is excitatory
*~™ 1 —o, if unit is inhibitory

The e parameter is a scaling factor that indicates the level of arousal of the KA

unit. In the KA model, we take the result of equation 3.6 and scale them so that
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Figure 3.5: The asymmetric sigmoid transfer function of the KA model. We show
the function for 3 values of the € arousal parameter (3, 5 and 7).
the resulting output values range between 0 and 1. Figure 3.5 shows the transfer

function, before this normalization is performed, for € values of 3, 5 and 7.

3.1.4 Saturation

The sum of the components in equations 3.2, 3.4 and 3.5 represent the total difference
that we are proposing to apply to the current as a result of the influence of decay,

momentum and external stimulation respectively:

gy = A g g (38)

Consider p; as a provisional difference that is being proposed to be applied to the
current. Before this difference is applied, we first check for the saturation of the unit.
Saturation begins to occur when a unit goes above (or below) a saturation threshold.
7 is the saturation threshold parameter and ) is a parameter that determines the rate

of saturation. Equation 3.9 displays how the saturation is applied.
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Figure 3.6: The saturation ratio displayed as a function of the current ¢; for saturation
threshold n = 0.75. We show the saturation for various values of \.

In other words, if we are still below the threshold then we simply use yu; as the

1*|Ct|)>\'

difference. If we are above the threshold, the yu} value gets scaled by the value ( T

Figure 3.6 displays how p} is scaled for a i threshold of 0.75 and for various saturation
parameters (A = 0.5 A = 1.0 and A\ = 2.0). Notice that at the threshold (0.75) the
ratio is 1.0, which indicates that we use the full value of A}. However as ¢; increases
towards the maximum, the ratio value steadily decreases. For A > 1, saturation is
quicker for values just above threshold, and slower as it approaches the maximum.
The opposite holds for A < 1 where initially the saturation ratio is slowly increasing,

until it quickens as it approaches the maximum.

3.1.5 KA Single Unit Dynamics

I will now show the results of applying equations 3.1-3.9 to simulate a single popu-

lation’s dynamics. Table 3.1 is a recap of all of the variables used in the KA model.
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Table 3.1: KA Model Variables

Variable Description

C Simulated current at time ¢
Ty Rate of change of current at time ¢.
It Difference to be applied to current at time ¢
ud Difference at time ¢ due to decay to baseline
it Difference at time ¢ due to momentum
1y Difference at time ¢ due to external input
Table 3.2: KA Model Parameters
Parameter Description Default
Q Rate of decay to baseline 0.035
I3 Rate of momentum 0.9
¥ Input scaling parameter 0.025
€ Transfer function arousal level 3.0
n Saturation threshold 0.75
A Saturation scaling ratio 0.5

Table 3.2 lists the parameters of the KA model along with typical values that will be
used for the parameters in all subsequent simulations.

Figure 3.7 is a figure taken from (Freeman & Shimoide, 1994) which shows the open
loop impulse of an isolated neuronal population under deep anesthesia. This type of
response is typical of an isolated population with a steady decay and slight overshoot
before returning to the baseline state. In figure 3.8 we show a simulation of a single
unit of the KA model. In this simulation we provided external excitatory stimulation
for the first 5 time steps and then let the unit return to baseline. Comparing figures
3.7 and 3.8 it can be seen that the KA model provides a good fit to the simulation
of an isolated populations dynamics. This figure also illustrates that the parameters
shown in table 3.2 are appropriately chosen to use 1 to 1 time scales between the

model and biological data. All simulations from here on use 1 simulated time step to
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represent a millisecond of time.

5 -

AMPLITUDE IN ARBITRARY UNITS

TIME IN MSEC

Figure 3.7: The dots show the open loop impulse response to external excitation of
the pyriform cortex under deep anesthesia. The fitted curve is generated by a sum of
exponential terms (from Freeman & Shimoide, 1994, p. 122)
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Figure 3.8: KA simulation of single isolated unit dynamics under external stimulation.
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3.2 KA Demonstration of Principles

Freeman in (Freeman, 1999b, p. 37) postulates ten building blocks of neurodynamics
that help to explain how neural populations create the chaotic dynamics of intention-
ality (shown in appendix A). The first three principles deal with the formation of
non-zero steady-state and oscillatory dynamics through various types of feedback in
neural populations through excitatory and inhibitory connections. The forth princi-
ple deals with the formation of chaotic dynamics. In this section I will use the KA
model to demonstrate these first four principles of neurodynamics. These results have

also been reported in (Harter & Kozma, 2002b).

3.2.1 Principle 1: Non-Zero Point Attractor

The first principle of chaotic neurodynamics (Appendix A) deals with the formation
of a non-zero point attractor through excitatory feedback. A single isolated unit in
the KA model has a tendency to return back to its baseline steady state. However,
two or more excitatory units, when connected together, can maintain their activity
indefinitely through mutual positive feedback. Figure 3.9a. is a diagram of the con-
figuration for this experiment. In this simulation, two excitatory units are connected
together. In figure 3.10 we show the results of the simulation for various values of
the weight parameters between the two units. Notice that in all cases, the two units
maintain their currents at a non-zero, positive point. Also, as the weight between
the excitatory units is increased, the steady state point attractor also increases. Note
that in this simulation, and in all simulations presented here, the behavior is produced
through a completely deterministic processes with no noise or random components.
Often the systems are started from random initial conditions, but the dynamics from

there on are completely determined by the models evolution equations.
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Figure 3.9: Configuration of the a) Excitatory-Excitatory; and b) Excitatory-
Inhibitory simulations.
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Figure 3.10: KA simulation of positive feedback for 3 different weight values.
3.2.2 Principle 2: Oscillation

The second principle of neurodynamics (Appendix A) states that oscillations emerge
as a result of feedback among mixed excitatory-inhibitory populations. In the demon-
stration of principle 2 we use a similar setup as before. As shown in figure 3.9b. we
now use feedback between an excitatory and inhibitory population.

Figure 3.11 shows a time series of an excitatory-inhibitory pair. In this time

series we stimulate the excitatory unit for 10ms. As a result of this stimulation, the
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Figure 3.11: KA simulation excitatory-inhibitory, weight=0.75.
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Figure 3.12: KA simulation excitatory-inhibitory state space, weight=0.75.

activity of the excitatory unit increases. The inhibitory unit also begins to increase
but with a slight time lag. As the activity level of the inhibitory unit begins to
increase, it in turn begins to inhibit the excitatory unit. This causes the activity of
the excitatory unit to be pushed down eventually below its non-zero steady state. The

loss of excitatory stimulation, in turn, causes the inhibitory unit to loose activation.
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At the loss of inhibition, the excitatory unit is then able to rebound and increase
its activity level. This feedback pattern continues for a couple of cycles. However,
since the weight between the pair of units is below a critical threshold, the resulting
oscillations eventually die down back to the original non-zero steady states.

Figure 3.12 is a state space plot of the activity of the excitatory-inhibitory units
shown in 3.11. In a state space plot, we plot the activity level of the excitatory unit
along the x axis vs. the activity level of the inhibitory unit along the y axis. This is
done for all time periods from t=1000ms to t=1200ms. The state space representation
of a dynamical system is simply a way of viewing the attractors of a system. In this
case we can see that there is a steady state attractor where the excitatory current =
0.39 and the inhibitory current = 0.28. As a result of the initial 10ms stimulation,
the system is pushed away from the point attractor, but quickly spirals back to this

steady state.

3.2.3 Principle 3: Limit Cycles

The third principle of neurodynamics (Appendix A) states that limit cycles emerge as
a result of sustained oscillations when the strength of the feedback between excitatory-
inhibitory populations exceeds some threshold. If we increase the weight between the
excitatory-inhibitory pair we can observe this effect in the KA units. Figures 3.13
and 3.14 show the time series and state spaces of such a pair still below this critical
threshold. Compared to the previous simulation, the oscillations are more sustained
and the system takes much longer to return back to the non-zero steady state point
attractor.

In figures 3.15 and 3.16 we show an excitatory-inhibitory pair whose connection
is above this critical threshold. We again stimulate the pair initially for 10ms, which
perturbs the system away from its initial state. However, as can be shown clearly

in the state space diagram, the system no longer returns to a point attractor, but is
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Figure 3.13: KA simulation excitatory-inhibitory, weight=1.0.
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Figure 3.14: KA simulation excitatory-inhibitory state space, weight=1.0.

continually oscillating in a regular limit cycle.

3.2.4 Principle 4: Chaos

Freeman’s fourth principle building block of neurodynamics (Appendix A) states that

chaotic activity is generated as a result of feedback among three or more mixed
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Figure 3.15: KA simulation excitatory-inhibitory, weight=2.0.
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Figure 3.16: KA simulation excitatory-inhibitory state space, weight=2.0.

excitatory-inhibitory populations. As demonstrated in principles 1-4, non-zero steady
states, oscillations and limit cycles can be generated through feedback among excitatory-
excitatory and excitatory-inhibitory populations. Combining positive and negative
feedback is necessary to produce oscillatory behavior. Before we describe the genera-

tion of chaotic dynamics, we will first describe a basic component that we form using
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KA units that represents a standard mixed excitatory-inhibitory population.
KA-II: A Mixed Excitatory-Inhibitory Population

At a minimum, a mixed population must have two excitatory units in order to generate
positive feedback, and thus sustain a non-zero steady state (principle 1). It must also
have at least one inhibitory unit to produce oscillations and limit cycles (principles
2 and 3). For reasons of aesthetics, symmetry and history, we typically combine two
excitatory units with two inhibitory units to form a basic mixed excitatory-inhibitory

population. The configuration of such a population is shown in figure 3.17.

Figure 3.17: KA-II, a standard component used to emulate a mixed excitatory-
inhibitory population.

The name given to such a population of two excitatory and two inhibitory units
with ten connections between them is a KA-II set. The behavior of the four units
in a KA-II set will be determined by the values of the ten weights between the
units. As a matter of custom, we usually reduce the ten dimensions of the weights
to four dimensions when describing a KA-II set. A KA-IT set is usually described by
the weights between the excitatory units w.., between the inhibitory units w;;, from
excitatory to inhibitory w,;, and from inhibitory to excitatory w;.. For example, if
We; 1S set to 1.5, then the weights from FEs to Iy, E; to I; and E; to I, are all set to

1.5.

29



Therefore a KA-II set is usually described by four parameters we,, w,;, w;. and w;;.
Different values for these four parameters result in different dynamics of the units.
For example figure 3.18 shows a simulation of a KA-II when all four of the parameters
are set to 1.0. In this simulation all four units are started at different random initial
conditions. As a result of the mixed positive and negative feedback, all of the units
oscillate (though none appear to form a limit cycle). Also all of the units eventually
reach a non-zero steady state, where one of the units is slightly above the baseline
and the other three end up in the negative region. This is a typical picture of the
behavior of the units of a KA-II set. Depending on the values of the four weight
parameters, the units may end up at different steady state attractors, or they may
produce limit cycle behavior. I explore further the issue of the behavior of the KA-II
set while varying the weight parameters in section 3.3.
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Figure 3.18: KA-II simulation, random initial conditions we, = we; = wjie = w;; = 1.0.
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Chaotic Dynamics

The previous section was a digression to introduce the concept of the KA-II set, a
basic mixed excitatory-inhibitory population. I now return to the fourth principle
building block, the generation of chaotic dynamics. Chaotic dynamics, according to
Freeman, are the result of feedback among three or more mixed excitatory-inhibitory
populations. One easy way to produce chaotic looking behavior is to connect three
KA-IT sets together. Each of the 3 KA-II sets should behave differently, for example
by preferring to oscillate at different characteristic frequencies (see section 3.3). The

combination of three or more KA-II sets is named a KA-III set.

Excitatory

Inhibitor

——————— -

Group 1 Group 2 Group 3

Figure 3.19: Diagram of simple KA-IIT set. A KA-IIT set is composed of 3 (or more)
KA-II sets, connected with positive and negative feedback.

In figure 3.19 we show a simple example of a KA-III set. In this diagram, three
KA-IT are connected together by adding weights from the F; and I; units of each
group to the F; unit of the other two groups. If we choose three KA-II groups with
different characteristics (see section 3.3) and we set the 6 excitatory weights between
groups to 0.6 and the 6 inhibitory weights to 0.1, then the deterministic KA model is
capable of generating a chaotic time series. Figure 3.20 shows 5 seconds of the time

series for the F; unit of each of the three groups. Figure 3.21 is a time delay plot of
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the time series of the E; unit from group 1. Both the time series and the delay plots
show activity indicative of chaotic behavior. A calculation of the lyapunov exponent®
(Wolf, Swift, Swinny, & Vastano, 1985) gives a value of 0.35 for the time series of
group 1’s E; unit. This indicates strong chaotic behavior.
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Figure 3.20: KA-III simulation showing the emergence of chaos among 3 mixed
excitatory-inhibitory populations. We display the time series of the first excitatory
unit, of each of the KA-II.

The deterministic, discrete KA model is capable of generating chaotic behavior, in
the manner described by Freeman’s fourth principle building block of neurodynamics.
Using different KA-IT groups, and different connectivity patterns between the groups
can result in other types of behavior (for example simple limit cycles). However, it
is easy to find chaotic regions of the KA-III sets when both positive and negative

feedback are used between the KA-II groups.

! The lyapunov exponent is measure that can indicate the level of periodicity or chaos in a time
series. Negative exponents indicate point attractors; zero exponents are limit cycles, and positive
exponents are indications of chaos.
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KA-iii simulation, Return Plot, g1 el, t+12

t+12

Figure 3.21: Delay plot (t vs. t+12) of group 1 F; unit in the KA-IIT simulation.

3.2.5 Principles 5-10

In total, Freeman postulated 10 basic building blocks of neurodynamics (Appendix
A). Principles 5-10 are not as easy to demonstrate using simple examples. These
principles have to do with how neural populations embody meaning on sensory input
and select actions through chaotic dynamics, hebbian and other learning mechanisms,
and important structural properties. I will visit issues of hebbian learning mechanisms
in oscillatory and chaotic populations in section 3.6. A major goal, however, of
the proposed research is the demonstration of some of the remaining principles in

autonomous agents using biologically motivated architectures of KA units.

3.3 KA-II Set Properties

In this section I will be revisiting the KA-II set, and exploring some of the properties
and ways of characterizing the behavior of them. As you may recall from section 3.2.4,
a KA-II set is a particular configuration of four KA units, connected together with a

total of ten connections (figure 3.17). Ten connections would imply a ten dimensional
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space that needed to be explored to fully characterize the behavior of the KA-II set.
However, as stated previously, we usually simplify this to a four dimensional space
by keeping all weights between like typed units to be the same. This means that
we ignore a large part of the behavior space of the KA-II, but what is left is still
very large and probably serves to illustrate all possible interesting dynamics. This
simplification also has biological justifications as mixed excitatory/inhibitory pairs
in brains are often of the same connectivity pattern with equivalent weight settings
between like types as we use in KA-II groups.

A KA-II set is characterized by the four parameters we, we;, w;e and w;. Changing
these parameters causes changes in the behavior of the individual units within the
KA-II. We can characterize the behavior of a KA-II set in various ways. The first and
most simple distinction is: does a unit reach a steady state (point) attractor, or does
it continue to oscillate (limit cycle). If a unit reaches a steady state, we might like
to know what that point is, for example is it positive (above the baseline), negative
(below the baseline) or close to the resting level. If a unit oscillates, an important
piece of information to know is at what frequency it oscillates. A similar study for

the original ODE K-II model was performed by Kozma and Freeman (1999).

3.3.1 Effects of Varying wee, we;, Wie, w;; on KA-II
Steady State vs. Limit Cycle Regions

We will first explore the regions of the KA-II set that are oscillatory versus those
that reach a fixed point. In this experiment we show the result of varying the four
parameters on the E; unit of the KA-II group. To determine if the unit oscillates or
becomes fixed, we run a simulation for 60,000 time steps (60 simulated seconds). We
ignore the first 50,000 time steps and measure the standard deviation of the E; units
time series from time 50,001 to 60,000. If the standard deviation is 0, this indicates

that the unit has reached a fixed point. A positive deviation indicates that the unit
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is probably oscillatory.

Figure 3.22 displays the effects of varying the parameters on the oscillatory be-
havior of the KA-II set. In this figure white areas are where the standard deviation
of the time series was positive, which indicates oscillatory behavior; and black areas
have 0 standard deviation and are therefore point attractors. In each small subgraph
we vary the we, parameter from 0.0 to 2.0 in 0.1 increments along the x axis and
perform a similar variation along the y axis for the w;; parameter. The w,; parameter
is varied from 0.5, 1.0, 1.5 and 2.0 from left to right for each different plot, while the
w;e parameter varies in a similar way from bottom to top. In the space explored, the
figure indicates that the KA-II set does seem to have a good mix of oscillatory and

stationary regions.
Mean Activity

Another important characteristic of a KA-II set is the mean activity level that the
units settle into. The natural level of activity of a group is an important property to
consider when combining groups into KA-III and higher level components. Using the
same simulation as described previously, we now show the results of measuring the
mean of the current of the E; unit.

Figure 3.23 is similar to the previous figure. In this figure, however, we use color
to represent the mean of the current observed from time 50,001 to 60,000. This figure
does not differentiate between point attractor and limit cycle behavior. Therefore
the mean current recorded for oscillatory units is the average, or midpoint, level of
activity of the time series. The mean activity level, as depicted in the figure, does
show regular variation in response to varying the weights. That is to say, there are
no jumbled up regions. The mean activation varies smoothly as you move in any
straight line within the parameter space. In general, it does appear that the we,

parameter has a strong effect on the activity level, where higher w,, usually produce
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Figure 3.22: Effects of parameter variation on KA-IT oscillatory regions. White areas
are where the F; unit of the KA-II set exhibits a limit cycle attractor. Black regions
are fixed points. See text for full description.
higher mean activations. The w;; parameter seems much less of a factor in affecting
behavior. Highest mean levels of activity seem to be produced when w,; and w;. are
at lower values, the higher these weights are, the more depressed the activity of the
E; unit.

A simplified view of the parameter space may be obtained by simply considering in
what regions the mean is positive (above 0), where it is negative (below 0) and where
it is close to the baseline (at 0). Figure 3.24 displays this view of the parameter space

of the KA-II. In this figure we have categorized all mean activations above 0.05 as
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Figure 3.23: Effects of parameter variation on mean activity of KA-IT set. Color
indicates the mean current of the F; unit. See text for full description.

positive, and indicated those points with a red color. Areas where the mean activation
were below -0.05 are considered negative and colored blue. And areas between these
are colored green. This figure does make it a little clearer, on the subgraphs, that
it is movement along the we, axis that most affects transition from the negative to
the positive regions. Also it appears that low values of w;. are most likely to have

positive mean activations.
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Figure 3.24: Effects of parameter variation on positive/negative regions for KA-II
sets. Red areas are positive, green areas are around 0 and blue areas are negative.
See text for full description.

Oscillation Frequencies

The final characteristic we will consider of the KA-II behavior is the frequency of the
oscillations produced when the E; unit settles into a limit cycle. This characteristic
frequency of the KA-II group in isolation is an important property. When combining
KA-ITI to form a KA-IIT we often want to use groups with incompatible frequencies
to insure the production of chaotic behavior.

In figure 3.25 we show the results of calculating the frequency of the oscillations

for the time series that oscillate from time 50,001 to 60,000. We use color to represent
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Figure 3.25: Effects of parameter variation on KA-II characteristic frequency. Color
indicates frequency in cycles per second of the F; unit. See text for full description.
the frequency of the time series, in Hertz. We have used a similar setup in this figure
to all previous figures in this section. Comparing this figure to figure 3.22 of oscillator
vs. point attractor regions, you will notice that all point attractor regions are shown
as having 0 frequency. The oscillations of the F; unit range from a low of 20 Hz to a

maximum of around 40 Hz.

3.4 Stimulation of KA-II

In the previous section, I explored the behavior of the KA-II groups in isolation. That

is to say that the KA-II was started off with a set of random initial conditions and then
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Table 3.3: Typical KA-II used for Stimulation Experiments

Wee Wei  Wie Wi mean std freq
1.05 1.40 0.44 0.05 -0.1174 0.2883 28 Hz

the simulation was allowed to run with no external stimulation or perturbations of any
kind. An understanding of how the KA-II behave in isolation is necessary to making
good choices for using them in combined groups of larger architectures. However,
the behavior of the KA-II group in isolation will only give us a partial picture of
how they will behave when they receive external perturbations. In this section I will
explore what happens to a typical oscillating KA-II group when receiving external
perturbations (both excitatory and inhibitory). The parameters and characteristics
of the KA-II T will be using in this section are given in table 3.3. The mean, standard

deviation and frequency shown are for the KA-II in isolation.

3.4.1 Constant Stimulation

The units of a KA-IT group respond in various ways to external perturbations. These
external inputs may be excitatory or inhibitory, and they may be constant, oscillating
or noisy or chaotic.

In figure 3.26 (top) we show the results on the mean activity of the £ unit under
constant stimulation. The bottom part of the figure shows the effect of the stimulation
on the standard deviation of the F; unit. In these figure we ran the simulation of the
KA-ITI for 11,000 time steps. We measured the mean and standard deviations after
throwing away the first 1000 time steps to allow the system to pass through initial
transients. At each time step we applied a constant external input to the F; unit.
We tried all perturbations from -1.0 (inhibition) to 2.0 (excitation) in 0.01 increment.

Figure 3.26 of the change in mean activation shows a fairly smooth response to
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Figure 3.26: Effects of constant stimulation on the mean and standard deviation of a
KA-II group. We apply a constant stimulation at every time step of the stimulation.
We show the effects on the mean and standard deviation for inhibition of -1.0 up to
excitation of 2.0 in 0.01 increments. The top figure shows the results on the mean,
while the bottom figure show results on the standard deviation.

external perturbation. As excitation rises the mean activity also increases, until we
get above a 0.5 excitatory input. At this point more excitation actually causes a
decrease in the mean current, for a limited range of stimulation (0.5 to 0.75). In
figure 3.26 (bottom) we show the effects of stimulation on the standard deviation of
the current. Measuring the standard deviation, as you recall, is a good indication of

when the signal is oscillating. In this case, the E; unit oscillates over a wide range,

however constant stimulation above 0.6 or so causes the unit to saturate. Figures like
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these can be used to find regions where the KA-IT group behaves optimally for given

applications.

3.4.2 Sinusoidal Stimulation

External stimulation to a KA-II group need not always be constant. In fact, since
common architectures are made by interconnecting collections of KA-II groups, con-
stant input may be more of the exception, and we would expect to see oscillating and
chaotic inputs. In this section we apply a sinusoidal stimulation to the KA-IT F; unit.
As before, we vary the mean of this input signal from -1.0 to 2.0 in 0.01 increments.
Figure 3.27 shows the results of applying this oscillating input, for various standard
deviations of the input, on the mean and standard deviation. We used a sine wave,
oscillating at 30 Hz, for the input for this simulation.

When the standard deviation of the input signal is 0, we have a constant input
signal as shown in the previous section. The effect of sinusoidal input on the KA-II
mean seems to be to smooth out nonlinearities in the response of the group. As
larger oscillations are input, the mean response continues to flatten out. The effect
of oscillating input on the standard deviation of the group is even more pronounced.
Sinusoidal input greatly increases the range in which the unit is able to oscillate and
avoid saturation.

In the previous two figures, we observed the results of inserting a sinusoidal input
of 30 Hz of various standard deviations. Another interesting possibility is to observe
the behavior of the KA-II group when oscillating inputs of different frequencies are
inserted. In figure 3.28 we show the results of just such a simulation. As before,
we vary the mean of the sinusoidal stimulation from -1.0 to 2.0 in 0.01 increments.
However, in these figures, we hold the standard deviation at 0.15 while trying different
frequencies of input, from 25 to 40 Hz.

The most interesting effects of varying the frequency of the input can be seen

72



KA—Il Mean Response Under Sinusoidal Stimulation
1 T T T

mean (current)

i i i i i
-1 —0.5 o 0.5 1 1.5 2
stimulation

KA—Il Standard Deviation Under Sinusoidal Stimulation
0.45 T T T

I
A
T

NS
0000000
RkbbDd

9090090909

std (current)

o i i i i
-1 —0.5 (o] 0.5 1 1.5 2
stimulation

Figure 3.27: Effects of sinusoidal stimulation on the mean and standard deviation of
a KA-IT group. We plot the effect for different standard deviations (o) of the input
signal. Top figure shows results on the mean activity, while bottom figure plots effects
on the standard deviation. See text for full details.

in the response of the standard deviation of the group. Especially noticeable are
large peaks in response to 25 and 30 Hz signals. We conjecture that, these being the
closest to the KA-II groups natural oscillation frequency, the units are able to become

synchronized to the input signal, which reinforces and amplifies the oscillations.

3.4.3 Noisy Stimulation

As a final experiment we will explore the effects of applying noisy input to the KA-II

group. In large, non-homogeneous populations, this type of input may be found when
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Figure 3.28: Effects of sinusoidal stimulation of varying frequencies on the mean and
standard deviation of a KA-IT group. We plot the effect for different frequencies of
the input signal ranging from 25 to 40 Hz. Top figure shows results on the mean
activity, and bottom shows effects on the standard deviation. See text for full details.
the KA-IT groups form a KA-III set, and begin to exhibit chaotic behavior. We use
a noisy signal here, as a simplistic approximation to chaotic input, to observe the
effects of such stimulation on the KA-II group. In particular we are interested to see
if the behavior appears more similar to that of constant or oscillatory stimulation.
In this simulation, we inject a nosy signal with a mean ranging from -1.0 to 2.0,

as before. We explore the effects of the noise having a deviation from o = 0 (constant

stimulation), to o = 0.3. The difference from the previous section is that the input is
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not a regular sine wave, but is instead noise that deviates from the mean in a random

but standard manner.
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Figure 3.29: Effects of noisy stimulation on the mean and standard deviation of a
KA-IT group. We plot the effect for different o values of the noise, ranging from 0.0
to 0.3 in 0.05 increments. Top figure shows effects on the mean, while effects on the
standard deviation are shown in the bottom. See text for full details.

Figure 3.29 shows the results of injecting noisy input into the KA-IT group. As
can be seen, both the mean and standard deviation response show little difference
from that of constant stimulation. One slight effect that can be seen in figure 3.29
(bottom) of the effect on the standard deviation is that the noisy input does allow

the unit to keep from completely saturating under higher levels of stimulation.
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Table 3.4: KA-IT used for simulations in generating chaotic behavior

Group # Wee Wei Wie Wy mean std freq
1) 1.29 1.27 0.65 1.19 -0.0714 0.2446 25 Hz
2) 1.05 1.40 0.44 0.05 -0.1174 0.2883 28 Hz
3) 0.95 1.41 0.80 1.33 -0.2443 0.1359 32 Hz

3.5 KA-III and Chaotic Dynamics

In this section I will explore further the generation of chaotic behavior by the KA
model. Recall from section 3.2.4 that chaotic dynamics can result from the com-
bination of three or more mixed excitatory-inhibitory populations. A KA-II set is
our name for such a population, and combining three of these, as shown for example
in figure 3.19, results in a KA-III set. Such a configuration is capable of generating
chaotic behavior, but not necessarily so. The resulting behavior depends on many fac-
tors, such as the inherent dynamics of the KA-II groups selected and the connectivity
patterns and weights between the groups.

Figures 3.20 and 3.21 were generated using the three KA-IT groups shown in
table 3.4. In this table, we show some of the characteristics of the KA-II groups in
isolation. We used the connectivity pattern shown in figure 3.19, where all F; units
were interconnected among the groups and all /; units had an inhibitory connection to
the F; units of the other two groups. We used a weight of 0.6 for each of the excitatory
connections between groups, and of 0.1 for each of the inhibitory connections. As
stated previously, the measured lyapunov exponent of the time series shown in the

figure was around 0.35 indicating strong chaotic behavior.
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3.5.1 Effect of Weight Variation on Measured Lyapunov Ex-
ponent

Although, as stated previously, the generation of chaotic behavior depends on many
factors, we will concentrate in this section on the effects of modifying the excitatory
weights between groups on the dynamics. In this simulation we set all six of the inter-
group excitatory weights to be the same value. We vary these weights from 0.0 to 0.65
in 0.01 increments. At each weight setting we simulate a time series for 30 seconds
(throwing away a number of initial transients). I ran ten simulations at each weight
setting, with uniformly distributed random initial conditions. I then calculated the

lyapunov exponent of the time series for the given weights and plot the results.

KA-—IIl simulation, effect of weight scaling on lyapunov exponent
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Figure 3.30: Effects of excitatory weight scaling on lyapunov exponent of KA-III
simulation. The excitatory weights are scaled from 0.0 to 0.65 in 0.01 increments. Ten
plots are shown at each weight, representing runs with ten different initial conditions.

Figure 3.30 shows the results of this simulation. As can be seen in this figure, as
the excitatory weights increase we see a general increase in the estimated lyapunov
exponent. With weights around 0.3 we observe very periodic appearing behavior.

Larger weights begin to appear more chaotic. At almost all weight values, at least
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some of the ten simulations ended up being more periodic in nature (the bottom trend
in the figure from 0.28 to 0.6). This shows that the final behavior of the group does

depend on the initial conditions.

3.6 Hebbian Mechanisms for Learning with Oscil-
latory (KA) Units

In this section we discuss hebbian mechanisms for use specifically with the KA model
units, but more generally for use among oscillating and chaotic units. Freeman’s sev-
enth principle building block (appendix A) states that meaning is embodied in neural
tissue through synaptic changes due to learning. One important learning mechanism
(though not the only one) is hebbian synaptic modification, which performs the major

role in learning in KA architectures.

3.6.1 Hebbian Learning

Donald Hebb, in (Hebb, 1949), first provided the insight behind the mechanism that
has come to be known as hebbian learning. The basic idea is that coactivation of
connected cells should cause a change (in the synapse) that will, in the future, make
it more likely that the postsynaptic cell will fire when the presynaptic cell fires.
This makes good sense as it allows for associated world events to become encoded
in cell firings and synaptic patterns. Hebb did not identify the exact mechanism of
his learning when he had this insight, but subsequent research has revealed many
candidate mechanisms that fulfill his general framework (Churchland & Sejnowski,
1992).

The simplest formal statement of the general hebbian rule is:
A’LUBA = €VBVA (310)

In this equation, the presynaptic unit is designated by A, while the postsynaptic
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unit is B. Units A and B have average firing rates of V4 and Vg respectively. ¢ is a
parameter that is used to adjust the rate of modification, or learning rate, applied
to the change. The weight between the presynaptic unit A and postsynaptic unit B,
wpg4, is therefore adjusted by some amount, depending on the average activities of A
and B. When both activities are above average, then the change in weight is large. If

one or both are low, then the change is small.

3.6.2 Associative Hebbian Equation for KA Model

Many variations of the basic hebbian equation are possible. In the KA model, a
meaningful measure of arousal of a unit is how far the unit currently is away from its
average state. Recall that typically in KA-II groups, because of excitatory-excitatory
feedback, the units achieve some non-zero steady state. Using distance from the
baseline (0 current) is therefore not a good measure of arousal for units in KA-II
groups. Instead, we need to measure the amount of displacement away from the
average steady state.

We will therefore modify the basic hebbian equation for use in the KA units.
First we determine the mean activity over some time period of the unit. The mean
activity over a time interval of 100ms will be designated by V4 and Vg for our pre

and postsynaptic units. The hebbian equation used for our KA units then becomes:
AwBA ZE(VB —V_B)(VA—VA) (3.11)

The quantities (Vz—V3) and (V4 —V,) determine how far, above or below, the present
activity is from the non-zero steady state of the unit. The simultaneous occurrence of
activity above (or below) the average in both units will cause relatively larger changes
in the weight between the units to occur.

Equation 3.11 is the basic mechanism that will be used in the next examples

of hebbian learning in the KA model. One thing to note about this equation is
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that it is of a class of hebbian equations called associational hebbian equations. In
the basic equation, the firing rate could only be some number at or above 0. As a
result, all weight changes were necessarily positive, and the weight could only increase.
Associational hebbian equations, such as 3.11, allow values, and therefore weight
changes, that can be both positive and negative. I will explore this issue a bit further
in the next sections.

In nonassociational mechanisms, strictly increasing weights pose a problem in that
the weights usually cannot be allowed to increase indefinitely, and must therefore
be limited somehow. This is usually done either through local means, such as a
constant decay of each weight, or through global means, such as scaling all weights
to keep the total within some upper limit. Since weights can move in both directions
in associational mechanisms, these problems are less of a concern here. However,
situations can occur, as will be seen, so that some means of regulating the weights is
still necessary. In the simulations in the next sections I will be using a global scheme

to define an upper bound on the total weight allowed.

3.6.3 Aw Under Phase Shift

The basic mechanism behind hebbian learning is the strengthening of weights between
units that fire together. In units that display oscillating or rhythmic behavior this
implies a simple fact: units must become synchronized in order for learning to reliably
occur between them. While greater arousal above or below the average can cause a
faster change; the important factor, over time, will be the units synchronization of
activity.

For example, in figures 3.31 and 3.32 we show the activity of two oscillating units
in the top part, and the resulting hebbian modification in the bottom part of the
figure. In figure 3.31 the pre and postsynaptic units are completely out of phase.

When one unit is at its maximum activity, the other is at its minimum. At this

80



Hebbian Weight Change for Out of Phase Oscillators
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Figure 3.31: Associative hebbian weight change for out of phase oscillating pre and
post synaptic units.
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Figure 3.32: Associative hebbian weight change for in phase oscillating pre and post
synaptic units.

point, a large negative change in weight is produced by the associative hebbian rule.
As can be‘ seen from the bottom part of figure 3.31, the weight modification ranges

from 0 to -.0003. The cumulative trend for out of phase units will be a ever decreasing

weight.
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In figure 3.32 we show the opposite situation, with pre and postsynaptic units
that are nearly synchronized. In this situation the weight change is mostly positive
and therefore increases over time. In populations started from different initial condi-
tions, some individual weights will have a natural positive trend, while others have
a negative trend. From such initial asymmetries can be formed meaningful patterns
through competition. In a large and unchanging collection of units, the positive and
negative trends might balance out (though not necessarily). However, in oscillating
units, one effect of the strengthening of weights between them is to synchronize their
oscillations. As more and more clusters of synchronized units are formed through
learning, more positive natural trends in weight changes begin to occur as in figure
3.32. Therefore a means of regulating weights is still necessary, even with associational

hebbian mechanisms between oscillating units.

Hebbian Weight Change for Chaotic Time Series
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Figure 3.33: Associative hebbian weight change for chaotic time series.

3.6.4 Aw Between Chaotic Units

When three or more KA-II groups are connected together chaotic behavior may re-

sult. Figure 3.33 shows an example of hebbian modification between chaotic units.
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As can be seen from the bottom part of the figure, the modification of the weight
between the units is at times mostly below 0, and at other times above. Uncorrelated
chaotic activity is much more likely to show zero drift than oscillatory behavior. In
oscillatory behavior, only when the units are exactly 90° out of phase will the aver-
age weight change be at 0, a fairly unlikely and unstable situation. In contrast the
correlation between chaotic activity produces a random walk that will, on average
if the units are truly uncorrelated, have a zero bias trend. This may be one of the
roles of chaotic behavior in neural populations, the balancing of hebbian synaptic

modifications through the intrinsic dynamics of the populations.

Input

-

Output

Figure 3.34: Experimental setup for hebbian learning example with oscillating dy-
namics. The input layer consists of 8 and the output layer of 2 homogeneous KA-II
Groups. See text for full description.

3.6.5 Simple Hebbian Learning with KA-II Units

In this section I show a simple example of using hebbian associative learning to modify
weights in a network of KA-II units. We will be using the simple architecture shown
in figure 3.34. In this setup, we have a layer of 8 input KA-II groups, and a layer

of 2 output KA-IT groups. We fully connect the excitatory F; units of the KA-II
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groups in the input layer to one another, to form a 8X8 gird of weights. We have not
connected any of the inhibitory units in this layer. We also fully connect the 8 E}
units of the input layer to the 2 E) units of the output layer. We will allow the 8x8
and 8x2 weight matrices to be modified by associative hebbian learning. All internal
group weights will not be modified. In this experiment, we have used KA-II groups
with identical internal parameters, in order to form homogeneous populations. The
absence of intergroup inhibitory weights, along with the homogeneous populations,
will bias the system to display synchronized oscillatory behavior.
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Figure 3.35: Time series of Input units for first and last 500ms before training in
hebbian learning example. Units become synchronized because of interconnected
excitatory weights.

In the beginning of the experiment, the 8x8 input-input and 8x2 input-output
weights are set to random small values. The interconnectivity of all of the units with
small influences allows the population to synchronize their oscillatory behavior. In
figure 3.35 we show the result of this synchronization. The top part of the figure
shows the 8 input units for the first 500ms. The 8 units are started with different

random initial conditions. However, by 5000ms, as can be seen in the bottom portion
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of the figure, the units have synchronized their behavior as a result of the mutual

excitatory influences.
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Figure 3.36: Evolution of interconnected input weights in hebbian learning example.
All 8 E; units in the input layer are fully interconnected. We show the values of the
8x8 weight matrix from time 5000 to time 13000. See text for details.

As a result of the synchronization of behavior, we need to use the global weight
regulation scheme mentioned previously to keep the weights from becoming saturated.
We now begin the training and learning phase of the simulation. We externally
stimulate input units 1-4 and output unit 1 for 50ms (0.25 stimulation), during which

time we allow the weights to change through associational hebbian modification. We
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Figure 3.37: Evolution of input layer to output layer weights in hebbian learning
example. All 8 F; units in the input layer are fully connected to the 2 E; units of the
output layer. We show the values of the 2x8 weight matrix from time 5000 to time
13000. See text for details.

then allow the system to rest for 450ms, during which time no learning occurs. We
then externally stimulate input units 5-8 and output unit 2 for 50ms (0.25 stimulation
as well) and again turn on learning. After which another 450ms rest occurs to allow
the system to relax. We perform this pattern of excitation and relaxation from
t=5000ms to t=20000ms.

Figures 3.36 and 3.37 show the evolution of the input-input and input-output



weights respectively. In these figures color represents the magnitude of the weight
between units, blue for a weight of 0 up to dark red for a weight of 0.3. We show
snapshots of the weight space every 1000ms, which is the duration of a left/right pre-
sentation cycle. In figure 3.36 we can see that the 4 inputs that receive simultaneous
stimulation quickly become associated with one another, and form two populations
of highly connected groups (1-4 and 5-8). The pattern for the input-output weights
is similar in figure 3.37. Here we see that the input units that are stimulated simul-
taneously with the output unit become highly connected.
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Figure 3.38: Time series of input 1 unit plotted against the output 1 and 2 units in
the hebbian learning experiment. Input 1 remains synchronized with output 1, but
is out of phase with output 2.

In figure 3.38 we compare the activity of input unit 1 to the output units. The
top figure shows how input 1 and output 1 remain synchronized during one learning
period from t=16,000ms to t=16,050ms. In contrast, input 1 is pushed out of phase
with the output 2 unit, as shown in the bottom potion of the figure. Figure 3.39
shows a similar pattern of synchronicity between the input 5 unit and the output 2

unit. It is this synchronization of activity, more than anything, that is responsible
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Figure 3.39: Time series of input 5 unit plotted against the output 1 and 2 units in
the hebbian learning experiment. Input 5 remains synchronized with output 2, but
is out of phase with output 1.

for the correlated change in weights that occur.
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Figure 3.40: Response of the output units after learning in the hebbian example.

In figure 3.40 we show the responses of the output units after learning. In this

figure we only stimulated the input units. We stimulated inputs 1-4 from t=26,000ms
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to t=26,050ms; and similarly inputs 5-6 from t=26,500ms to t=26,550ms. The figure
shows that the two output units now show slight responses to stimulation of the

inputs that they became associated with during learning.
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Chapter 4

Proposed Research

The purpose of the proposed research is to explore the following ideas. Current work
in third generation dynamical connectionist and autonomous agent research (Almdssy
et al., 1998; Edelman et al., 1992; Matari¢, 1991, 1995; Sporns et al., 1999; Verschure
et al., 1992, 1995; Verschure & Voegtlin, 1999) has begun to emphasize the importance
of exploring whole (complete) systems that are embodied and embedded in an envi-
ronment (Franklin, 1995; Pfeifer & Scheier, 1998; Steels & Brooks, 1995). Such agents
are capable of exhibiting many interesting properties up to now only seen in biological
development, such as the self-organization of behavior, self-sufficiency, embodiment
and adaptivity and action-oriented representations (Clark, 1997; Hendriks-Jansen,
1996; Pfeifer & Scheier, 1998). This research proposes to extend such results by ex-
ploring the roles of chaotic dynamics in the formation of perceptual and behavioral
patterns and how such patterns may be organized into a basic intentional system
(Freeman, 1999b, 1999a, 2000).

The idea of the brain not as a static manipulator of symbols but as fundamentally
a system of self-organizing, pattern-forming dynamic change over time is a relatively
recent one in Cognitive Science (Kelso, 1995; Port & van Gelder, 1995; Thelen &
Smith, 1994). Within this framework of viewing patterns of brain activity as a dy-

namical system, there naturally arises the question of which types of patterns are
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exhibited by and important to brain function. Both point and limit cycle attractor
dynamics have been used in dynamic models of cognition (Abraham, Abraham, Shaw,
& Garfinkel, 1990; Port & van Gelder, 1995). However, the question naturally arises
of weather or not chaotic dynamics plays an important role in the organization of
behavior in biological brains.

The work of Freeman and others (Skarda & Freeman, 1987; Freeman, 1999b;
Freeman & Kozma, 2000; Freeman, Kozma, & Werbos, 2000; Tsuda, 2001; Tsuda &
Yamaguchi, 1998; Kozma & Freeman, 1999, 2000, 2001; Kozma et al., 2001) has shown
that chaotic dynamics do occur in the perceptual categorization of stimuli in biological
brains. Further this work has speculated on the possible roles that chaos may play in
developing patterns of behavior. Far from being viewed as inconvenient noise, or an
epiphenomenon of brain functioning, chaos has been proposed as a necessary feature
of mesoscopic organization for the development of complex adaptive behavior.

The primary role that chaos may play, according to Skarda and Freeman, is as a
controlled source of noise that allows for continual access to previously learned sen-
sory patterns (Skarda & Freeman, 1987). This type of continual and rapid access
may provide a source of great flexibility in the adaptive behavior of biological organ-
isms. If true, the absence of chaotic dynamics may explain in part some of the lack
of flexibility displayed by previous symbolic and connectionist models of memory and
behavior. Chaotic dynamics provides the ability for rapid convergence into a percep-
tual attractor. Just as the chaotic flow of people in an airport can instantaneously
change at the announcement of gate changes, so can the patterns of chaotic activ-
ity instantly and flexibly change in response to external and internal influences on
the system. Chaotic dynamics may provide that balance, so important to biological
organisms, between rigidity and disorder. Intentional behavior may live near a kind

of phase transition. Just as water exists in three phases: solid, liquid and gaseous,
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so might behavior patterns have a similar phase transition. Chaotic dynamics allows
the patterns of behavior to live in a liquid state that can rapidly converge to an or-
dered regime under the influence of environmental and internal control parameters
(Kauffman, 1993, 1995, 2000).

The other main thrust of this research proposal is along the lines of what Freeman
calls the basic intentional system (Freeman, 1999b, 1999a, 2000). Intentional behav-
ior is something that all higher biological organisms exhibit but which most models
of behavior have so far been unable to capture. Theories of cognitive embodiment
(Clark, 1997; Hendriks-Jansen, 1996) have begun to tackle this issue and explore
models that may capture intentionality. Intentionality is a very basic property of
biological behavior, so simple that its importance is easily overlooked. Traditional Al
has concentrated on the impressive reasoning and linguistic abilities of humans. Early
on it was felt that these higher level cognitive abilities were the important problems.
If they could be solved then it was thought that the easy problems such as percep-
tion, navigation, orientation and spatial representation would quickly be overcome
(Hendriks-Jansen, 1996; Clark, 2001). However the difficulty of getting classical Al
models to display truly flexible behavior has lead some to completely reverse this
traditional viewpoint. Now it is thought by many that solving the seemingly basic
problems of embodiment in the world may provide the foundation upon which higher
level reasoning skills need to be built. Only when the foundation is correctly built
will the characteristic flexibility and complexity of behavior in logic, reasoning and
human intuition for problem solving be possible.

Freeman argues that this embodiment of behavior in biological organisms arises
from a certain neurodynamical configuration of vertebrate brains, which he calls the
basic intentional system (Freeman, 2000). He identifies the major parts of the limbic

system as the basis for intentional behavior in animal brains. Intentional behavior
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is that ability of organisms to orient themselves in time and space. To form spatio-
temporal maps of themselves and their environments. To learn and develop from
experiences within the environment. Further it is the ability to direct behavior into
the environment in the service of the needs and desires of the organism, e.g. to be
goal-oriented and goal-directed. Freeman argues that the basic intentional system
forms the basis upon which all other complex behaviors develop.

Models of intentionality basically have to do with how the whole or complete
organism dynamically organizes and constructs goal states and generates behavior
to approach, evaluate and satisfy those goals. In a more traditional autonomous
agent view, this boils down to solving the action selection problem, but in a way
that does not depend on hard-coding the goals and desires into the organism. Thelen
and Smith’s concept of the ontogenetic landscape (Thelen & Smith, 1994) provides a
metaphorical analysis of the way in which a landscape of attractors is hierarchically
organized and constructed in the service of the needs and desires of the organism.
Freeman’s principles of chaotic neurodynamics provide us with the guideposts for
building systems capable of the formation of such attractor landscapes. These con-
cepts provide us with the key to building hierarchical, self-organizing, goal context
mechanisms for autonomous agents.

In Skarda and Freeman (Skarda & Freeman, 1987), the authors hypothesize that

convergence to an attractor in one system (e.g. the olfactory bulb)
in turn destabilizes other systems (e.g., the motor system), leading to
further state changes and ultimately to manipulation of and action within
the environment.

In other words, the dynamics in some systems may act as control parameters that
lead to bifurcations in other systems to produce behavior. Further, a basic property
of the architecture of the basic limbic system is that activity does not simply flow in
one direction (from input to output) but recurrent connections allow for the mutual

coupling of such systems. In effect the perceptual system does not simply influence
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the motor system in producing goal-directed behavior, but the motor system also
influences the perceptual system in setting up and guiding expectations and attention.
The perceptual categories formed by the organism are not simple, static structures,
but are dynamic patterns of activity. Through such influences, both internal and
external, behavior is generated. So static perceptual categories give way to dynamic
patterns of activity, both from internal needs and external perceptions, that guide
action. Thus, such a system may be capable of generating Gibson’s “affordances”
(Gibson, 1979), in which perceptual information and internal drives are seamlessly
combined to identify and afford opportunities for adaptive behavior to the organism.

Therefore the purpose of the proposed research is to begin to build a model of
a basic intentional system. The physical architecture of such a model will be based
upon the only know example of a true intentional system: the biological limbic sys-
tem. The principles of chaotic neurodynamics will provide the guideposts for the
construction of such a system. The goal of the research is to discover how exactly
chaotic dynamics may be used to not only form perceptual categories, but to also
form hierarchical, intentional goal states. Also, how through a process of ontogenetic
development, such goal states can be created and utilized to generate behavior, at-
tention and expectation in the organism. In essence, can we begin to model some of
the properties of intentional behavior and affordances through chaotic dynamics and

self-organization of patterns of activity.

4.1 Statement of Research Objectives

The proposed research has the following central research questions in mind:

e Can chaotic dynamics be used to form perceptual categories in autonomous
agents?

e Can the formation of perceptual attractors for perception be extended to form
goal-state attractors, and attractors for memory systems and cognitive maps?
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e (Can chaotic dynamics be used for the hierarchical self-organization of goal-state
contexts for the action selection mechanism of an autonomous agent?

e Do chaotic dynamics improve the performance and flexibility of perceptual cat-
egorization and behavior generation for autonomous adaptive agents?

e How, exactly, can we go from perceptual models using the principles of chaotic
neurodynamics, to a more complete model of a basic intentional system?

These questions lead to some of the following goals of the proposed research:

e The demonstration of chaotic dynamics in forming perceptual categories in an
autonomous agent.

e The demonstration of hierarchical self-organization of behavior in the action
selection of an autonomous agent.

e The demonstration of the development of spatio-temporal cognitive maps using
chaotic dynamics in autonomous agents.

4.2 Methods and Materials

In this section I present a brief overview of the agents, environments and tasks that
are proposed for use in this research. The neural population KA model, described in
the previous chapter, will provide the basic units for all simulations and agents to be

developed by this research.

4.2.1 Agent

I am proposing to mainly use the khepera agent for much of this research. The khepera
agent is both a virtual agent in a simulated environment, and a real robotic agent.
One advantage of the khepera product, is that simulator and real robot have remained
tightly coupled in development. Simulations developed on the virtual environment
simulator often work with little modification in the real robotic agent.

Figure 2.3 from chapter 2 shows the basic body plan of the khepera agent. The
robots morphology is simple, and consists of a circular body with sensors arrayed
around the periphery and two independently controlled motorized wheels for per-

forming movement. The typical configuration of the agent consists of 8 sensors in
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total, with 6 arrayed in the front of the agent (towards the direction of forward mo-
tion) and 2 directed towards the rear. The standard configuration of khepera consists
of two types of sensors, one type detects light intensity, and the other is an infra-red
range finder that can detect proximity to an obstruction. The simulation of simple
binary collision detectors (collision/no collision) can easily be done using the existing
proximity sensors. Both types of sensors have a limited range, and are sensitive to a
cone with a limited detection arc. The detection fields of the sensors do overlap in
area. The wheels allow for forward and backward motion, plus the robot can turn in
place, or in slower arcs.

Another robotic agent that may be used to conduct simulations is the Sony AIBO
dog, which we have available for our use. This is a real world robot with a more
anthropomorphic shape (e.g. a very small dog). It has 4 legs for movement and
turning, each with three degrees of freedom. It has a head capable of three degrees
of freedom as well, so that it can be turned to scan the environment without moving
the position of the robot. The robot is equipped with two main sensors, a single
range finder, capable of detecting obstacles at intermediate range, and a simple color

calnera.

4.2.2 Environment

In figure 4.1 I show a snapshot of the khepera simulator. The environments are eas-
ily configurable to allow for any placement of walls (obstructions) and light sources
as desired. Light sources are often used to represent food sources or generic desiri-

able /undesiriable location/features for the agent simulations.

4.2.3 Tasks

Due to the lack of manipulators for the standard agent, tasks are mostly restricted

to motion, navigation and exploration of the environment. I am planning on mainly
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Figure 4.1: A snapshot of the environment of the khepera simulator.

focusing on two types of tasks. In one type of unmotivated exploration, the agent
builds a spatio-temporal cognitive map representation of its environment. A second
type of task involves motivation, in which the agent uses it cognitive map to reliably

navigate to desired locations in order to perform behaviors and satisfy basic needs.

4.3 Proposed K-IV Architecture

In (Kozma, Freeman, & Erdi, 2003, 2002), Kozma et. al. have presented the next
logical step up from the K-ITI model, the K-IV architecture. The purpose of the K-IV
architecture is as a model of a basic limbic system. In this model, K-III units are used
to capture the dynamics of each of the major portions of the limbic system: sensory,
motor, associational and memory (figures 2.13 and 2.14). The combination of these

K-III units to form a complete limbic system has been called a K-IV and is shown in
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figure 4.2.
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Figure 4.2: Proposed K-IV architecture, a model of a basic intentional system.

Each of the components in the center box of this figure (labeled KIV) forms a K-III
system. The system at the top is for sensory dynamics and perceptual categorization
(OB, AON and PC). The system to the right is for associational activity (Septum,
DB and HT). While the system to the left is for memory (CA1, CA2, CA3). The
dynamics in the motor system (Amygdala Striatum) do not require a full K-IIT and
are captured in this architecture with a group of K-II units.

Comparing figure 4.2 to figure 2.14, the top K-III (OB, AON and PC), which

receives input from the sensors, corresponds to the Sensory Systems area in figure 2.14.
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The right K-III system (Septum, DB and HT) are the dynamics for the associational
entorhinal cortex. The left K-III (CA1, CA2 and CA3) provide the dynamics of the
hippocampal memory system.

Figure 4.2 represents a very high level representation of a possible model of the
basic intentional system. It hypothesizes that dynamics of the major systems; per-
ceptual, associational and memory; can be modeled using chaotic dynamics of the
same kind discovered in the olfactory perceptual system, and captured by a K-III
unit. The ultimate goal of the proposed research is to begin to work out the details
of how to implement a K-IV basic intentional system for control of an autonomous

agent.

4.4 Towards a K-IV for Autonomous Agents

Towards this goal of implementing a K-IV I am proposing a series of partial tasks
in order to begin to work out some of the necessary details. One of the major sub-
tasks, already completed and described in this proposal, was the development of basic
units capable of the K-set dynamics but in discrete versions suitable for real-time au-
tonomous agent simulations. I now present two ideas for the use of the KA units in

developing autonomous agents.

4.4.1 KA-III for simple Action Selection

The first subtask would be the demonstration of simple behaviors (exploration, ob-
ject avoidance, wall following), using a part of the K-IV architecture. In this task,
we would remove the hippocampus in the K-IV architecture, and use the K-III of the
perceptual, and associational areas, along with the motor control areas. The comple-
tion of this task would require working out some important details. For example, how

exactly do the dynamics in the Amygdala striatum come to reliably control the simple
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behaviors and motions of the agent. Some preliminary work leads us to believe that
this is not a simple question. From an engineering perspective it will mean classifying
different chaotic attractors and assigning the system to drive motors in certain ways

when that attractor is entered into.

4.4.2 KA-III, Hippocampal Cognitive Map Formation and
Phase Precession

Another obvious subtask is to model some functions of hippocampal cognitive map
formation. In this task we would model only the K-III of the hippocampus, and
we would simulate appropriate sensory (and associational) dynamics externally. The
hippocampus is known to form so called place cells when learning a cognitive map of
its environment. The spatial pattern of these place cells are also known to completely
change when new landmarks of a familiar environment appear. This rearrangement
of patterns is of course reminiscent of the reshaping of the attractor landscape upon
the formation of new perceptual categories. Place cells, I believe, are equivalent to
the formation of AM spatial patterns in sensory systems. Development of cognitive
maps using a KA-III would allow us to explore the properties of place cells formed
using the principles of chaotic dynamics.

Another phenomenon observed in the hippocampus has been called phase preces-
sion, or phase advance. This is a well known observed phenomenon in which the firing
of place cells in the hippocampus change phase relative to the normal © cycle of the
brain. This phase advance is correlated with movement towards a known location.

One possible interpretation of this phenomenon is as evidence of what I will call
the formation of an intentional loop. What I am suggesting has happened is that the
organism has formed an intention to move from its current location to a goal location.
The formation of this plan of action would be of a similar kind to the chaining of

associational pairs to form a logical inference. In this instance it would be a chaining
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of intermediate locations to imagine a path from the current location to where the
organism wishes to be. However the intended path is created, I imagine that a type of
short term memory, or intentional loop, is then formed. This is a temporal activation
of the sequence of place cell (or AM) patterns, that represent the locations to traverse
to get from here to the goal.

Therefore in this task the objectives would be 1) to demonstrate the use of AM
spatial patterns as place cells in cognitive maps; and 2) to explore the formation of
an intentional loop for moving from the current location to a goal location in the

phenomenon of phase advance.
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Appendix A

Principles of Chaotic
Neurodynamics

Freeman’s ten principle building blocks of chaotic neurodynamics (Freeman, 1999b,
p. 37):

1. The state transition of an excitatory population from a point attractor with
zero activity to a mon-zero point attractor with steady-state activity by
positive feedback.

2. The emergence of oscillation through negative feedback between excitatory
and inhibitory neural populations.

3. The state transition from a point attractor to a limit cycle attractor that
regulates steady-state oscillation of a mixed excitatory-inhibitory cortical pop-
ulation.

4. The genesis of chaos as background activity by combined negative and pos-
itive feedback among three or more mixed excitatory-inhibitory populations.

5. The distributed wave of chaotic dendritic activity that carries a spatial pattern
of amplitude modulation made by the local heights of the wave.

6. The increase in nonlinear feedback gain that is driven by input to a mixed
population, which results in construction of an amplitude-modulation pattern
as the first step in perception.

7. The embodiment of meaning in amplitude-modulation patterns of neural
activity, which are shaped by synaptic interactions that have been modified
through learning.

8. Attenuation of microscopic sensory-driven activity and enhancement of macro-
scopic amplitude-modulation patterns by divergent-convergent cortical pro-
jections underlying solipsism.

9. The divergence of corollary discharges in preafference followed by multisen-
sory convergence into the entorhinal cortex as the basis for Gestalt formation.

10. The formation of a sequence of global amplitude-modulation patterns of
chaotic activity that integrates and directs the intentional state of an entire
hemisphere.
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Appendix B

KA Variables, Parameters and
Equations

The variables, parameters and equations used to implement the KA model are repro-
duced here for reference. The parameters, and their stated default values, were used
for all simulations presented in this proposal. The default values of the parameters
were chosen to approximate the open loop behavior and timing of an isolated neural

population when stimulated.

B.1 Variables

Table B.1: KA Model Variables

Variable Description

C Simulated current at time ¢

Ty Rate of change of current at time ¢.

m Difference to be applied to current at time ¢
ud Difference at time ¢ due to decay to baseline
e Difference at time ¢ due to momentum

g Difference at time ¢ due to external input
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B.2 Parameters

Table B.2: KA Model Parameters

Parameter Description Default
Q Rate of decay to baseline 0.035
B Rate of momentum 0.9
y Input scaling parameter 0.025
€ Transfer function arousal level 3.0
n Saturation threshold 0.75
A Saturation scaling ratio 0.5

B.3 Equations

Ciy1 = Cp + iy
d
Wy =—c X «

Ty = C — C—1

op = €e{l — exp[ﬁ

I}

o = O if unit is excitatory
7 ) —o; if unit is inhibitory
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py = A gt g (B.8)

1t if [, +pyl <m
_ Clo B.9
H { (AN i e+ 2] > (B-9)
Awpgs =e(Vp — Vp)(Va — Va) (B.10)
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Appendix C

KA Source Code Listing

C.1 Axon
C.1.1 Axon.h

1/

// $Id: Axon.h,v 1.6 2002/05/12 15:37:00 dharter Exp $

/7

// This module implements a Axon to comnect up Neuron objects. The Axon
// objects are the links between objects, and as such have a weight value
// and the behavior to change weight values using hebbian learning.

class Neuron;

class Axon
{
public:
Neuron* source;
Neuron* dest;
int time;
double weight;
int learn;
int ipq; // index into pulse queue
double* pq; // pulse queue (circular)

Axon(Neuron* source, Neuron* dest, int time, double weight);
Axon(Neuron* source, Neuron* dest, int time, double weight, int learn);
~Axon();

void initAxon(Neuron* source, Neuron* dest, int time, double weight, int learn);
void pulse(double pulse);

void reset();

void hebb(double n, double lr, double dr, double avg);

void revhebb(double n, double 1lr, double dr, double avg);

void waste(double ratio);

void showPulses();

static void goodEvent(double 1r, double dr, double targetAvg);

static void goodEvent2(double 1r, double dr, double targetAvg);

static void badEvent(double lr, double dr, double targetAvg);

private:
static Axon* axons[][20000] ;
static int axonCount[];

};

C.1.2 Axon.cpp

/7

// $1d: Axon.cpp,v 1.6 2002/05/12 15:37:00 dharter Exp $

1/

// This module implements a Axon to connect up Neuron objects. The Axon
// objects are the links between objects, and as such have a weight value
// and the behavior to change weight values using hebbian learning.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "Axon.h"

#include "Neuron.h"
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// static member
const int MAXAXONS=20000;
const int MAXGRQUPS=1;

Axon* Axon::axons[MAXGROUPS][MAXAXONS];
int Axon::axonCount [MAXGROUPS] ;

// Comstructors
Axon: :Axon(Neuron* source, Neuron* dest, int time, double weight)
{

initAxon(source, dest, time, weight, 0);

¥

Axon: :Axon(Neuron* source, Neuron* dest, int time, double weight, int learn)
{

initAxon(source, dest, time, weight, learn)

// Common initialization function
void Axon::initAxon(Neuron* source, Neuron* dest, int time, double weight, int learn)
{
this->source = source;
if (this->source == 0)
fprintf(stderr, "<Axon::initAxon> invalid null source\n");

this->dest = dest;
if (this->dest == 0)
fprintf (stderr, "<Axon::initAxon> invalid null dest\n");

this->time = time;
this->weight = weight;
this->learn = learn;
this->pq = new double[this->time];
for(int i=0; i<this->time; i++)
{

this->pq[i] = 0.0;

this->ipq = 0;

if (axonCount[learn-1] >= MAXAXONS)

{
fprintf(stderr, "Axons::constructor exceeding MAXAXONS count\n");
else
{
if (learn)
{
axons[learn-1] [axonCount [learn-1]] = this;
axonCount [learn-1]++;
i
¥

}

// Destructor
Axon: : "Axon()

¥

// Receive pulse from source and send pulse to destination after
// appropriate delay. Delay is implemented by use of a circular queue.
void Axon::pulse(double pulse)
{
pqlipq] = pulse * weight;
ipq += 1;
if (ipq >= time)

ipq = 0;
if (pqlipql !'= 0)
¢ dest->pulse (pqlipql);
}

// Reset ourself back to 0 state
void Axon::reset()

{
for (int i=0; i<time; i++)
{
pqlil = 0;
ipq = 0;

// Perform hebbian learning
void Axon::hebb(double n, double 1lr, double dr, double avg)
{
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¥
/

v

{

¥
/
e
{
¥

v

{

¥
/

v

{

/

double dw, sc, dc;
sc = source->current - source->avgCurrent;
dc = dest->current - dest->avgCurrent;

dw = 1r * sc * dc;

weight += dw;
//weight -= 0.0000020602; // constant habituation decay

if (weight > 2.0) weight = 2.0;
if (weight < 0.01) weight = 0.01;

/ Reverse the sense of hebbian learning
o0id Axon::revhebb(double n, double lr, double dr, double avg)

double dw, sc, dc;
sc = source->current - source->avgCurrent;
dc = dest->current - dest->avgCurrent;

dw = 1r * sc * dc;

weight -= dw;

//weight -= 0.0001; // constant habituation decay
if (weight > 2.0) weight = 2.0;

if (weight < 0.0) weight = 0.0;

/ Reduce our weight by some percentage
oid Axon::waste(double ratio)

weight *= ratio;

oid Axon::showPulses()

for (int i=0; i<time; i++)
{
print£("%0.2f ", pqlil);

/ static member functions for causing hebbian learning on axons
o0id Axon::goodEvent(double 1lr, double dr, double targetAvg)

double totWeight[MAXGROUPS];
double avg[MAXGROUPSI;

Axon* axon;

int i,j;

// do learning
for (i=0; i<MAXGROUPS; i++)
{
totWeight[il = 0.0;
for (j=0; j<axonCount[i]; j++)

axon = axons[il[jl;
axon->hebb(axonCount[i], 1r, dr, 0);
totWeight[i] += axon->weight;

¥

// adjust total weight space

for (i=0; i<MAXGROUPS; i++)

{
double targetWeight = targetAvg * (double)axonCount[il;
if (totWeight[i] > targetWeight)

double ratio = targetWeight / totWeight[il;
for (j=0; j<axonCount[il; j++)

{
axon = axons[i][j];
axon->waste(ratio);
¥
¥
¥
/ static member functions for causing reverse hebbian learning on axons

void Axon::badEvent (double 1r, double dr, double targetAvg)

{
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double totWeight [MAXGROUPS] ;
double avg[MAXGROUPS];

Axon* axon;

int i,j;

// do learning
for (i=0; i<MAXGROUPS; i++)
{
totWeight[il = 0.0;
for (j=0; j<axonCount[il; j++)
axon = axons[il[jl;
axon->revhebb(axonCount[i], 1r, dr, 0);
totWeight[i] += axon->weight;
i
¥

// adjust total weight space

for (i=0; i<MAXGROUPS; i++)

{
double targetWeight = targetAvg * (double)axonCount[il;
if (totWeight[i]l > targetWeight)

double ratio = targetWeight / totWeight[il;
for (j=0; j<axonCount[il; j++)

axon = axons[i][jl;
axon->waste (ratio);

}

C.2 KAii
C.2.1 KAii.prop

DEFAULTSIZE: 1

C.2.2 KAii.h

/1
// $Id: KAii.h,v 1.1 2002/01/29 16:44:54 dharter Exp $
/7

// The KAii class is a collection class. It groups 2 excitatory and 2
// inhibitory Neuron objects into the typical KAii configuration with

// 10 internal weights.
class NeuronGroup;

class KAii

public:
static int DEFAULTSIZE;

NeuronGroup* el;
NeuronGroup* e2;
NeuronGroup* il;
NeuronGroup* i2;

double ee;
double ei;
double ie;
double ii;
int size;

KAii(double ee, double ei, double ie, double ii);
KAii(double ee, double ei, double ie, double ii, int size);
"KAii();

void tick();

void setArousal(double arocusal);

void reset();

double pulseCount();

private:

3

C.2.3 KAii.cpp

/7
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// $1d:
/7

KAii.cpp,v 1.1 2002/01/29 16:44:54 dharter Exp $

// The KAii class is a collection class. It groups 2 excitatory

// inhib:

itory Neuron objects into the typical KAii configuration

// 10 internal weights.

#include
#include
#include
#include
#include

// read

<stdio.h>
"KAii.h"
""NeuronGroup.h"
""Neuron.h"
"Properties.h"

in properties from property file

and 2
with

int KAii::DEFAULTSIZE = Properties::intValueForProperty("DEFAULTSIZE");

ructor
ii(double ee, double ei, double ie, double ii)

ee, ei, ie, ii, DEFAULTSIZE);

ii(double ee, double ei, double ie, double ii, int size)
>ee = ee;

>ei = ei;

>ie = ie;

>ii = ii;

>size = size;

// create kii neural units

// Const:
KAii::KA
{

KAii(
KAii::KA
{

this-

this-

this-
this-
this-
this-
this-
this-
this-

1/ se

this-

this-
this-
this-
this-
this-
this-
this-
this-
this-

¥

// Destr

KAii::"K.

{

¥

void KAi

{

el->t

e2->t

i1->t
i2->t
¥
void KAi
{
el->s
e2->s:
il->s
i2->s
¥
void KAi
{

el->r

e2->r

il->r
i2->r
¥

>el = new NeuronGroup(Neuron::EXCITATORY, size);

>e2 = new NeuronGroup(Neuron::EXCITATORY, size);
>il = new NeuronGroup(Neuron::INHIBITORY, size);
>i2 = new NeuronGroup(Neuron::INHIBITORY, size);

t up connections w/ proper weights

>el->addConnection(this->e2, this->ee);
>e2->addConnection(this->el, this->ee);
>ii->addConnection(this->i2, this->ii);
>i2->addConnection(this->il, this->ii);

>e2->addConnection(this->i1, this->ei);
>il->addConnection(this->e2, this->ie);

>el->addConnection(this->i2, this->ei);
>i2->addConnection(this->el, this->ie);

>el->addConnection(this->il, this->ei);
>il->addConnection(this->el, this->ie);

uctor

Aii()

irztick()

ick();
ick();
ick();
ick();

i::setArousal(double arousal)

etArousal (arousal);
etArousal (arousal);
etArousal (arousal);
etArousal (arousal);

i::reset()

eset();
eset();
eset();
eset();
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C.3 NeuroUtilities
C.3.1 NeuroUtilities.h

/7

// $Id: NeuroUtilities.h,v 1.1 2002/01/29 16:44:54 dharter Exp $

1/

// Implement utility functions that are useful globally in KA simulations.

class NeuroUtilities
{
public:
// static global utility functions
static double range(double min, double max);

NeuroUtilities();
“NeuroUtilities();

};

C.3.2 NeuroUtilities.cpp

1/

// $1d: NeuroUtilities.cpp,v 1.1 2002/01/29 16:44:54 dharter Exp $

/7

// Implement utility functions that are useful globally in KA simulations.

#include <stdlib.h>
#include "NeuroUtilities.h"

double NeuroUtilities::range(double min, double max)

{
double spin = (double)((double)random() / (double)RAND_MAX);
double range = max - min;
double ret = ((range * spin) + min);
return ret;
¥

// constructor
NeuroUtilities::NeuroUtilities()
{

}

// destructor
NeuroUtilities::"NeuroUtilities()
{

¥

C.4 Neuron
C.4.1 Neuron.prop

# Neuron firing constants
PULSE: 1.0

TIME: 1

AROUSAL: 3.0

# Max number of connections
AXONCONNECTIONS: 255

# constants for pulse-wave conversions
# DECAY (alpha) is the decay to baseline slope constant
DECAY: 0.035

# MOMENTUM (beta) is the momentum constant
MOMENTUM: 0.9

# INPUTSCALING (gamma) is the input scaling constant
INPUTSCALING: 0.025

# saturation constants
SATURATIONTHRESHOLD: 0.75
SATURATIONPOWER: 0.5

C.4.2 Neuron.h

/7

// $1d: Neuron.h,v 1.7 2002/05/12 15:37:00 dharter Exp $

/7

// This module implements a basic Neuron (unit) of the KA model.
class Axon;

class NeuronGroup;
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class Neuron

{

i

public:

enum NeuronType
{
EXCITATORY
INHIBITORY = 2

"
-

};

// class constants (obtained from properties)

static double PULSE;
static int TIME;
static double AROUSAL;

static int AXONCONNECTIONS;

static double DECAY;
static double MOMENTUM;
static double INPUTSCALING;

static double SATURATIONTHRESHOLD;
static double SATURATIONPOWER;

// class variables
int type;

int numConnections;
double arousal;

double current;
double prevCurrent;
double input;

double adjmax;
double adjmin;
double adjrange;

double pulseAmount;

double cq[100];
int cqi;
double avgCurrent;

Axon** connections;
NeuronGroup* group;

// class behaviors

Neuron(int type);

Neuron(int type, double arousal);
“Neuron() ;

void addConnection(Neuron* neuron, double

weight) ;

void addConnection(Neuron* neuron, double weight, int time);
void addConnection(Neuron* neuron, double weight, int time, int learn);

void addConnection(NeuronGroup* ng, double weight);

void addConnection(NeuronGroup* ng, double weight, int time);

void addConnection(NeuronGroup* ng, double weight, int

void tick();

void reset();

void pulse(double ratio);

void setArousal(double arousal);
void rest();

void setGroup(NeuronGroup* group);
double getAverageWeight();

static void tickClock();

static void newSim();

private:

void initNeuron(int type, double arousal);
void ensembleWavePulse() ;

void fire(double ratio);

static Neuron* neurons[];

static int neuronCount;

C.4.3 Neuron.cpp

/7

// $1d: Neuron.cpp,v 1.7 2002/05/12 15:37:00 dharter Exp $

/7

time, int learn);

// This module implements a basic Neuron (unit) of the KA model.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "Neuron.h"
#include "NeuronGroup.h"
#include "Axon.h"

119



#include "Properties.h"

// static member

const int MAXNEURONS = 5000;
Neuron* Neuron::neurons [MAXNEURONS];
int Neuron::neuronCount = 0;

// read in properties from property file
double Neuron::PULSE = Properties::doubleValueForProperty("PULSE");
int Neuron::TIME = Properties::intValueForProperty("TIME");

double Neuron::ARQUSAL = Properties::doubleValueForProperty("AROUSAL");

int Neuron::AXONCONNECTIONS = Properties::intValueForProperty("AXONCONNECTIONS");

double Neuron::DECAY = Properties::doubleValueForProperty("DECAY");
double Neuron::MOMENTUM = Properties::doubleValueForProperty("MOMENTUM");
double Neuron::INPUTSCALING = Properties::doubleValueForProperty("INPUTSCALING");

double Neuron::SATURATIONTHRESHOLD = Properties::doubleValueForProperty ("SATURATIONTHRESHOLD");
double Neuron::SATURATIONPOWER = Properties::doubleValueForProperty("SATURATIONPOWER") ;

#define CQSPAN 100

// Comstructors
Neuron: :Neuron(int type)

{
initNeuron(type, AROUSAL);
3
Neuron: :Neuron(int type, double arousal)
{
initNeuron(type, arousal);
¥

void Neuron::initNeuron(int type, double arousal)

// initialize class variables

this->type = type;

this->numConnections = 0;

this->connections = new Axon*[AXONCONNECTIQNS];
this->setArousal (arousal);

this->current = 0.0;
this->prevCurrent = 0.0;
this->input = 0.0;
this->avgCurrent = 0.0;
for (int i=0; i<CQSPAN; i++)
{

cql[il = 0.0;

cqi = 0;
if (type == EXCITATORY)
{

pulseAmount = PULSE;

}
else
{
pulseAmount = -PULSE;
i
if (neuronCount >= MAXNEURONS)
{
fprintf (stderr, "Neuron::constructor exceeding MAXNEURONS count\n");
else
{
neurons[neuronCount] = this;
neuronCount++;
¥

}

// Destructor
Neuron: : “Neuron ()
{

i

// Add an axon connection from ourself to some other Neuron
void Neuron::addConnection(Neuron* neuron, double weight)

{
addConnection(neuron, weight, TIME, 0);
3
void Neuron::addConnection(Neuron* neuron, double weight, int time)
{
addConnection(neuron, weight, time, 0);
¥
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void Neuron::addConnection(Neuron* neuron, double weight, int time, int learn)
{
Axon* axon = new Axon(this, neuron, time, weight, learn);
connections[numConnections] = axon;
numConnections++;

if (numConnections > AXONCONNECTIQNS)
{
// future: dynamically increase size of array, or use a list?
fprintf (stderr, "<Neuron::addConnection> numConnections exceeding connection array length\n");
i
i

// Add an axon connection from ourself to a NeuronGroup
void Neuron::addConnection(NeuronGroup* ng, double weight)

addConnection(ng, weight, TIME, 0);

¥
void Neuron::addConnection(NeuronGroup* ng, double weight, int time)
{
addConnection(ng, weight, time, 0);
¥

void Neuron::addConnection(NeuronGroup* ng, double weight, int time, int learnm)
{

for (int i=0; i<ng->size; i++)

{
Axon* axon = new Axon(this, ng-)neurons[i], time, weight, learn);
connections[numConnections] = axon;
numConnections++;
if (numConnections > AXONCONNECTIONS)
{
// future: dynamically increase size of array, or use a list?
fprintf(stderr, "<Neuron::addC tion> numC ions exceeding connection array length\n");
¥
¥

// Cause ourself to simulate a single time click by doing our pulse-wave
// and wave-pulse conversions.
void Neuron::tick()
{
double delta, deltal, delta2, delta3;

// calculate differences for this time step

deltal = -current * DECAY; // difference due to decay to baseline
delta2 = (current - prevCurrent) * MOMENTUM; // maintain momementum
delta3 = input * INPUTSCALING; // add in influence from pulses/input
delta = deltal + delta2 + delta3;

// saturate difference if approaching upper or lower boundary
if (((current + delta) > SATURATIONTHRESHOLD) &% (delta > 0.0))

{
double ratio = (1.0 - current) / (1.0 - SATURATIONTHRESHOLD);
ratio = pow(ratio, SATURATIONPOWER);
delta = ratio * delta;
¥
if (((current + delta) < -SATURATIONTHRESHOLD) && (delta < 0.0))
{
double ratio = (1.0 + current) / (1.0 - SATURATIONTHRESHOLD) ;
ratio = pou(ratio, SATURATIONPOWER) ;
delta = ratio * delta;
¥

// update variables to reflect differences for this time step
prevCurrent = current;

input = 0.0;

current = current + delta;

if (current > 1.0) current = 1.0;

if (current < -1.0) current = -1.0;

cqlcqil = current;
cqi += 1;
if (cqi >= CQSPAN)
{

cqi = 0;

double sum = 0.0;
for (int i=0; i<CQSPAN; i++)
{

sum += cq[il;
}
avgCurrent = sum / CQSPAN;
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// send out pulse if needed
ensembleWavePulse() ;

}

// Simulate neuron ensembles wave-pulse dynamics (asymetric sigmoid)
void Neuron::ensembleWavePulse()
{

double c, ratio;

c = (current * 4.0);
ratio = arousal * (1.0 - exp(-(exp(c)-1.0)/arousal));
ratio = (ratio - adjmin) / adjrange;
if (ratio > 0.005)
{
fire(ratio);
¥
else
{
rest();
¥
¥

// fire a pulse to all of our comnections
void Neuron::fire(double ratio)

{
for (int i=0; i<numConnections; i++)
{
connections[i]l->pulse (pulseAmount * ratio);
¥
¥

// Do not fire, give it a rest man
void Neuron::rest()

{
double delta;
// send (non)pulse to our connections
for (int i=0; i<numConnections; i++)
{
connections[i]l->pulse(0.0);
i
i

// Receive a pulse fired from someone connected to us
void Neuron::pulse(double pulse)
{

input += pulse;

}

// Set our arousal level
void Neuron::setArousal (double arousal)

{
double top, bot, dif;
this->arousal = arousal;
adjmax = arousal * (1.0 - exp(-(exp(4.0)-1.0)/arousal));
adjmin = arousal * (1.0 - exp(-(exp(-4.0)-1.0)/arousal));
adjrange = adjmax - adjmin;

3

// Reset ourself back to 0
void Neuron::reset()

current = 0.0;

prevCurrent = 0.0;

input = 0.0;

//refperiod = -1;

for (int i=0; i<numConnections; i++)

¢ connections[i]->reset ();
¥
¥
void Neuron::setGroup(NeuronGroup* group)
! this->group = group;
¥

double Neuron::getAverageWeight ()

{
double totweight;

totweight=0.0;
for (int i=3; i<numConnections; i++)
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{
totweight += connections[i]->weight;
¥

return totweight / (numConnections-3);
¥

// static member functions for causing all neurons to tick their clock
void Neuron::tickClock()

{
for (int i=0; i<neuronCount; i++)
{
neurons[i]->tick();
}
3
void Neuron::newSim()
{
for (int i=0; i<neuronCount; i++)
delete (neurons[i]);
¥
neuronCount = 0;
¥

C.5 NeuronGroup
C.5.1 NeuronGroup.h

1/

// $1d: NeuronGroup.h,v 1.2 2002/01/29 16:44:54 dharter Exp $

/7

// A group of neurons that act together as a single population. At
// the limit (when the group size = 1) The NeuronGroup becomes a
// wrapper for, and behaves as, a single unit.

class Neuron;

class NeuronGroup

{
public:
Neuron** neurons;
int type;
int size;
NeuronGroup(int type, int size);
“NeuronGroup() ;
void addConnection(NeuronGroup* ng, double weight);
void addConnection(NeuronGroup* ng, double weight, int time);
void addConnection(NeuronGroup* ng, double weight, int time, int learn);
void addConnection(Neuron* neuron, double weight);
void addConnection(Neuron* neuron, double weight, int time);
void addConnection(Neuron* neuron, double weight, int time, int learn);
void tick();
void pulse(double pulse);
void setArousal(double arousal);
void reset();
double current();
double avgCurrent();
double getWeight (NeuronGroup* ng);
private:
L

C.5.2 NeuronGroup.cpp

1/

// $1d: NeuronGroup.cpp,v 1.2 2002/01/29 16:44:54 dharter Exp $

/"

// A group of neurons that act together as a single population. At
// the limit (when the group size = 1) The NeuronGroup becomes a
// wrapper for, and behaves as, a single unit.

#include <stdio.h>
#include "NeuronGroup.h"
#include "Neuron.h"
#include "Axon.h"

// Constructor
NeuronGroup: :NeuronGroup(int type, int size)
{

this->type = type;

this->size = size;

this->neurons = new Neuron*[size];
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for (int i=0; i<size; i++)
{
neurons[i] = new Neuron(type);
neurons[i]->setGroup(this);
}
¥

// Destructor

NeuronGroup: : “NeuronGroup ()
{

¥

// Add an axon connection from ourself to some other NeuronGroup
void NeuronGroup::addConnection(NeuronGroup* ng, double weight)
{

addConnection(ng, weight, Neuron::TIME, 0);

void NeuronGroup::addConnection(NeuronGroup* ng, double weight, int time)

addConnection(ng, weight, time, 0);

}

void NeuronGroup::addConnection(NeuronGroup* ng, double weight, int time, int learn)
{

Neuron* source;

Neuron* dest;

for (int i=0; i<size; it++)
{
source = neurons[il;
for (int j=0; j<ng->size; j++)
{
dest = ng->neurons[jl;
source->addConnection(dest, (weight/(double)size), time, learn)

¥
¥

// Add an axon connection from ourself to some other single Neuron
void NeuronGroup::addConnection(Neuron* neuron, double weight)
{

addConnection(neuron, weight, Neuron::TIME, 0);

¥

void NeuronGroup::addConnection(Neuron* neuron, double weight, int time)
{
addConnection(neuron, weight, time, 0);

¥
void NeuronGroup::addConnection(Neuron* neuron, double weight, int time, int learn)

for (int i=0; i<size; it++)
{
neurons [i]->addConnection(neuron, (weight/(double)size), time, learn)
¥
¥

// do a time click for all units in group
void NeuronGroup::tick()

{
for (int i=0; i<size; it++)
{
neurons[i]->tick();
i
i

// send a pulse to all units in group
void NeuronGroup::pulse(double pulse)
{

for (int i=0; i<size; i++)

{

neurons[i]->pulse (pulse);
¥

// set arousal to all units in group
void NeuronGroup::setArousal(double arousal)
{

for (int i=0; i<size; i++)

{

neurons[i]->setArousal(arousal);
3

// reset the neurons in group back to initial (zero) state
void NeuronGroup::reset ()
{

for (int i=0; i<size; it++)
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{
neurons[i]->reset () ;
}
¥

// accessor method to return average current of group
double NeuronGroup::current ()

{

double sum = 0.0;

for (int i=0; i<size; i++)

{

sum += neurons[i]->current;

¥

return (sum / (double)size);
¥

// accessor method to return average current of group
double NeuronGroup::avgCurrent ()

double sum = 0.0;

for (int i=0; i<size; i++)
{
sum += neurons[i]->avgCurrent;
i
return (sum / (double)size);

¥

// find the current weight between ourself and amother neuron group
double NeuronGroup::getWeight (NeuronGroup* ng)
{

double weightSum = 0.0;

// look at each of the Neurons in our group
for (int i=0; i<size; i++)
{
Neuron* n = neurons[i];
// look at each axon of the Neuron.
for (int j=0; j<n->numConnections; j++)
{
Axon* a = n->connections[j];
if (a->dest->group == ng)

{
weightSum += a->weight;
¥
i
¥
return (weightSum / (double)size);
i

C.6 Properties
C.6.1 Properties.h

1/
// $1d: Properties.h,v 1.2 2002/01/25 03:31:31 dharter Exp $
/7
// Get properties from files and make them available globally. Used so that
// we can avoid hard coding constants into programs.
struct PropertyTable
{
char *key;
char *value;

3

class Properties

{
public:
// static member functions
static void readPropertyFile(char *filename);
static int intValueForProperty(char *property);
static double doubleValueForProperty(char *property);
static char* stringValueForProperty(char *property);
static void displayProperties();
Properties(char *filename);
“Properties();

private:
static PropertyTable* table[];
static int tablei;
static char *basePropertyFile;
static int base;
static void insert(char xkey, char *value);
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static void init();

};

C.6.2 Properties.cpp

1/

// $1d: Properties.cpp,v 1.2 2002/01/25 03:31:31 dharter Exp $

/7

// Get properties from files and make them available globally. Used so that
// we can avoid hard coding constants into programs.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "Properties.h"

// static member vars & functions

const int MAXENTRIES = 100;

PropertyTable* Properties::table[MAXENTRIES];

int Properties::tablei = 0;

char *Properties::basePropertyFile = "/home/derek/work/sodas/neurodyn/base/Axon.prop:/home/derek/work/sodas/neurodyn/base/Neuron.prop:/home/derek/work/sodas/neurc
int Properties::base = 0;

void Properties::readPropertyFile(char *filename)
{

const int BUFFER=1024;

char* key;

char* value;

char line[BUFFER];

char *1;

FILE* pfile;

if (!base) init();

pfile = fopen(filename, "r");

if (!pfile)

{
fprintf (stderr, "<Properties::readPropertyFile> couldn’t find file ’%s’\n", filename);
return;

}
while(fgets(line, BUFFER, pfile) != NULL)
{

if (line[0] == '#’)
{
continue;

}
if ((line[0] == ’ ’) || (line[0] == ’\t’) || (line[0] == ’\n’))
{

continue;

}

1 = line;
key = strsep(&l, ": \t\n");
value = strsep(&l, " \t\n"); // get rid of initial white space
while (strlen(l) && !strlen(value))

value = strsep(&l, "\n");
inssrt(ksy, value) ;

i
i

void Properties::insert(char *key, char *value)
{

// search for existing

PropertyTable* entry;

for (int i=0; i<tablei; i++)
{
entry = table[il;
if (strcmp(entry->key, key) == 0)
{
free(entry->value) ;
entry->value = strdup(value);
return;

i
i
// if doesn’t exist, insert it

entry = new PropertyTable;
entry->key = strdup(key);

entry->value = strdup(value);
table[tablei] = entry;
tablei++;

if (tablei > MAXENTRIES)

{

fprintf (stderr, "<Properties::readPropertyFile> exceding MAXENTRIES\n");
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¥
int Properties::intValueForProperty(char *property)
if ('base) init();

for (int i=0; i<tablei; i++)
{
if (strcmp(table[i]->key, property) == 0)

int val = atoi(table[i]->value);
return val;
¥
¥

fprintf (stderr, "<Properties::intValueForProperty> couldn’t find property: <js>\n", property);

return -1;

double Properties::doubleValueForProperty(char *property)

{
if (!base) init();

for (int i=0; i<tablei; i++)

{
if (strcmp(table[i]->key, property) == 0)
{

double val = atof(table[i]->value);
return val;
}
¥

fprintf (stderr, "<Properties::doubleValueForProperty> couldn’t find property:

return -1.0;

}

char* Properties::stringValueForProperty(char *property)
{
if ('base) init();

for (int i=0; i<tablei; it++)

{
if (strcmp(table[il->key, property) == 0)
{

return table[il->value;
i
i

fprintf (stderr, "<Properties::stringValueForProperty> couldn’t find property:

return NULL;
¥

void Properties::displayProperties()

{
for (int i=0; i<tablei; i++)
{
PropertyTable* entry = table[il;
printf("<Y%s>: <Y%s>\n", entry->key, entry->value)
¥
¥

// constructor
Properties::Properties(char *filename)
{

¥

// destructor
Properties:: "Properties()

}

void Properties::init()
{

char *files;

char *1;

char *propertyFile;

base = 1;

if (!files) files = basePropertyFile;

1 = strdup(files);
while (1 &% strlen(1))
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<}s>\n", property);

<%s>\n", property);



propertyFile = strsep(&l, ":\n");
readPropertyFile(propertyFile) ;
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